Understanding desaturation/hydroxylation activity of castor stearoyl Δ9-Desaturase through rational mutagenesis

. 2022 ; 20 () : 1378-1388. [epub] 20220314

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35386101
Odkazy

PubMed 35386101
PubMed Central PMC8940945
DOI 10.1016/j.csbj.2022.03.010
PII: S2001-0370(22)00085-X
Knihovny.cz E-zdroje

A recently proposed reaction mechanism of soluble Δ9 desaturase (Δ9D) allowed us to identify auxiliary residues His203, Asp101, Thr206 and Cys222 localized near the di-iron active site that are supposedly involved in the proton transfer (PT) to and from the active site. The PT, along with the electron transfer (ET), seems to be crucial for efficient desaturation. Thus, perturbing the major PT chains is expected to impair the native reaction and (potentially) amplify minor reaction channels, such as the substrate hydroxylation. To verify this hypothesis, we mutated the four residues mentioned above into their counterparts present in a soluble methane monooxygenase (sMMO), and determined the reaction products of mutants. We found that the mutations significantly promote residual monohydroxylation activities on stearoyl-CoA, often at the expense of native desaturation activity. The favored hydroxylation positions are C9, followed by C10 and C11. Reactions with unsaturated substrate, oleoyl-CoA, yield erythro-9,10-diol, cis-9,10-epoxide and a mixture of allylic alcohols. Additionally, using 9- and 11-hydroxystearoyl-CoA, we showed that the desaturation reaction can proceed only with the hydroxyl group at position C11, whereas the hydroxylation reaction is possible in both cases, i.e. with hydroxyl at position C9 or C11. Despite the fact that the overall outcome of hydroxylation is rather modest and that it is mostly the desaturation/hydroxylation ratio that is affected, our results broaden understanding of the origin of chemo- and stereoselectivity of the Δ9D and provide further insight into the catalytic action of the NHFe2 enzymes.

Zobrazit více v PubMed

Solomon E.I., Brunold T.C., Davis M.I., et al. Geometric and electronic structure/function correlations in non-heme iron enzymes. Chem Rev. 2000;100(1):235–349. doi: 10.1021/cr9900275. PubMed DOI

Krebs C., Bollinger J.M., Booker S.J. Cyanobacterial alkane biosynthesis further expands the catalytic repertoire of the ferritin-like 'di-iron-carboxylate' proteins. Curr Opin Chem Biol. 2011;15(2):291–303. doi: 10.1016/j.cbpa.2011.02.019. PubMed DOI PMC

Jasniewski A.J., Que L. Dioxygen activation by nonheme diiron enzymes: diverse dioxygen adducts, high-valent intermediates, and related model complexes. Chem Rev. 2018;118(5):2554–2592. doi: 10.1021/acs.chemrev.7b00457. PubMed DOI PMC

Nagai J., Bloch K. Enzymatic desaturation of stearyl acyl carrier protein. J Biol Chem. 1968;243(17):4626–4633. doi: 10.1016/S0021-9258(18)93235-7. PubMed DOI

Morris L.J. Mechanisms and Stereochemistry in Fatty Acid Metabolism - Fifth Colworth Medal Lecture. Biochem J. 1970;118(5):681–693. doi: 10.1042/bj1180681g. PubMed DOI PMC

Schmidt H., Heinz E. Involvement of ferredoxin in desaturation of lipid-bound oleate in chloroplasts. Plant Physiol. 1990;94(1):214–220. doi: 10.1104/pp.94.1.214. PubMed DOI PMC

Wada H., Schmidt H., Heinz E., Murata N. In vitro ferredoxin-dependent desaturation of fatty-acids in cyanobacterial thylakoid membranes. J Bacteriol. 1993;175(2):544–547. doi: 10.1128/Jb.175.2.544-547.1993. PubMed DOI PMC

Kazaz S., Miray R., Lepiniec L., Baud S. Plant monounsaturated fatty acids: diversity, biosynthesis, functions and uses. Prog Lipid Res. 2022;85 doi: 10.1016/j.plipres.2021.101138. PubMed DOI

