Radical ligand transfer: mechanism and reactivity governed by three-component thermodynamics

. 2024 Jun 05 ; 15 (22) : 8459-8471. [epub] 20240510

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38846394

Here, we demonstrate that the relationship between reactivity and thermodynamics in radical ligand transfer chemistry can be understood if this chemistry is dissected as concerted ion-electron transfer (cIET). Namely, we investigate radical ligand transfer reactions from the perspective of thermodynamic contributions to the reaction barrier: the diagonal effect of the free energy of the reaction, and the off-diagonal effect resulting from asynchronicity and frustration, which we originally derived from the thermodynamic cycle for concerted proton-electron transfer (cPET). This study on the OH transfer reaction shows that the three-component thermodynamic model goes beyond cPET chemistry, successfully capturing the changes in radical ligand transfer reactivity in a series of model FeIII-OH⋯(diflouro)cyclohexadienyl systems. We also reveal the decisive role of the off-diagonal thermodynamics in determining the reaction mechanism. Two possible OH transfer mechanisms, in which electron transfer is coupled with either OH- and OH+ transfer, are associated with two competing thermodynamic cycles. Consequently, the operative mechanism is dictated by the cycle yielding a more favorable off-diagonal effect on the barrier. In line with this thermodynamic link to the mechanism, the transferred OH group in OH-/electron transfer retains its anionic character and slightly changes its volume in going from the reactant to the transition state. In contrast, OH+/electron transfer develops an electron deficiency on OH, which is evidenced by an increase in charge and a simultaneous decrease in volume. In addition, the observations in the study suggest that an OH+/electron transfer reaction can be classified as an adiabatic radical transfer, and the OH-/electron transfer reaction as a less adiabatic ion-coupled electron transfer.

Erratum v

PubMed

Zobrazit více v PubMed

Baldwin J. E. Adlington R. M. Coates J. B. Crabbe M. J. C. Crouch N. P. Keeping J. W. Knight G. C. Schofield C. J. Ting H. H. Vallejo C. A. Thorniley M. Abraham E. P. Biochem. J. 1987;245:831–841. doi: 10.1042/bj2450831. PubMed DOI PMC

Lloyd M. D. Merritt K. D. Lee V. Sewell T. J. Wha-Son B. Baldwin J. E. Schofield C. J. Elson S. W. Baggaley K. H. Nicholson N. H. Tetrahedron. 1999;55:10201–10220. doi: 10.1016/S0040-4020(99)00547-5. DOI

Tudzynski B. Rojas M. C. Gaskin P. Hedden P. J. Biol. Chem. 2002;277:21246–21253. doi: 10.1074/jbc.M201651200. PubMed DOI

Lukačin R. Wellmann F. Britsch L. Martens S. Matern U. Phytochemistry. 2003;62:287–292. doi: 10.1016/S0031-9422(02)00567-8. PubMed DOI

Mizutani M. Ohta D. Annu. Rev. Plant Biol. 2010;61:291–315. doi: 10.1146/annurev-arplant-042809-112305. PubMed DOI

Li J. van Belkum M. J. Vederas J. C. Bioorg. Med. Chem. 2012;20:4356–4363. doi: 10.1016/j.bmc.2012.05.042. PubMed DOI

Kivirikko K. I. and Pihlajaniemi T., in Advances in Enzymology and Related Areas of Molecular Biology, John Wiley & Sons, Ltd, 1998, pp. 325–398 PubMed

Chekan J. R. Ongpipattanakul C. Wright T. R. Zhang B. Bollinger J. M. Rajakovich L. J. Krebs C. Cicchillo R. M. Nair S. K. Proc. Natl. Acad. Sci. U. S. A. 2019;116:13299–13304. doi: 10.1073/pnas.1900711116. PubMed DOI PMC

Huang J. Chen D. Jiang J. Environ. Microbiol. 2020;22:286–296. doi: 10.1111/1462-2920.14847. PubMed DOI

Bian K.-J. Nemoto D. Jr. Kao S.-C. He Y. Li Y. Wang X.-S. West J. G. J. Am. Chem. Soc. 2022;144:11810–11821. doi: 10.1021/jacs.2c04188. PubMed DOI

Kao S.-C. Bian K.-J. Chen X.-W. Chen Y. Martí A. A. West J. G. Chem Catal. 2023;3:100603. doi: 10.1016/j.checat.2023.100603. PubMed DOI PMC

