Radical ligand transfer: mechanism and reactivity governed by three-component thermodynamics
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38846394
PubMed Central
PMC11151871
DOI
10.1039/d4sc01507j
PII: d4sc01507j
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Here, we demonstrate that the relationship between reactivity and thermodynamics in radical ligand transfer chemistry can be understood if this chemistry is dissected as concerted ion-electron transfer (cIET). Namely, we investigate radical ligand transfer reactions from the perspective of thermodynamic contributions to the reaction barrier: the diagonal effect of the free energy of the reaction, and the off-diagonal effect resulting from asynchronicity and frustration, which we originally derived from the thermodynamic cycle for concerted proton-electron transfer (cPET). This study on the OH transfer reaction shows that the three-component thermodynamic model goes beyond cPET chemistry, successfully capturing the changes in radical ligand transfer reactivity in a series of model FeIII-OH⋯(diflouro)cyclohexadienyl systems. We also reveal the decisive role of the off-diagonal thermodynamics in determining the reaction mechanism. Two possible OH transfer mechanisms, in which electron transfer is coupled with either OH- and OH+ transfer, are associated with two competing thermodynamic cycles. Consequently, the operative mechanism is dictated by the cycle yielding a more favorable off-diagonal effect on the barrier. In line with this thermodynamic link to the mechanism, the transferred OH group in OH-/electron transfer retains its anionic character and slightly changes its volume in going from the reactant to the transition state. In contrast, OH+/electron transfer develops an electron deficiency on OH, which is evidenced by an increase in charge and a simultaneous decrease in volume. In addition, the observations in the study suggest that an OH+/electron transfer reaction can be classified as an adiabatic radical transfer, and the OH-/electron transfer reaction as a less adiabatic ion-coupled electron transfer.
Zobrazit více v PubMed
Baldwin J. E. Adlington R. M. Coates J. B. Crabbe M. J. C. Crouch N. P. Keeping J. W. Knight G. C. Schofield C. J. Ting H. H. Vallejo C. A. Thorniley M. Abraham E. P. Biochem. J. 1987;245:831–841. doi: 10.1042/bj2450831. PubMed DOI PMC
Lloyd M. D. Merritt K. D. Lee V. Sewell T. J. Wha-Son B. Baldwin J. E. Schofield C. J. Elson S. W. Baggaley K. H. Nicholson N. H. Tetrahedron. 1999;55:10201–10220. doi: 10.1016/S0040-4020(99)00547-5. DOI
Tudzynski B. Rojas M. C. Gaskin P. Hedden P. J. Biol. Chem. 2002;277:21246–21253. doi: 10.1074/jbc.M201651200. PubMed DOI
Lukačin R. Wellmann F. Britsch L. Martens S. Matern U. Phytochemistry. 2003;62:287–292. doi: 10.1016/S0031-9422(02)00567-8. PubMed DOI
Mizutani M. Ohta D. Annu. Rev. Plant Biol. 2010;61:291–315. doi: 10.1146/annurev-arplant-042809-112305. PubMed DOI
Li J. van Belkum M. J. Vederas J. C. Bioorg. Med. Chem. 2012;20:4356–4363. doi: 10.1016/j.bmc.2012.05.042. PubMed DOI
