Understanding desaturation/hydroxylation activity of castor stearoyl Δ9-Desaturase through rational mutagenesis
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35386101
PubMed Central
PMC8940945
DOI
10.1016/j.csbj.2022.03.010
PII: S2001-0370(22)00085-X
Knihovny.cz E-zdroje
- Klíčová slova
- Desaturation, Hydroxylation, Methane monooxygenase, Proton transfer, Reaction mechanism, Δ9 desaturase,
- Publikační typ
- časopisecké články MeSH
A recently proposed reaction mechanism of soluble Δ9 desaturase (Δ9D) allowed us to identify auxiliary residues His203, Asp101, Thr206 and Cys222 localized near the di-iron active site that are supposedly involved in the proton transfer (PT) to and from the active site. The PT, along with the electron transfer (ET), seems to be crucial for efficient desaturation. Thus, perturbing the major PT chains is expected to impair the native reaction and (potentially) amplify minor reaction channels, such as the substrate hydroxylation. To verify this hypothesis, we mutated the four residues mentioned above into their counterparts present in a soluble methane monooxygenase (sMMO), and determined the reaction products of mutants. We found that the mutations significantly promote residual monohydroxylation activities on stearoyl-CoA, often at the expense of native desaturation activity. The favored hydroxylation positions are C9, followed by C10 and C11. Reactions with unsaturated substrate, oleoyl-CoA, yield erythro-9,10-diol, cis-9,10-epoxide and a mixture of allylic alcohols. Additionally, using 9- and 11-hydroxystearoyl-CoA, we showed that the desaturation reaction can proceed only with the hydroxyl group at position C11, whereas the hydroxylation reaction is possible in both cases, i.e. with hydroxyl at position C9 or C11. Despite the fact that the overall outcome of hydroxylation is rather modest and that it is mostly the desaturation/hydroxylation ratio that is affected, our results broaden understanding of the origin of chemo- and stereoselectivity of the Δ9D and provide further insight into the catalytic action of the NHFe2 enzymes.
Zobrazit více v PubMed
Solomon E.I., Brunold T.C., Davis M.I., et al. Geometric and electronic structure/function correlations in non-heme iron enzymes. Chem Rev. 2000;100(1):235–349. doi: 10.1021/cr9900275. PubMed DOI
Krebs C., Bollinger J.M., Booker S.J. Cyanobacterial alkane biosynthesis further expands the catalytic repertoire of the ferritin-like 'di-iron-carboxylate' proteins. Curr Opin Chem Biol. 2011;15(2):291–303. doi: 10.1016/j.cbpa.2011.02.019. PubMed DOI PMC
Jasniewski A.J., Que L. Dioxygen activation by nonheme diiron enzymes: diverse dioxygen adducts, high-valent intermediates, and related model complexes. Chem Rev. 2018;118(5):2554–2592. doi: 10.1021/acs.chemrev.7b00457. PubMed DOI PMC
Nagai J., Bloch K. Enzymatic desaturation of stearyl acyl carrier protein. J Biol Chem. 1968;243(17):4626–4633. doi: 10.1016/S0021-9258(18)93235-7. PubMed DOI
Morris L.J. Mechanisms and Stereochemistry in Fatty Acid Metabolism - Fifth Colworth Medal Lecture. Biochem J. 1970;118(5):681–693. doi: 10.1042/bj1180681g. PubMed DOI PMC
Schmidt H., Heinz E. Involvement of ferredoxin in desaturation of lipid-bound oleate in chloroplasts. Plant Physiol. 1990;94(1):214–220. doi: 10.1104/pp.94.1.214. PubMed DOI PMC
Wada H., Schmidt H., Heinz E., Murata N. In vitro ferredoxin-dependent desaturation of fatty-acids in cyanobacterial thylakoid membranes. J Bacteriol. 1993;175(2):544–547. doi: 10.1128/Jb.175.2.544-547.1993. PubMed DOI PMC