Yang Y.S., Broadwater J.A., Pulver S.C., Fox B.G., Solomon E.I. Circular dichroism and magnetic circular dichroism studies of the reduced binuclear non-heme iron site of stearoyl-ACP Δ9-desaturase: substrate binding and comparison to ribonucleotide reductase. J Am Chem Soc. 1999;121(12):2770–2783. doi: 10.1021/ja9822714. DOI

Broadwater J.A., Achim C., Munck E., Fox B.G. Mössbauer studies of the formation and reactivity of a quasi-stable peroxo intermediate of stearoyl-acyl carrier protein Δ9-desaturase. Biochemistry-Us. 1999;38(38):12197–12204. doi: 10.1021/bi9914199. PubMed DOI

Siegbahn P.E.M. Theoretical model studies of the iron dimer complex of MMO and RNR. Inorg Chem. 1999;38(12):2880–2889. doi: 10.1021/ic981332w. PubMed DOI

Fox B.G., Lyle K.S., Rogge C.E. Reactions of the diiron enzyme stearoyl-acyl carrier protein desaturase. Acc Chem Res. 2004;37(7):421–429. doi: 10.1021/ar030186h. PubMed DOI

Han W.G., Noodleman L. Structural model studies for the peroxo intermediate P and the reaction pathway from P -> Q of methane monooxygenase using broken-symmetry density functional calculations. Inorg Chem. 2008;47(8):2975–2986. doi: 10.1021/ic701194b. PubMed DOI

Jensen K.P., Bell C.B., Clay M.D., Solomon E.I. Peroxo-type intermediates in class I ribonucleotide reductase and related binuclear non-heme iron enzymes. J Am Chem Soc. 2009;131(34):12155–12171. doi: 10.1021/ja809983g. PubMed DOI

Han W.G., Noodleman L. DFT calculations of comparative energetics and ENDOR/Mössbauer properties for two protonation states of the iron dimer cluster of ribonucleotide reductase intermediate X. Dalton T. 2009;30:6045–6057. doi: 10.1039/b903847g. PubMed DOI PMC

Bochevarov A.D., Friesner R.A., Lippard S.J. Prediction of Fe-57 Mössbauer parameters by density functional theory: a benchmark study. J Chem Theory Comput. 2010;6(12):3735–3749. doi: 10.1021/ct100398m. PubMed DOI PMC

Bochevarov A.D., Li J.N., Song W.J., Friesner R.A., Lippard S.J. Insights into the different dioxygen activation pathways of methane and toluene monooxygenase hydroxylases. J Am Chem Soc. 2011;133(19):7384–7397. doi: 10.1021/ja110287y. PubMed DOI PMC

Han W.G., Noodleman L. DFT Calculations for Intermediate and Active States of the Diiron Center with a Tryptophan or Tyrosine Radical in Escherichia coli Ribonucleotide Reductase. Inorg Chem. 2011;50(6):2302–2320. doi: 10.1021/ic1020127. PubMed DOI PMC

Srnec M., Rokob T.A., Schwartz J.K., Kwak Y., Rulisek L., Solomon E.I. Structural and Spectroscopic Properties of the Peroxodiferric Intermediate of Ricinus communis Soluble Δ9 Desaturase. Inorg Chem. 2012;51(5):2806–2820. doi: 10.1021/ic2018067. PubMed DOI

Rokob T.A. Pathways for Arene Oxidation in Non-Heme Diiron Enzymes: Lessons from Computational Studies on Benzoyl Coenzyme A Epoxidase. J Am Chem Soc. 2016;138(44):14623–14638. doi: 10.1021/jacs.6b06987. PubMed DOI

Chalupský J., Rokob T.A., Kurashige Y., et al. Reactivity of the Binuclear Non-Heme Iron Active Site of Δ9 Desaturase Studied by Large-Scale Multireference ab initio Calculations. J Am Chem Soc. 2014;136(45):15977–15991. doi: 10.1021/ja506934k. PubMed DOI

Bím D., Chalupský J., Culka M., Solomon E.I., Rulíšek L., Srnec M. Proton-electron transfer to the active site is essential for the reaction mechanism of soluble Δ9-desaturase. J Am Chem Soc. 2020;142(23):10412–10423. doi: 10.1021/jacs.0c01786. PubMed DOI PMC

