Proton-Electron Transfer to the Active Site Is Essential for the Reaction Mechanism of Soluble Δ9-Desaturase
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 GM040392
NIGMS NIH HHS - United States
PubMed
32406236
PubMed Central
PMC7316153
DOI
10.1021/jacs.0c01786
Knihovny.cz E-zdroje
- MeSH
- biokatalýza MeSH
- elektrony * MeSH
- molekulární modely MeSH
- protony * MeSH
- rozpustnost MeSH
- stearyl-CoA-desaturasa chemie metabolismus MeSH
- teorie funkcionálu hustoty MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- protony * MeSH
- stearyl-CoA-desaturasa MeSH
A full understanding of the catalytic action of non-heme iron (NHFe) and non-heme diiron (NHFe2) enzymes is still beyond the grasp of contemporary computational and experimental techniques. Many of these enzymes exhibit fascinating chemo-, regio-, and stereoselectivity, in spite of employing highly reactive intermediates which are necessary for activations of most stable chemical bonds. Herein, we study in detail one intriguing representative of the NHFe2 family of enzymes: soluble Δ9 desaturase (Δ9D), which desaturates rather than performing the thermodynamically favorable hydroxylation of substrate. Its catalytic mechanism has been explored in great detail by using QM(DFT)/MM and multireference wave function methods. Starting from the spectroscopically observed 1,2-μ-peroxo diferric P intermediate, the proton-electron uptake by P is the favored mechanism for catalytic activation, since it allows a significant reduction of the barrier of the initial (and rate-determining) H-atom abstraction from the stearoyl substrate as compared to the "proton-only activated" pathway. Also, we ruled out that a Q-like intermediate (high-valent diamond-core bis-μ-oxo-[FeIV]2 unit) is involved in the reaction mechanism. Our mechanistic picture is consistent with the experimental data available for Δ9D and satisfies fairly stringent conditions required by Nature: the chemo-, stereo-, and regioselectivity of the desaturation of stearic acid. Finally, the mechanisms evaluated are placed into a broader context of NHFe2 chemistry, provided by an amino acid sequence analysis through the families of the NHFe2 enzymes. Our study thus represents an important contribution toward understanding the catalytic action of the NHFe2 enzymes and may inspire further work in NHFe(2) biomimetic chemistry.
Zobrazit více v PubMed
Krebs C; Bollinger JM; Booker SJ Cyanobacterial alkane biosynthesis further expands the catalytic repertoire of the ferritin-like ‘di-iron-carboxylate’ proteins. Curr. Opin. Chem. Biol 2011, 15, 291–303. PubMed PMC
Solomon EI; Brunold TC; Davis MI; Kemsley JN; Lee S-K; Lehnert N; Neese F; Skulan AJ; Yang Y-S; Zhou J Geometric and Electronic Structure/Function Correlations in Non-Heme Iron Enzymes. Chem. Rev 2000, 100, 235–350. PubMed
Rokob TA; Chalupský J; Bím D; Andrikopoulos PC; Srnec M; Rulíšek L Mono- and binuclear non-heme iron chemistry from a theoretical perspective. J. Biol. Inorg. Chem 2016, 21, 619–644. PubMed
Friedle S; Reisner E; Lippard SJ Current challenges of modeling diironenzyme active sites for dioxygenactivation by biomimetic synthetic complexes. Chem. Soc. Rev 2010, 39, 2768–2779. PubMed PMC
Harvey JN On the accuracy of density functional theory in transition metal chemistry. Annu. Rep. Prog. Chem., Sect. C: Phys. Chem 2006, 102, 203–226.