Kazaz S., Miray R., Lepiniec L., Baud S. Plant monounsaturated fatty acids: diversity, biosynthesis, functions and uses. Prog Lipid Res. 2022;85 doi: 10.1016/j.plipres.2021.101138. PubMed DOI
Yang Y.S., Broadwater J.A., Pulver S.C., Fox B.G., Solomon E.I. Circular dichroism and magnetic circular dichroism studies of the reduced binuclear non-heme iron site of stearoyl-ACP Δ9-desaturase: substrate binding and comparison to ribonucleotide reductase. J Am Chem Soc. 1999;121(12):2770–2783. doi: 10.1021/ja9822714. DOI
Broadwater J.A., Achim C., Munck E., Fox B.G. Mössbauer studies of the formation and reactivity of a quasi-stable peroxo intermediate of stearoyl-acyl carrier protein Δ9-desaturase. Biochemistry-Us. 1999;38(38):12197–12204. doi: 10.1021/bi9914199. PubMed DOI
Siegbahn P.E.M. Theoretical model studies of the iron dimer complex of MMO and RNR. Inorg Chem. 1999;38(12):2880–2889. doi: 10.1021/ic981332w. PubMed DOI
Fox B.G., Lyle K.S., Rogge C.E. Reactions of the diiron enzyme stearoyl-acyl carrier protein desaturase. Acc Chem Res. 2004;37(7):421–429. doi: 10.1021/ar030186h. PubMed DOI
Han W.G., Noodleman L. Structural model studies for the peroxo intermediate P and the reaction pathway from P -> Q of methane monooxygenase using broken-symmetry density functional calculations. Inorg Chem. 2008;47(8):2975–2986. doi: 10.1021/ic701194b. PubMed DOI
Jensen K.P., Bell C.B., Clay M.D., Solomon E.I. Peroxo-type intermediates in class I ribonucleotide reductase and related binuclear non-heme iron enzymes. J Am Chem Soc. 2009;131(34):12155–12171. doi: 10.1021/ja809983g. PubMed DOI
Han W.G., Noodleman L. DFT calculations of comparative energetics and ENDOR/Mössbauer properties for two protonation states of the iron dimer cluster of ribonucleotide reductase intermediate X. Dalton T. 2009;30:6045–6057. doi: 10.1039/b903847g. PubMed DOI PMC
Bochevarov A.D., Friesner R.A., Lippard S.J. Prediction of Fe-57 Mössbauer parameters by density functional theory: a benchmark study. J Chem Theory Comput. 2010;6(12):3735–3749. doi: 10.1021/ct100398m. PubMed DOI PMC
Bochevarov A.D., Li J.N., Song W.J., Friesner R.A., Lippard S.J. Insights into the different dioxygen activation pathways of methane and toluene monooxygenase hydroxylases. J Am Chem Soc. 2011;133(19):7384–7397. doi: 10.1021/ja110287y. PubMed DOI PMC
Han W.G., Noodleman L. DFT Calculations for Intermediate and Active States of the Diiron Center with a Tryptophan or Tyrosine Radical in Escherichia coli Ribonucleotide Reductase. Inorg Chem. 2011;50(6):2302–2320. doi: 10.1021/ic1020127. PubMed DOI PMC
Srnec M., Rokob T.A., Schwartz J.K., Kwak Y., Rulisek L., Solomon E.I. Structural and Spectroscopic Properties of the Peroxodiferric Intermediate of Ricinus communis Soluble Δ9 Desaturase. Inorg Chem. 2012;51(5):2806–2820. doi: 10.1021/ic2018067. PubMed DOI
Rokob T.A. Pathways for Arene Oxidation in Non-Heme Diiron Enzymes: Lessons from Computational Studies on Benzoyl Coenzyme A Epoxidase. J Am Chem Soc. 2016;138(44):14623–14638. doi: 10.1021/jacs.6b06987. PubMed DOI
Chalupský J., Rokob T.A., Kurashige Y., et al. Reactivity of the Binuclear Non-Heme Iron Active Site of Δ9 Desaturase Studied by Large-Scale Multireference ab initio Calculations. J Am Chem Soc. 2014;136(45):15977–15991. doi: 10.1021/ja506934k. PubMed DOI
Bím D., Chalupský J., Culka M., Solomon E.I., Rulíšek L., Srnec M. Proton-electron transfer to the active site is essential for the reaction mechanism of soluble Δ9-desaturase. J Am Chem Soc. 2020;142(23):10412–10423. doi: 10.1021/jacs.0c01786. PubMed DOI PMC
Lee M., Lenman M., Banas A., et al. Identification of non-heme diiron proteins that catalyze triple bond and epoxy group formation. Science. 1998;280(5365):915–918. doi: 10.1126/science.280.5365.915. PubMed DOI