Kivirikko K. I. and Pihlajaniemi T., in Advances in Enzymology and Related Areas of Molecular Biology, John Wiley & Sons, Ltd, 1998, pp. 325–398 PubMed
Chekan J. R. Ongpipattanakul C. Wright T. R. Zhang B. Bollinger J. M. Rajakovich L. J. Krebs C. Cicchillo R. M. Nair S. K. Proc. Natl. Acad. Sci. U. S. A. 2019;116:13299–13304. doi: 10.1073/pnas.1900711116. PubMed DOI PMC
Huang J. Chen D. Jiang J. Environ. Microbiol. 2020;22:286–296. doi: 10.1111/1462-2920.14847. PubMed DOI
Bian K.-J. Nemoto D. Jr. Kao S.-C. He Y. Li Y. Wang X.-S. West J. G. J. Am. Chem. Soc. 2022;144:11810–11821. doi: 10.1021/jacs.2c04188. PubMed DOI
Kao S.-C. Bian K.-J. Chen X.-W. Chen Y. Martí A. A. West J. G. Chem Catal. 2023;3:100603. doi: 10.1016/j.checat.2023.100603. PubMed DOI PMC
Bian K.-J. Kao S.-C. Nemoto D. Chen X.-W. West J. G. Nat. Commun. 2022;13:7881. doi: 10.1038/s41467-022-35560-3. PubMed DOI PMC
Fu N. Sauer G. S. Lin S. J. Am. Chem. Soc. 2017;139:15548–15553. doi: 10.1021/jacs.7b09388. PubMed DOI
Fu N. Sauer G. S. Saha A. Loo A. Lin S. Science. 2017;357:575–579. doi: 10.1126/science.aan6206. PubMed DOI
Panferova L. I. Zubkov M. O. Kokorekin V. A. Levin V. V. Dilman A. D. Angew. Chem. 2021;133:2885–2890. doi: 10.1002/ange.202011400. PubMed DOI
Nam W. Lee Y.-M. Fukuzumi S. Acc. Chem. Res. 2018;51:2014–2022. doi: 10.1021/acs.accounts.8b00299. PubMed DOI
Pan J. Wenger E. S. Matthews M. L. Pollock C. J. Bhardwaj M. Kim A. J. Allen B. D. Grossman R. B. Krebs C. Bollinger J. M. Jr. J. Am. Chem. Soc. 2019;141:15153–15165. doi: 10.1021/jacs.9b06689. PubMed DOI PMC
Zaragoza J. P. T. Yosca T. H. Siegler M. A. Moënne-Loccoz P. Green M. T. Goldberg D. P. J. Am. Chem. Soc. 2017;139:13640–13643. doi: 10.1021/jacs.7b07979. PubMed DOI PMC
Yadav V. Gordon J. B. Siegler M. A. Goldberg D. P. J. Am. Chem. Soc. 2019;141:10148–10153. doi: 10.1021/jacs.9b03329. PubMed DOI PMC
Yadav V. Rodriguez R. J. Siegler M. A. Goldberg D. P. J. Am. Chem. Soc. 2020;142:7259–7264. doi: 10.1021/jacs.0c00493. PubMed DOI PMC
Bollinger Jr J. M. Price J. C. Hoffart L. M. Barr E. W. Krebs C. Eur. J. Inorg. Chem. 2005;2005:4245–4254. doi: 10.1002/ejic.200500476. DOI
Hillwig M. L. Liu X. Nat. Chem. Biol. 2014;10:921–923. doi: 10.1038/nchembio.1625. PubMed DOI
Kim C. Y. Mitchell A. J. Glinkerman C. M. Li Fu-S. Pluskal T. Weng J.-K. Nat. Commun. 2020;11:1867. doi: 10.1038/s41467-020-15777-w. PubMed DOI PMC
Quinn R. K. Könst Z. A. Michalak S. E. Schmidt Y. Szklarski A. R. Flores A. R. Nam S. Horne D. A. Vanderwal C. D. Alexanian E. J. J. Am. Chem. Soc. 2016;138:696–702. doi: 10.1021/jacs.5b12308. PubMed DOI PMC
Bower J. K. Cypcar A. D. Henriquez B. Stieber S. C. E. Zhang S. J. Am. Chem. Soc. 2020;142:8514–8521. doi: 10.1021/jacs.0c02583. PubMed DOI
Zhang X. Yang H. Tang P. Org. Lett. 2015;17:5828–5831. doi: 10.1021/acs.orglett.5b03001. PubMed DOI
Karimov R. R. Sharma A. Hartwig J. F. ACS Cent. Sci. 2016;2:715–724. doi: 10.1021/acscentsci.6b00214. PubMed DOI PMC