Cramer CJ; Truhlar DG Density functional theory for transition metals and transition metal chemistry. Phys. Chem. Chem. Phys 2009, 11, 10757–10816. PubMed
Ghosh A Just how good is DFT? J. Biol. Inorg. Chem 2006, 11, 671–673. PubMed
Noodleman L; Lovell T; Han W-G; Li J; Himo F Quantum Chemical Studies of Intermediates and Reaction Pathways in Selected Enzymes and Catalytic Synthetic Systems. Chem. Rev 2004, 104, 459–508. PubMed
Ghosh A; Ab initio wavefunctions in bioinorganic chemistry: More than a succès d’estime? J. Biol. Inorg. Chem 2011, 16, 819–820. PubMed PMC
Blomberg MRA; Borowski T; Himo F; Liao RZ; Siegbahn PEM Quantum Chemical Studies of Mechanisms for Metalloenzymes. Chem. Rev 2014, 114, 3601–3658. PubMed
Nagai J; Bloch K Enzymatic desaturation of stearyl acyl carrier protein. J. Biol. Chem 1968, 243, 4626–4633. PubMed
Morris LJ Mechanisms and stereochemistry in fatty acid metabolism. Biochem. J 1970, 118, 681–693. PubMed PMC
Schmidt H; Heinz E Involvement of Ferredoxin in Desaturation of Lipid-Bound Oleate in Chloroplasts. Plant Physiol. 1990, 94, 214–220. PubMed PMC
Wada H; Schmidt H; Heinz E; Murata N In vitro ferredoxin-dependent desaturation of fatty acids in cyanobacterial thylakoid membranes. J. Bacteriol 1993, 175, 544–547. PubMed PMC
Fox BG; Lyle KS; Rogge CE Reactions of the diiron enzyme stearoyl-acyl carrier protein desaturase. Acc. Chem. Res 2004, 37, 421–429. PubMed
Yang Y-S; Broadwater JA; Pulver SC; Fox BG; Solomon EI Circular Dichroism and Magnetic Circular Dichroism Studies of the Reduced Binuclear Non-Heme Iron Site of Stearoyl-ACP Δ9-Desaturase: Substrate Binding and Comparison to Ribonucleotide Reductase. J. Am. Chem. Soc 1999, 121, 2770–2783.
Broadwater JA; Achim C; Münck E; Fox BG Mössbauer studies of the formation and reactivity of a quasi-stable peroxo intermediate of stearoyl-acyl carrier protein Delta 9-desaturase. Biochemistry 1999, 38, 12197–12204. PubMed
Srnec M; Rokob TA; Schwartz JK; Kwak Y; Rulíšek L; Solomon EI Structural and spectroscopic properties of the peroxodiferric intermediate of Ricinus communis soluble Δ9 desaturase. Inorg. Chem 2012, 51, 2806–2820. PubMed
Chalupský J; Rokob TA; Kurashige Y; Yanai T; Solomon EI; Rulíšek L; Srnec M Reactivity of the Binuclear Non-Heme Iron Active Site of Δ9 Desaturase Studied by Large-Scale Multireference Ab Initio Calculations. J. Am. Chem. Soc 2014, 136, 15977–15991. PubMed
Bochevarov AD; Li J; Song WJ; Friesner RA; Lippard SJ Insights into the Different Dioxygen Activation Pathways of Methane and Toluene Monooxygenase Hydroxylases. J. Am. Chem. Soc 2011, 133, 7384–7397. PubMed PMC
Jensen KP; Bell CB; Clay MD; Solomon EI Peroxo-Type Intermediates in Class I Ribonucleotide Reductase and Related Binuclear Non-Heme Iron Enzymes. J. Am. Chem. Soc 2009, 131, 12155–12171. PubMed
Han W-G; Noodleman L Structural Model Studies for the Peroxo Intermediate P and the Reaction Pathway from P → Q of Methane Monooxygenase Using Broken-Symmetry Density Functional Calculations. Inorg. Chem 2008, 47, 2975–2986. PubMed
Bochevarov AD; Friesner RA; Lippard SJ Prediction of 57Fe Mössbauer Parameters by Density Functional Theory: A Benchmark Study. J. Chem. Theory Comput 2010, 6, 3735–3749. PubMed PMC
Siegbahn PEM Theoretical Model Studies of the Iron Dimer Complex of MMO and RNR. Inorg. Chem 1999, 38, 2880–2889. PubMed
Han W-G; Noodleman L DFT calculations for intermediate and active states of the diiron center with a tryptophan or tyrosine radical in Escherichia coli ribonucleotide reductase. Inorg. Chem 2011, 50, 2302–2320. PubMed PMC
Han W-G; Noodleman L DFT calculations of comparative energetics and ENDOR/Mössbauer properties for two protonation states of the iron dimer cluster of ribonucleotide reductase intermediate X. Dalton Trans. 2009, 6045–6057. PubMed PMC
Rokob TA Pathways for Arene Oxidation in Non-Heme Diiron Enzymes: Lessons from Computational Studies on Benzoyl Coenzyme A Epoxidase. J. Am. Chem. Soc 2016, 138, 14623–14638. PubMed
Liu KE; Valentine AM; Wang D; Huynh BH; Edmondson DE; Salifoglou A; Lippard SJ Kinetic and spectroscopic characterization of intermediates and component interactions in reactions of methane monooxygenase from Methylococcus capsulatus (Bath). J. Am. Chem. Soc 1995, 117, 10174–10185.