Bian K.-J. Kao S.-C. Nemoto D. Chen X.-W. West J. G. Nat. Commun. 2022;13:7881. doi: 10.1038/s41467-022-35560-3. PubMed DOI PMC

Fu N. Sauer G. S. Lin S. J. Am. Chem. Soc. 2017;139:15548–15553. doi: 10.1021/jacs.7b09388. PubMed DOI

Fu N. Sauer G. S. Saha A. Loo A. Lin S. Science. 2017;357:575–579. doi: 10.1126/science.aan6206. PubMed DOI

Panferova L. I. Zubkov M. O. Kokorekin V. A. Levin V. V. Dilman A. D. Angew. Chem. 2021;133:2885–2890. doi: 10.1002/ange.202011400. PubMed DOI

Nam W. Lee Y.-M. Fukuzumi S. Acc. Chem. Res. 2018;51:2014–2022. doi: 10.1021/acs.accounts.8b00299. PubMed DOI

Pan J. Wenger E. S. Matthews M. L. Pollock C. J. Bhardwaj M. Kim A. J. Allen B. D. Grossman R. B. Krebs C. Bollinger J. M. Jr. J. Am. Chem. Soc. 2019;141:15153–15165. doi: 10.1021/jacs.9b06689. PubMed DOI PMC

Zaragoza J. P. T. Yosca T. H. Siegler M. A. Moënne-Loccoz P. Green M. T. Goldberg D. P. J. Am. Chem. Soc. 2017;139:13640–13643. doi: 10.1021/jacs.7b07979. PubMed DOI PMC

Yadav V. Gordon J. B. Siegler M. A. Goldberg D. P. J. Am. Chem. Soc. 2019;141:10148–10153. doi: 10.1021/jacs.9b03329. PubMed DOI PMC

Yadav V. Rodriguez R. J. Siegler M. A. Goldberg D. P. J. Am. Chem. Soc. 2020;142:7259–7264. doi: 10.1021/jacs.0c00493. PubMed DOI PMC

Bollinger Jr J. M. Price J. C. Hoffart L. M. Barr E. W. Krebs C. Eur. J. Inorg. Chem. 2005;2005:4245–4254. doi: 10.1002/ejic.200500476. DOI

Hillwig M. L. Liu X. Nat. Chem. Biol. 2014;10:921–923. doi: 10.1038/nchembio.1625. PubMed DOI

Kim C. Y. Mitchell A. J. Glinkerman C. M. Li Fu-S. Pluskal T. Weng J.-K. Nat. Commun. 2020;11:1867. doi: 10.1038/s41467-020-15777-w. PubMed DOI PMC

Quinn R. K. Könst Z. A. Michalak S. E. Schmidt Y. Szklarski A. R. Flores A. R. Nam S. Horne D. A. Vanderwal C. D. Alexanian E. J. J. Am. Chem. Soc. 2016;138:696–702. doi: 10.1021/jacs.5b12308. PubMed DOI PMC

Bower J. K. Cypcar A. D. Henriquez B. Stieber S. C. E. Zhang S. J. Am. Chem. Soc. 2020;142:8514–8521. doi: 10.1021/jacs.0c02583. PubMed DOI

Zhang X. Yang H. Tang P. Org. Lett. 2015;17:5828–5831. doi: 10.1021/acs.orglett.5b03001. PubMed DOI

Karimov R. R. Sharma A. Hartwig J. F. ACS Cent. Sci. 2016;2:715–724. doi: 10.1021/acscentsci.6b00214. PubMed DOI PMC

Bian K.-J. Li Y. Zhang K.-F. He Y. Wu T.-R. Wang C.-Y. Wang X.-S. Chem. Sci. 2020;11:10437–10443. doi: 10.1039/D0SC03987J. PubMed DOI PMC

Wang K. Li Y. Li X. Li D. Bao H. Org. Lett. 2021;23:8847–8851. doi: 10.1021/acs.orglett.1c03355. PubMed DOI

Pangia T. M. Davies C. G. Prendergast J. R. Gordon J. B. Siegler M. A. Jameson G. N. L. Goldberg D. P. J. Am. Chem. Soc. 2018;140:4191–4194. doi: 10.1021/jacs.7b12707. PubMed DOI PMC