Bian K.-J. Li Y. Zhang K.-F. He Y. Wu T.-R. Wang C.-Y. Wang X.-S. Chem. Sci. 2020;11:10437–10443. doi: 10.1039/D0SC03987J. PubMed DOI PMC
Wang K. Li Y. Li X. Li D. Bao H. Org. Lett. 2021;23:8847–8851. doi: 10.1021/acs.orglett.1c03355. PubMed DOI
Pangia T. M. Davies C. G. Prendergast J. R. Gordon J. B. Siegler M. A. Jameson G. N. L. Goldberg D. P. J. Am. Chem. Soc. 2018;140:4191–4194. doi: 10.1021/jacs.7b12707. PubMed DOI PMC
Matthews M. L. Chang W. Layne A. P. Miles L. A. Krebs C. Bollinger J. M. Nat. Chem. Biol. 2014;10:209–215. doi: 10.1038/nchembio.1438. PubMed DOI PMC
Martinie R. J. Livada J. Chang W. Green M. T. Krebs C. Bollinger J. M. Jr. Silakov A. J. Am. Chem. Soc. 2015;137:6912–6919. doi: 10.1021/jacs.5b03370. PubMed DOI PMC
Mitchell A. J. Dunham N. P. Bergman J. A. Wang B. Zhu Q. Chang W. Liu X. Boal A. K. Biochemistry. 2017;56:441–444. doi: 10.1021/acs.biochem.6b01173. PubMed DOI PMC
Papadopoulou A. Meierhofer J. Meyer F. Hayashi T. Schneider S. Sager E. Buller R. ChemCatChem. 2021;13:3914–3919. doi: 10.1002/cctc.202100591. DOI
Neugebauer M. E. Kissman E. N. Marchand J. A. Pelton J. G. Sambold N. A. Millar D. C. Chang M. C. Y. Nat. Chem. Biol. 2022;18:171–179. doi: 10.1038/s41589-021-00944-x. PubMed DOI
Srnec M. Solomon E. I. J. Am. Chem. Soc. 2017;139:2396–2407. doi: 10.1021/jacs.6b11995. PubMed DOI PMC
Pangia T. M. Yadav V. Gérard E. F. Lin Y.-T. de Visser S. P. Jameson G. N. L. Goldberg D. P. Inorg. Chem. 2019;58:9557–9561. doi: 10.1021/acs.inorgchem.9b01208. PubMed DOI PMC
Savéant J.-M. Acc. Chem. Res. 1993;26:455–461. doi: 10.1021/ar00033a001. DOI
Costentin C. Robert M. Savéant J. M. Chem. Phys. 2006;324:40–56. doi: 10.1016/j.chemphys.2005.09.029. DOI
Mayer J. M. Hrovat D. A. Thomas J. L. Borden W. T. J. Am. Chem. Soc. 2002;124:11142–11147. doi: 10.1021/ja012732c. PubMed DOI
Darcy J. W. Koronkiewicz B. Parada G. A. Mayer J. M. Acc. Chem. Res. 2018;51:2391–2399. doi: 10.1021/acs.accounts.8b00319. PubMed DOI PMC
Galeotti M. Salamone M. Bietti M. Chem. Soc. Rev. 2022;51:2171–2223. doi: 10.1039/D1CS00556A. PubMed DOI
Parada G. A. Goldsmith Z. K. Kolmar S. Rimgard B. P. Mercado B. Q. Hammarström L. Hammes-Schiffer S. Mayer J. M. Science. 2019;364:471–475. doi: 10.1126/science.aaw4675. PubMed DOI PMC
Salamone M. Galeotti M. Romero-Montalvo E. van Santen J. A. Groff B. D. Mayer J. M. DiLabio G. A. Bietti M. J. Am. Chem. Soc. 2021;143:11759–11776. doi: 10.1021/jacs.1c05566. PubMed DOI PMC
Skone J. H. Soudackov A. V. Hammes-Schiffer S. J. Am. Chem. Soc. 2006;128:16655–16663. doi: 10.1021/ja0656548. PubMed DOI
Soudackov A. V. Hammes-Schiffer S. J. Phys. Chem. Lett. 2014;5:3274–3278. doi: 10.1021/jz501655v. PubMed DOI PMC
Hammes-Schiffer S. Stuchebrukhov A. A. Chem. Rev. 2010;110:6939–6960. doi: 10.1021/cr1001436. PubMed DOI PMC
Sirjoosingh A. Hammes-Schiffer S. J. Chem. Theory Comput. 2011;7:2831–2841. doi: 10.1021/ct200356b. PubMed DOI
Sirjoosingh A. Hammes-Schiffer S. J. Phys. Chem. A. 2011;115:2367–2377. doi: 10.1021/jp111210c. PubMed DOI