Lee SK; Fox BG; Froland WA; Lipscomb JD; Munck E A transient intermediate of the methane monooxygenase catalytic cycle containing an FeIVFeIV cluster. J. Am. Chem. Soc 1993, 115, 6450–6451.
Shu L; Nesheim JC; Kauffmann K; Münck E; Lipscomb JD; Que L An Fe2IVO2 Diamond Core Structure for the Key Intermediate Q of Methane Monooxygenase. Science 1997, 275, 515–518. PubMed
Brunold TC; Tamura N; Kitajima N; Moro-oka Y; Solomon EI Spectroscopic Study of [Fe2(O2)(OBz)2{HB(pź)3}2]: Nature of the μ−1,2 Peroxide–Fe(III) Bond and Its Possible Relevance to O2 Activation by Non-Heme Iron Enzymes. J. Am. Chem. Soc 1998, 120, 5674–5690.
Skulan AJ; Brunold TC; Baldwin J; Saleh L; Bollinger JM Jr.; Solomon EI Nature of the Peroxo Intermediate of the W48F/D84E Ribonucleotide Reductase Variant: Implications for O2 Activation by Binuclear Non-Heme Iron Enzymes. J. Am. Chem. Soc 2004, 126, 8842–8855. PubMed
Saleh L; Krebs C; Ley BA; Naik S; Huynh BH; Bollinger JM Use of a Chemical Trigger for Electron Transfer to Characterize a Precursor to Cluster X in Assembly of the Iron-Radical Cofactor of Escherichia coli Ribonucleotide Reductase. Biochemistry 2004, 43, 5953–5964. PubMed
Bollinger JM; Tong WH; Ravi N; Huynh BH; Edmonson DE; Stubbe J Mechanism of Assembly of the Tyrosyl Radical-Diiron(III) Cofactor of E. coli Ribonucleotide Reductase. 2. Kinetics of The Excess Fe2+ Reaction by Optical, EPR, and Moessbauer Spectroscopies. J. Am. Chem. Soc 1994, 116, 8015–8023.
Bollinger JM; Stubbe J; Huynh BH; Edmondson DE Novel diferric radical intermediate responsible for tyrosyl radical formation in assembly of the cofactor of ribonucleotide reductase. J. Am. Chem. Soc 1991, 113, 6289–6291.
Sturgeon BE; Burdi D; Chen S; Huynh B-H; Edmondson DE; Stubbe J; Hoffman BM Reconsideration of X, the Diiron Intermediate Formed during Cofactor Assembly in E. coli Ribonucleotide Reductase. J. Am. Chem. Soc 1996, 118, 7551–7557.
Siegbahn PEM; Svensson M On the internally contracted multireference CI method with full contraction. Int. J. Quantum Chem 1992, 41, 153–162.
Werner H-J; Reinsch E-A The self-consistent electron pairs method for multiconfiguration reference state functions. J. Chem. Phys 1982, 76, 3144–3156.
Andersson K Different forms of the zeroth-order Hamiltonian in second-order perturbation theory with a complete active space self-consistent field reference function. Theor. Chim. Acta 1995, 91, 31–46.
Andersson K; Malmqvist PA; Roos BO; Sadlej AJ; Wolinski K Second-order perturbation theory with a CASSCF reference function. J. Phys. Chem 1990, 94, 5483–5488.
Andersson K; Malmqvist PÅ; Roos BO Second- order perturbation theory with a complete active space self-consistent field reference function. J. Chem. Phys 1992, 96, 1218–1226.