Matthews M. L. Chang W. Layne A. P. Miles L. A. Krebs C. Bollinger J. M. Nat. Chem. Biol. 2014;10:209–215. doi: 10.1038/nchembio.1438. PubMed DOI PMC

Martinie R. J. Livada J. Chang W. Green M. T. Krebs C. Bollinger J. M. Jr. Silakov A. J. Am. Chem. Soc. 2015;137:6912–6919. doi: 10.1021/jacs.5b03370. PubMed DOI PMC

Mitchell A. J. Dunham N. P. Bergman J. A. Wang B. Zhu Q. Chang W. Liu X. Boal A. K. Biochemistry. 2017;56:441–444. doi: 10.1021/acs.biochem.6b01173. PubMed DOI PMC

Papadopoulou A. Meierhofer J. Meyer F. Hayashi T. Schneider S. Sager E. Buller R. ChemCatChem. 2021;13:3914–3919. doi: 10.1002/cctc.202100591. DOI

Neugebauer M. E. Kissman E. N. Marchand J. A. Pelton J. G. Sambold N. A. Millar D. C. Chang M. C. Y. Nat. Chem. Biol. 2022;18:171–179. doi: 10.1038/s41589-021-00944-x. PubMed DOI

Srnec M. Solomon E. I. J. Am. Chem. Soc. 2017;139:2396–2407. doi: 10.1021/jacs.6b11995. PubMed DOI PMC

Pangia T. M. Yadav V. Gérard E. F. Lin Y.-T. de Visser S. P. Jameson G. N. L. Goldberg D. P. Inorg. Chem. 2019;58:9557–9561. doi: 10.1021/acs.inorgchem.9b01208. PubMed DOI PMC

Savéant J.-M. Acc. Chem. Res. 1993;26:455–461. doi: 10.1021/ar00033a001. DOI

Costentin C. Robert M. Savéant J. M. Chem. Phys. 2006;324:40–56. doi: 10.1016/j.chemphys.2005.09.029. DOI

Mayer J. M. Hrovat D. A. Thomas J. L. Borden W. T. J. Am. Chem. Soc. 2002;124:11142–11147. doi: 10.1021/ja012732c. PubMed DOI

Darcy J. W. Koronkiewicz B. Parada G. A. Mayer J. M. Acc. Chem. Res. 2018;51:2391–2399. doi: 10.1021/acs.accounts.8b00319. PubMed DOI PMC

Galeotti M. Salamone M. Bietti M. Chem. Soc. Rev. 2022;51:2171–2223. doi: 10.1039/D1CS00556A. PubMed DOI

Parada G. A. Goldsmith Z. K. Kolmar S. Rimgard B. P. Mercado B. Q. Hammarström L. Hammes-Schiffer S. Mayer J. M. Science. 2019;364:471–475. doi: 10.1126/science.aaw4675. PubMed DOI PMC

Salamone M. Galeotti M. Romero-Montalvo E. van Santen J. A. Groff B. D. Mayer J. M. DiLabio G. A. Bietti M. J. Am. Chem. Soc. 2021;143:11759–11776. doi: 10.1021/jacs.1c05566. PubMed DOI PMC

Skone J. H. Soudackov A. V. Hammes-Schiffer S. J. Am. Chem. Soc. 2006;128:16655–16663. doi: 10.1021/ja0656548. PubMed DOI

Soudackov A. V. Hammes-Schiffer S. J. Phys. Chem. Lett. 2014;5:3274–3278. doi: 10.1021/jz501655v. PubMed DOI PMC

Hammes-Schiffer S. Stuchebrukhov A. A. Chem. Rev. 2010;110:6939–6960. doi: 10.1021/cr1001436. PubMed DOI PMC

Sirjoosingh A. Hammes-Schiffer S. J. Chem. Theory Comput. 2011;7:2831–2841. doi: 10.1021/ct200356b. PubMed DOI

Sirjoosingh A. Hammes-Schiffer S. J. Phys. Chem. A. 2011;115:2367–2377. doi: 10.1021/jp111210c. PubMed DOI

Hammes-Schiffer S. ChemPhysChem. 2002;3:33–42. doi: 10.1002/1439-7641(20020118)3:1<33::AID-CPHC33>3.0.CO;2-6. PubMed DOI