Hammes-Schiffer S. ChemPhysChem. 2002;3:33–42. doi: 10.1002/1439-7641(20020118)3:1<33::AID-CPHC33>3.0.CO;2-6. PubMed DOI
Liu T. Tyburski R. Wang S. Fernández-Terán R. Ott S. Hammarström L. J. Am. Chem. Soc. 2019;141:17245–17259. doi: 10.1021/jacs.9b08189. PubMed DOI
Tyburski R. Liu T. Glover S. D. Hammarström L. J. Am. Chem. Soc. 2021;143:560–576. doi: 10.1021/jacs.0c09106. PubMed DOI PMC
Zhao N. Goetz M. K. Schneider J. E. Anderson J. S. J. Am. Chem. Soc. 2023;145:5664–5673. doi: 10.1021/jacs.2c10553. PubMed DOI PMC
Schneider J. E. Goetz M. K. Anderson J. S. Chem. Sci. 2021;12:4173–4183. doi: 10.1039/D0SC06058E. PubMed DOI PMC
Salamone M. Bietti M. Acc. Chem. Res. 2015;48:2895–2903. doi: 10.1021/acs.accounts.5b00348. PubMed DOI
Galeotti M. Salamone M. Bietti M. Chem. Soc. Rev. 2022;51:2171–2223. doi: 10.1039/D1CS00556A. PubMed DOI
Mazzonna M. Bietti M. Dilabio G. A. Lanzalunga O. Salamone M. J. Org. Chem. 2014;79:5209–5218. doi: 10.1021/jo500789v. PubMed DOI
More O'Ferrall R. A. J. Chem. Soc. B. 1970:274–277. doi: 10.1039/J29700000274. DOI
Jencks W. P. Chem. Rev. 1972;72:705–718. doi: 10.1021/cr60280a004. DOI
Cembran A. Provorse M. R. Wang C. Wu W. Gao J. J. Chem. Theory Comput. 2012;8:4347–4358. doi: 10.1021/ct3004595. PubMed DOI PMC
Bernasconi C. F. Acc. Chem. Res. 1992;25:9–16. doi: 10.1021/ar00013a002. DOI
Bernasconi C. F. J. Phys. Org. Chem. 2004;17:951–956. doi: 10.1002/poc.810. DOI
Bím D. Maldonado-Domínguez M. Rulíšek L. Srnec M. Proc. Natl. Acad. Sci. U. S. A. 2018;115:E10287–E10294. doi: 10.1073/pnas.1806399115. PubMed DOI PMC
Maldonado-Domínguez M. Srnec M. Inorg. Chem. 2022;61:18811–18822. doi: 10.1021/acs.inorgchem.2c03269. PubMed DOI
Kent Barefield E. Wagner F. Barefield E. K. Inorg. Chem. 1973;12:723. doi: 10.1021/ic50122a002. DOI
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery Jr J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B., and Fox D. J., Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016
Becke A. D. J. Chem. Phys. 1992;96:2155–2160. doi: 10.1063/1.462066. DOI
Grimme S. Antony J. Ehrlich S. Krieg H. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI
Weigend F. Ahlrichs R. Phys. Chem. Chem. Phys. 2005;7:3297–3305. doi: 10.1039/B508541A. PubMed DOI
Cossi M. Rega N. Scalmani G. Barone V. J. Comput. Chem. 2003;24:669–681. doi: 10.1002/jcc.10189. PubMed DOI
Keith T. A., AIMAll (Version 19.10.12), TK Gristmill Software, Overland Park KS, USA, 2019
Mayer J. M. Acc. Chem. Res. 2011;44:36–46. doi: 10.1021/ar100093z. PubMed DOI PMC
Raucci U. Chiariello M. G. Coppola F. Perrella F. Savarese M. Ciofini I. Rega N. J. Comput. Chem. 2020;41:1835–1841. doi: 10.1002/jcc.26224. PubMed DOI
Usharani D. Lacy D. C. Borovik A. S. Shaik S. J. Am. Chem. Soc. 2013;135:17090–17104. doi: 10.1021/ja408073m. PubMed DOI PMC
Tishchenko O. Truhlar D. G. Ceulemans A. Nguyen M. T. J. Am. Chem. Soc. 2008;130:7000–7010. doi: 10.1021/ja7102907. PubMed DOI
Álvarez-Moreno M. de Graaf C. Lopez N. Maseras F. Poblet J. M. Bo C. J. J. Chem. Inf. Model. 2015;55:95–103. doi: 10.1021/ci500593j. PubMed DOI