Lee M., Lenman M., Banas A., et al. Identification of non-heme diiron proteins that catalyze triple bond and epoxy group formation. Science. 1998;280(5365):915–918. doi: 10.1126/science.280.5365.915. PubMed DOI

Broun P., Shanklin J., Whittle E., Somerville C. Catalytic plasticity of fatty acid modification enzymes underlying chemical diversity of plant lipids. Science. 1998;282(5392):1315–1317. doi: 10.1126/science.282.5392.1315. PubMed DOI

Cahoon E.B., Kinney A.J. Dimorphecolic acid is synthesized by the coordinate activities of two divergent Δ12-oleic acid desaturases. J Biol Chem. 2004;279(13):12495–12502. doi: 10.1074/jbc.M314329200. PubMed DOI

Broadwater J.A., Whittle E., Shanklin J. Desaturation and Hydroxylation - Residues 148 and 324 of Arabidopsis FAD2, in addition to substrate chain length, exert a major influence in partitioning of catalytic specificity. J Biol Chem. 2002;277(18):15613–15620. doi: 10.1074/jbc.M200231200. PubMed DOI

Robin J., Gueroult M., Cheikhrouhou R., et al. Identification of a crucial amino acid implicated in the hydroxylation/desaturation ratio of CpFAH12 bifunctional hydroxylase. Biotechnol Bioeng. 2019;116(10):2451–2462. doi: 10.1002/bit.27102. PubMed DOI PMC

Behrouzian B., Dawson B., Buist P.H., Shanklin J. Oxidation of chiral 9-fluorinated substrates by castor stearoyl-ACP Δ9 desaturase yields novel products. Chem Commun. 2001;8:765–766. doi: 10.1039/b100035g. DOI

Behrouzian B., Savile C.K., Dawson B., Buist P.H., Shanklin J. Exploring the hydroxylation-dehydrogenation connection: Novel catalytic activity of castor stearoyl-ACP Δ9 desaturase. J Am Chem Soc. 2002;124(13):3277–3283. doi: 10.1021/ja012252l. PubMed DOI

Rogge C.E., Fox B.G. Desaturation, chain scission, and register-shift of oxygen-substituted fatty acids during reaction with stearoyl-ACP desaturase. Biochemistry-Us. 2002;41(31):10141–10148. doi: 10.1021/bi020306d. PubMed DOI

White R.D., Fox B.G. Chain cleavage and sulfoxidation of thiastearoyl-ACP upon reaction with stearoyl-ACP desaturase. Biochemistry-Us. 2003;42(25):7828–7835. doi: 10.1021/bi030082e. PubMed DOI

Whittle E.J., Tremblay A.E., Buist P.H., Shanklin J. Revealing the catalytic potential of an acyl-ACP desaturase: Tandem selective oxidation of saturated fatty acids. P Natl Acad Sci USA. 2008;105(38):14738–14743. doi: 10.1073/pnas.0805645105. PubMed DOI PMC

Whittle E.J., Cai Y.H., Keereetaweep J., Chai J., Buist P.H., Shanklin J. Castor stearoyl-ACP desaturase can synthesize a vicinal diol by dioxygenase chemistry. Plant Physiol. 2020;182(2):730–738. doi: 10.1104/pp.19.01111. PubMed DOI PMC

Koo C.W., Rosenzweig A.C. Biochemistry of aerobic biological methane oxidation. Chem Soc Rev. 2021;50(5):3424–3436. doi: 10.1039/d0cs01291b. PubMed DOI PMC

Wagner S., Klepsch M.M., Schlegel S., et al. Tuning Escherichia coli for membrane protein overexpression. P Natl Acad Sci USA. 2008;105(38):14371–14376. doi: 10.1073/pnas.0804090105. PubMed DOI PMC

Studier F.W. Stable expression clones and auto-induction for protein production in E. coli. Methods Mol Biol. 2014;1091:17–32. doi: 10.1007/978-1-62703-691-7_2. PubMed DOI

Gasteiger E., Hoogland C., Gattiker A., et al. In: The Proteomics Protocols Handbook. Walker J.M., editor. Humana Press; Totowa, NJ: 2005. Protein Identification and Analysis Tools on the ExPASy Server; pp. 571–607.