Li Manni G; Carlson RK; Luo S; Ma D; Olsen J; Truhlar DG; Gagliardi L Multiconfiguration Pair-Density Functional Theory. J. Chem. Theory Comput 2014, 10, 3669–3680. PubMed
Carlson RK; Li Manni G; Sonnenberger AL; Truhlar DG; Gagliardi L Multiconfiguration Pair-Density Functional Theory: Barrier Heights and Main Group and Transition Metal Energetics. J. Chem. Theory Comput 2015, 11, 82–90. PubMed
Lindqvist Y; Huang W; Schneider G; Shanklin J Crystal structure of delta9 stearoyl-acyl carrier protein desaturase from castor seed and its relationship to other di-iron proteins. EMBO J. 1996, 15, 4081–4092. PubMed PMC
Guy JE; Whittle E; Moche M; Lengqvist J; Lindqvist Y; Shanklin, Remote control of regioselectivity in acyl-acyl carrier protein-desaturases. J. Proc. Natl. Acad. Sci. U. S. A 2011, 108, 16594–16599. PubMed PMC
Ryde U The coordination of the catalytic zinc ion in alcohol dehydrogenase studied by combined quantum-chemical and molecular mechanics calculations. J. Comput.-Aided Mol. Des 1996, 10, 153–164. PubMed
Ryde U; Olsson MHM Structure, strain, and reorganization energy of blue copper models in the protein. Int. J. Quantum Chem 2001, 81, 335–347.
Reuter N; Dejaegere A; Maigret B; Karplus M Frontier Bonds in QM/MM Methods: A Comparison of Different Approaches. J. Phys. Chem. A 2000, 104, 1720–1735.
Cao L; Ryde U On the Difference Between Additive and Subtractive QM/MM Calculations. Front. Chem 2018, 6, 89. PubMed PMC
Ahlrichs R; Bär M; Häser M; Horn H; Kölmel C Electronic structure calculations on workstation computers: The program system turbomole. Chem. Phys. Lett 1989, 162, 165–169.
Tao J; Perdew JP; Staroverov VN; Scuseria GE Climbing the Density Functional Ladder: Nonempirical Meta–Generalized Gradient Approximation Designed for Molecules and Solids. Phys. Rev. Lett 2003, 91, 146401. PubMed
Weigend F; Ahlrichs R Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys 2005, 7, 3297–3305. PubMed
Grimme S; Antony J; Ehrlich S; Krieg H A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys 2010, 132, 154104. PubMed
Eichkorn K; Treutler O; Öhm H; Häser M; Ahlrichs R Auxiliary basis sets to approximate Coulomb potentials. Chem. Phys. Lett 1995, 240, 283–290.
Maier JA; Martinez C; Kasavajhala K; Wickstrom L; Hauser KE; Simmerling C ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput 2015, 11, 3696–3713. PubMed PMC
Reiher M; Salomon O; Hess BA Reparameterization of hybrid functionals based on energy differences of states of different multiplicity. Theor. Chem. Acc 2001, 107, 48–55.
Aquilante F; De Vico L; Ferré N; Ghigo G; Malmqvist P.-å.; Neogrády P; Pedersen TB; Pitoňák M; Reiher M; Roos BO; Serrano-Andrés L; Urban M; Veryazov V; Lindh R MOLCAS 7: the next generation. J. Comput. Chem 2010, 31, 224–247. PubMed
Aquilante F; Autschbach J; Carlson RK; Chibotaru LF; Delcey MG; De Vico L; Fdez. Galván I; Ferré N; Frutos LM; Gagliardi L; Garavelli M; Giussani A; Hoyer CE; Li Manni G; Lischka H; Ma D; Malmqvist PÅ; Müller T; Nenov A; Olivucci M; Pedersen TB; Peng D; Plasser F; Pritchard B; Reiher M; Rivalta I; Schapiro I; Segarra-Martí J; Stenrup M; Truhlar DG; Ungur L; Valentini A; Vancoillie S; Veryazov V; Vysotskiy VP; Weingart O; Zapata F; Lindh R Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table. J. Comput. Chem 2016, 37, 506–541. PubMed
Veryazov V; Widmark P-O; Serrano-Andrés L; Lindh R; Roos BO 2MOLCAS as a development platform for quantum chemistry software. Int. J. Quantum Chem 2004, 100, 626–635.
Karlström G; Lindh R; Malmqvist P-Å; Roos BO; Ryde U; Veryazov V; Widmark P-O; Cossi M; Schimmelpfennig B; Neogrady P; Seijo L MOLCAS: a program package for computational chemistry. Comput. Mater. Sci 2003, 28, 222–239.