Liu T. Tyburski R. Wang S. Fernández-Terán R. Ott S. Hammarström L. J. Am. Chem. Soc. 2019;141:17245–17259. doi: 10.1021/jacs.9b08189. PubMed DOI

Tyburski R. Liu T. Glover S. D. Hammarström L. J. Am. Chem. Soc. 2021;143:560–576. doi: 10.1021/jacs.0c09106. PubMed DOI PMC

Zhao N. Goetz M. K. Schneider J. E. Anderson J. S. J. Am. Chem. Soc. 2023;145:5664–5673. doi: 10.1021/jacs.2c10553. PubMed DOI PMC

Schneider J. E. Goetz M. K. Anderson J. S. Chem. Sci. 2021;12:4173–4183. doi: 10.1039/D0SC06058E. PubMed DOI PMC

Salamone M. Bietti M. Acc. Chem. Res. 2015;48:2895–2903. doi: 10.1021/acs.accounts.5b00348. PubMed DOI

Galeotti M. Salamone M. Bietti M. Chem. Soc. Rev. 2022;51:2171–2223. doi: 10.1039/D1CS00556A. PubMed DOI

Mazzonna M. Bietti M. Dilabio G. A. Lanzalunga O. Salamone M. J. Org. Chem. 2014;79:5209–5218. doi: 10.1021/jo500789v. PubMed DOI

More O'Ferrall R. A. J. Chem. Soc. B. 1970:274–277. doi: 10.1039/J29700000274. DOI

Jencks W. P. Chem. Rev. 1972;72:705–718. doi: 10.1021/cr60280a004. DOI

Cembran A. Provorse M. R. Wang C. Wu W. Gao J. J. Chem. Theory Comput. 2012;8:4347–4358. doi: 10.1021/ct3004595. PubMed DOI PMC

Bernasconi C. F. Acc. Chem. Res. 1992;25:9–16. doi: 10.1021/ar00013a002. DOI

Bernasconi C. F. J. Phys. Org. Chem. 2004;17:951–956. doi: 10.1002/poc.810. DOI

Bím D. Maldonado-Domínguez M. Rulíšek L. Srnec M. Proc. Natl. Acad. Sci. U. S. A. 2018;115:E10287–E10294. doi: 10.1073/pnas.1806399115. PubMed DOI PMC

Maldonado-Domínguez M. Srnec M. Inorg. Chem. 2022;61:18811–18822. doi: 10.1021/acs.inorgchem.2c03269. PubMed DOI

Kent Barefield E. Wagner F. Barefield E. K. Inorg. Chem. 1973;12:723. doi: 10.1021/ic50122a002. DOI

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery Jr J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B., and Fox D. J., Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016

Becke A. D. J. Chem. Phys. 1992;96:2155–2160. doi: 10.1063/1.462066. DOI

Grimme S. Antony J. Ehrlich S. Krieg H. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI

Weigend F. Ahlrichs R. Phys. Chem. Chem. Phys. 2005;7:3297–3305. doi: 10.1039/B508541A. PubMed DOI

Cossi M. Rega N. Scalmani G. Barone V. J. Comput. Chem. 2003;24:669–681. doi: 10.1002/jcc.10189. PubMed DOI

Keith T. A., AIMAll (Version 19.10.12), TK Gristmill Software, Overland Park KS, USA, 2019

Mayer J. M. Acc. Chem. Res. 2011;44:36–46. doi: 10.1021/ar100093z. PubMed DOI PMC

Raucci U. Chiariello M. G. Coppola F. Perrella F. Savarese M. Ciofini I. Rega N. J. Comput. Chem. 2020;41:1835–1841. doi: 10.1002/jcc.26224. PubMed DOI

Usharani D. Lacy D. C. Borovik A. S. Shaik S. J. Am. Chem. Soc. 2013;135:17090–17104. doi: 10.1021/ja408073m. PubMed DOI PMC

Tishchenko O. Truhlar D. G. Ceulemans A. Nguyen M. T. J. Am. Chem. Soc. 2008;130:7000–7010. doi: 10.1021/ja7102907. PubMed DOI

Álvarez-Moreno M. de Graaf C. Lopez N. Maseras F. Poblet J. M. Bo C. J. J. Chem. Inf. Model. 2015;55:95–103. doi: 10.1021/ci500593j. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...