Mckeon T.A., Stumpf P.K. Purification and characterization of the stearoyl-acyl carrier protein desaturase and the acyl-acyl carrier protein thioesterase from maturing seeds of safflower. J Biol Chem. 1982;257(20):2141–2147. doi: 10.1016/S0021-9258(18)33690-1. PubMed DOI

Cahoon E.B., Cranmer A.M., Shanklin J., Ohlrogge J.B. Δ6 Hexadecenoic Acid Is Synthesized by the Activity of a Soluble Δ6 Palmitoyl-Acyl Carrier Protein Desaturase in Thunbergia alata Endosperm. J Biol Chem. 1994;269(44):27519–27526. doi: 10.1016/S0021-9258(18)47015-9. PubMed DOI

Broadwater J.A., Ai J.Y., Loehr T.M., Sanders-Loehr J., Fox B.G. Peroxodiferric intermediate of stearoyl-acyl carrier protein Δ9 desaturase: Oxidase reactivity during single turnover and implications for the mechanism of desaturation. Biochemistry-Us. 1998;37(42):14664–14671. doi: 10.1021/bi981839i. PubMed DOI

Plate M., Overs M., Schafer H.J. Synthesis of enantioenriched methyl vic-dihydroxystearates. Synthesis. 1998;9:1255–1258. doi: 10.1055/s-1998-6084. DOI

Bouchakour M., Daaou M., Duguet N. Synthesis of Imidazoles from Fatty 1,2-Diketones. Eur J Org Chem. 2021;2021(11):1647–1652. doi: 10.1002/ejoc.202100053. DOI

Frankel EN, Garwood RF, Khambay BPS, Moss GP, Weedon BCL. Stereochemistry of Olefin and Fatty-Acid Oxidation .3. The Allylic Hydroperoxides from the Autoxidation of Methyl Oleate. J Chem Soc Perk T 1. 1984(10):2233-2240. doi:10.1039/p19840002233.

Lindqvist Y., Huang W.J., Schneider G., Shanklin J. Crystal structure of Δ9 stearoyl-acyl carrier protein desaturase from castor seed and its relationship to other di-iron proteins. Embo J. 1996;15(16):4081–4092. doi: 10.1002/j.1460-2075.1996.tb00783.x. PubMed DOI PMC

Jaworski J.G., Stumpf P.K. Fat-metabolism in higher-plants - properties of soluble stearyl-acyl carrier protein desaturase from maturing Carthamus tinctorius. Arch Biochem Biophys. 1974;162(1):158–165. doi: 10.1016/0003-9861(74)90114-3. PubMed DOI

Kleiman R., Spencer G.F. Gas chromatography mass spectrometry of methyl-esters of unsaturated oxygenated fatty-acids. J Am Oil Chem Soc. 1973;50(2):31–38. doi: 10.1007/Bf02886864. DOI

Kishino S., Takeuchi M., Park S.B., et al. Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition. P Natl Acad Sci USA. 2013;110(44):17808–17813. doi: 10.1073/pnas.1312937110. PubMed DOI PMC

Wilson R., Smith R., Wilson P., Shepherd M.J., Riemersma R.A. Quantitative gas chromatography mass spectrometry isomer-specific measurement of hydroxy fatty acids in biological samples and food as a marker of lipid peroxidation. Anal Biochem. 1997;248(1):76–85. doi: 10.1006/abio.1997.2084. PubMed DOI

Xia W., Budge S.M. GC-MS characterization of hydroxy fatty acids generated from lipid oxidation in vegetable oils. Eur J Lipid Sci Tech. 2018;120(2):1700313. doi: 10.1002/ejlt.201700313. DOI

Xia W., Budge S.M. Simultaneous quantification of epoxy and hydroxy fatty acids as oxidation products of triacylglycerols in edible oils. J Chromatogr A. 2018;1537:83–90. doi: 10.1016/j.chroma.2017.12.066. PubMed DOI

Sobrado P., Lyle K.S., Kaul S.P., et al. Identification of the binding region of the [2Fe-2S] ferredoxin in stearoyl-acyl carrier protein desaturase: Insight into the catalytic complex and mechanism of action. Biochemistry-Us. 2006;45(15):4848–4858. doi: 10.1021/bi0600547. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...