Siegbahn PEM; Almlöf J; Heiberg A; Roos BO The complete active space SCF (CASSCF) method in a Newton–Raphson formulation with application to the HNO molecule. J. Chem. Phys 1981, 74, 2384–2396.
Roos BO; Taylor PR; Siegbahn PEM A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem. Phys 1980, 48, 157–173.
Widmark P-O; Malmqvist P-Å; Roos BO Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. Theor. Chim. Acta 1990, 77, 291–306.
Roos BO; Lindh R; Malmqvist P-Å; Veryazov V; Widmark P-O New Relativistic ANO Basis Sets for Transition Metal Atoms. J. Phys. Chem. A 2005, 109, 6575–6579. PubMed
Douglas M; Kroll NM Quantum electrodynamical corrections to the fine structure of helium. Ann. Phys 1974, 82, 89–155.
Hess BA Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. Phys. Rev. A 1986, 33, 3742–3748. PubMed
Jansen G; Hess BA Revision of the Douglas-Kroll transformation. Phys. Rev. A 1989, 39, 6016–6017. PubMed
Aquilante F; Malmqvist P-Å; Pedersen TB; Ghosh A; Roos BO Cholesky Decomposition-Based Multiconfiguration Second-Order Perturbation Theory (CD-CASPT2): Application to the Spin-State Energetics of Co(III)(diiminato)(NPh). J. Chem. Theory Comput 2008, 4, 694–702. PubMed
Carlson RK; Truhlar DG; Gagliardi L Multiconfiguration Pair-Density Functional Theory: A Fully Translated Gradient Approximation and Its Performance for Transition Metal Dimers and the Spectroscopy of Re2Cl82–. J. Chem. Theory Comput 2015, 11, 4077–4085. PubMed
Kelly CP; Cramer CJ; Truhlar DG Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. J. Phys. Chem. B 2006, 110, 16066–16081. PubMed
Namazian M; Lin CY; Coote ML Benchmark Calculations of Absolute Reduction Potential of Ferricinium/Ferrocene Couple in Nonaqueous Solutions. J. Chem. Theory Comput 2010, 6, 2721–2725. PubMed
Noodleman L; Du W-GH; Fee JA; Götz AW; Walker RC Linking Chemical Electron–Proton Transfer to Proton Pumping in Cytochrome c Oxidase: Broken-Symmetry DFT Exploration of Intermediates along the Catalytic Reaction Pathway of the Iron–Copper Dinuclear Complex. Inorg. Chem 2014, 53, 6458–6472. PubMed PMC
Klamt A; Schuurmann G COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc.-Perkin Trans 2 1993, 799–805.
Klamt A Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena. J. Phys. Chem 1995, 99, 2224–2235.
Klamt A; Jonas V; Bürger T; Lohrenz JC Refinement and Parametrization of COSMO-RS. J. Phys. Chem. A 1998, 102, 5074–5085.
NCBI Resource Coordinators, Database resources of the National Center for Biotechnology Information, Nucleic Acids Research, Volume 46, Issue D1, 4 January 2018, Pages D8–D13. PubMed PMC
Sievers F; Wilm A; Dineen D; Gibson TJ; Karplus K; Li W; Lopez R; McWilliam H; Remmert M; Söding J; Thompson JD; Higgins DG Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol 2011, 7, 539. PubMed PMC
Sievers F; Higgins DG Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 2018, 27, 135–145. PubMed PMC
Elango NA; Radhakrishnan R; Froland WA; Wallar BJ; Earhart CA; Lipscomb JD; Ohlendorf DH Crystal structure of the hydroxylase component of methane monooxygenase from Methylosinus trichosporium OB3b. Protein Sci. 1997, 6, 556–568. PubMed PMC
Rather LJ; Weinert T; Demmer U; Bill E; Ismail W; Fuchs G; Ermler U Structure and Mechanism of the Diiron Benzoyl-Coenzyme A Epoxidase BoxB. J. Biol. Chem 2011, 286, 29241–29248. PubMed PMC
Choi YS; Zhang H; Brunzelle JS; Nair SK; Zhao H In vitro reconstitution and crystal structure of p-aminobenzoate N-oxygenase (AurF) involved in aureothin biosynthesis. Proc. Natl. Acad. Sci. U. S. A 2008, 105, 6858–6863. PubMed PMC
Bailey LJ; McCoy JG; Phillips GN; Fox BG Structural consequences of effector protein complex formation in a diiron hydroxylase. Proc. Natl. Acad. Sci. U. S. A 2008, 105, 19194–19198. PubMed PMC
Archer M; Carvalho AL; Teixeira S; Moura I; Moura JJG; Rusnak F; Romão MJ Structural studies by X-ray diffraction on metal substituted desulforedoxin, a rubredoxin-type protein. Protein Sci. 1999, 8, 1536–1545. PubMed PMC
Högbom M; Galander M; Andersson M; Kolberg M; Hofbauer W; Lassmann G; Nordlund P; Lendzian F Displacement of the tyrosyl radical cofactor in ribonucleotide reductase obtained by single-crystal high-field EPR and 1.4-Å x-ray data. Proc. Natl. Acad. Sci. U. S. A 2003, 100, 3209–3214. PubMed PMC
Pei J; Kim B-H; Grishin NV PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res. 2008, 36, 2295–2300. PubMed PMC
Lyle KS; Haas JA; Fox BG Rapid-Mix and Chemical Quench Studies of Ferredoxin-Reduced Stearoyl-Acyl Carrier Protein Desaturase. Biochemistry 2003, 42, 5857–5866. PubMed
Saitow M; Kurashige Y; Yanai T Multireference configuration interaction theory using cumulant reconstruction with internal contraction of density matrix renormalization group wave function. J. Chem. Phys 2013, 139, 044118. PubMed
Tinberg CE; Lippard SJ Dioxygen Activation in Soluble Methane Monooxygenase. Acc. Chem. Res 2011, 44, 280–288. PubMed PMC
Cutsail GE; Banerjee R; Zhou A; Que L; Lipscomb JD; DeBeer S High-Resolution Extended X-ray Absorption Fine Structure Analysis Provides Evidence for a Longer Fe···Fe Distance in the Q Intermediate of Methane Monooxygenase. J. Am. Chem. Soc 2018, 140, 16807–16820. PubMed PMC
Rinaldo D; Philipp DM; Lippard SJ; Friesner RA Intermediates in Dioxygen Activation by Methane Monooxygenase: A QM/MM Study. J. Am. Chem. Soc 2007, 129, 3135–3147. PubMed PMC
Reece SY; Nocera DG Proton-Coupled Electron Transfer in Biology: Results from Synergistic Studies in Natural and Model Systems. Annu. Rev. Biochem 2009, 78, 673–699. PubMed PMC
Gagliardi CJ; Vannucci AK; Concepcion JJ; Chen Z; Meyer TJ The role of proton coupled electron transfer in water oxidation. Energy Environ. Sci 2012, 5, 7704–7717.
Hammes-Schiffer S; Soudackov AV Proton-Coupled Electron Transfer in Solution, Proteins, and Electrochemistry. J. Phys. Chem. B 2008, 112, 14108–14123. PubMed PMC
Chang CJ; Chang MCY; Damrauer NH; Nocera DG Proton-coupled electron transfer: a unifying mechanism for biological charge transport, amino acid radical initiation and propagation, and bond making/breaking reactions of water and oxygen. Biochim. Biophys. Acta 2004, 1655, 13–28. PubMed
Cammack R; Rao KK; Bargeron CP; Hutson KG; Andrew PW; Rogers LJ Midpoint redox potentials of plant and algal ferredoxins. Biochem. J 1977, 168, 205–209. PubMed PMC
Wang D; Farquhar ER; Stubna A; Münck E; Que L Jr A diiron(IV) complex that cleaves strong C-H and O-H bonds. Nat. Chem 2009, 1, 145. PubMed PMC
Xue G; Wang D; De Hont R; Fiedler AT; Shan X; Münck E; Que L A synthetic precedent for the [FeIV2(μ-O)2] diamond core proposed for methane monooxygenase intermediate Q. Proc. Natl. Acad. Sci. U. S. A 2007, 104, 20713–20718. PubMed PMC
Cho K-B; Hirao H; Shaik S; Nam W To rebound or dissociate? This is the mechanistic question in C–H hydroxylation by heme and nonheme metal–oxo complexes. Chem. Soc. Rev 2016, 45, 1197–1210. PubMed
Huang X; Groves JT Beyond ferryl-mediated hydroxylation: 40 years of the rebound mechanism and C-H activation. J. Biol. Inorg. Chem 2017, 22, 185–207. PubMed PMC
Pangia TM; Yadav V; Gérard EF; Lin Y-T; de Visser SP; Jameson GNL; Goldberg DP Mechanistic Investigation of Oxygen Rebound in a Mononuclear Nonheme Iron Complex. Inorg. Chem 2019, 58, 9557–9561. PubMed PMC
Srnec M; Solomon EI Frontier Molecular Orbital Contributions to Chlorination versus Hydroxylation Selectivity in the Non-Heme Iron Halogenase SyrB2. J. Am. Chem. Soc 2017, 139, 2396–2407. PubMed PMC
Whittle EJ; Tremblay AE; Buist PH; Shanklin J Revealing the catalytic potential of an acyl-ACP desaturase: Tandem selective oxidation of saturated fatty acids. Proc. Natl. Acad. Sci. U. S. A 2008, 105, 14738–14743. PubMed PMC
Behrouzian B; Buist PH Bioorganic chemistry of plant lipid desaturation. Phytochem. Rev 2003, 2, 103–111.
Park K; Li N; Kwak Y; Srnec M; Bell CB; Liu LV; Wong SD; Yoda Y; Kitao S; Seto M; Hu M; Zhao J; Krebs C; Bollinger JM; Solomon EI Peroxide Activation for Electrophilic Reactivity by the Binuclear Non-heme Iron Enzyme AurF. J. Am. Chem. Soc 2017, 139, 7062–7070. PubMed PMC
Acheson JF; Bailey LJ; Brunold TC; Fox BG In-crystal reaction cycle of a toluene-bound diiron hydroxylase. Nature 2017, 544, 191–195. PubMed
Makris TM; Vu VV; Meier KK; Komor AJ; Rivard BS; Münck E; Que L; Lipscomb JD An Unusual Peroxo Intermediate of the Arylamine Oxygenase of the Chloramphenicol Biosynthetic Pathway. J. Am. Chem. Soc 2015, 137, 1608–1617. PubMed PMC
Jasniewski AJ; Komor AJ; Lipscomb JD; Que L Unprecedented (μ−1,1-Peroxo)diferric Structure for the Ambiphilic Orange Peroxo Intermediate of the Nonheme N-Oxygenase CmlI. J. Am. Chem. Soc 2017, 139, 10472–10485. PubMed PMC
Song WJ; McCormick MS; Behan RK; Sazinsky MH; Jiang W; Lin J; Krebs C; Lippard SJ Active site threonine facilitates proton transfer during dioxygen activation at the diiron center of toluene/o-xylene monooxygenase hydroxylase. J. Am. Chem. Soc 2010, 132, 13582–13585. PubMed PMC
Guy JE; Abreu IA; Moche M; Lindqvist Y; Whittle E; Shanklin J A single mutation in the castor Δ9–18:0-desaturase changes reaction partitioning from desaturation to oxidase chemistry. Proc. Natl. Acad. Sci. U. S. A 2006, 103, 17220–17224. PubMed PMC
Sobrado P; Lyle KS; Kaul SP; Turco MM; Arabshahi I; Marwah A; Fox BG Identification of the Binding Region of the [2Fe-2S] Ferredoxin in Stearoyl-Acyl Carrier Protein Desaturase: Insight into the Catalytic Complex and Mechanism of Action. Biochemistry 2006, 45, 4848–4858. PubMed PMC
Lendzian F; Sahlin M; MacMillan F; Bittl R; Fiege R; Pötsch S; Sjöberg B-M; Gräslund A; Lubitz W; Lassmann G Electronic Structure of Neutral Tryptophan Radicals in Ribonucleotide Reductase Studied by EPR and ENDOR Spectroscopy. J. Am. Chem. Soc 1996, 118, 8111–8120.
Mitić N; Clay MD; Saleh L; Bollinger JM; Solomon EI Spectroscopic and Electronic Structure Studies of Intermediate X in Ribonucleotide Reductase R2 and Two Variants: A Description of the FeIV-Oxo Bond in the FeIII–O–FeIV Dimer. J. Am. Chem. Soc 2007, 129, 9049–9065. PubMed PMC
Discovery of a Druggable, Cryptic Pocket in SARS-CoV-2 nsp16 Using Allosteric Inhibitors