Broun P., Shanklin J., Whittle E., Somerville C. Catalytic plasticity of fatty acid modification enzymes underlying chemical diversity of plant lipids. Science. 1998;282(5392):1315–1317. doi: 10.1126/science.282.5392.1315. PubMed DOI
Cahoon E.B., Kinney A.J. Dimorphecolic acid is synthesized by the coordinate activities of two divergent Δ12-oleic acid desaturases. J Biol Chem. 2004;279(13):12495–12502. doi: 10.1074/jbc.M314329200. PubMed DOI
Broadwater J.A., Whittle E., Shanklin J. Desaturation and Hydroxylation - Residues 148 and 324 of Arabidopsis FAD2, in addition to substrate chain length, exert a major influence in partitioning of catalytic specificity. J Biol Chem. 2002;277(18):15613–15620. doi: 10.1074/jbc.M200231200. PubMed DOI
Robin J., Gueroult M., Cheikhrouhou R., et al. Identification of a crucial amino acid implicated in the hydroxylation/desaturation ratio of CpFAH12 bifunctional hydroxylase. Biotechnol Bioeng. 2019;116(10):2451–2462. doi: 10.1002/bit.27102. PubMed DOI PMC
Behrouzian B., Dawson B., Buist P.H., Shanklin J. Oxidation of chiral 9-fluorinated substrates by castor stearoyl-ACP Δ9 desaturase yields novel products. Chem Commun. 2001;8:765–766. doi: 10.1039/b100035g. DOI
Behrouzian B., Savile C.K., Dawson B., Buist P.H., Shanklin J. Exploring the hydroxylation-dehydrogenation connection: Novel catalytic activity of castor stearoyl-ACP Δ9 desaturase. J Am Chem Soc. 2002;124(13):3277–3283. doi: 10.1021/ja012252l. PubMed DOI
Rogge C.E., Fox B.G. Desaturation, chain scission, and register-shift of oxygen-substituted fatty acids during reaction with stearoyl-ACP desaturase. Biochemistry-Us. 2002;41(31):10141–10148. doi: 10.1021/bi020306d. PubMed DOI
White R.D., Fox B.G. Chain cleavage and sulfoxidation of thiastearoyl-ACP upon reaction with stearoyl-ACP desaturase. Biochemistry-Us. 2003;42(25):7828–7835. doi: 10.1021/bi030082e. PubMed DOI
Whittle E.J., Tremblay A.E., Buist P.H., Shanklin J. Revealing the catalytic potential of an acyl-ACP desaturase: Tandem selective oxidation of saturated fatty acids. P Natl Acad Sci USA. 2008;105(38):14738–14743. doi: 10.1073/pnas.0805645105. PubMed DOI PMC
Whittle E.J., Cai Y.H., Keereetaweep J., Chai J., Buist P.H., Shanklin J. Castor stearoyl-ACP desaturase can synthesize a vicinal diol by dioxygenase chemistry. Plant Physiol. 2020;182(2):730–738. doi: 10.1104/pp.19.01111. PubMed DOI PMC
Koo C.W., Rosenzweig A.C. Biochemistry of aerobic biological methane oxidation. Chem Soc Rev. 2021;50(5):3424–3436. doi: 10.1039/d0cs01291b. PubMed DOI PMC
Wagner S., Klepsch M.M., Schlegel S., et al. Tuning Escherichia coli for membrane protein overexpression. P Natl Acad Sci USA. 2008;105(38):14371–14376. doi: 10.1073/pnas.0804090105. PubMed DOI PMC
Studier F.W. Stable expression clones and auto-induction for protein production in E. coli. Methods Mol Biol. 2014;1091:17–32. doi: 10.1007/978-1-62703-691-7_2. PubMed DOI
Gasteiger E., Hoogland C., Gattiker A., et al. In: The Proteomics Protocols Handbook. Walker J.M., editor. Humana Press; Totowa, NJ: 2005. Protein Identification and Analysis Tools on the ExPASy Server; pp. 571–607.
Mckeon T.A., Stumpf P.K. Purification and characterization of the stearoyl-acyl carrier protein desaturase and the acyl-acyl carrier protein thioesterase from maturing seeds of safflower. J Biol Chem. 1982;257(20):2141–2147. doi: 10.1016/S0021-9258(18)33690-1. PubMed DOI
Cahoon E.B., Cranmer A.M., Shanklin J., Ohlrogge J.B. Δ6 Hexadecenoic Acid Is Synthesized by the Activity of a Soluble Δ6 Palmitoyl-Acyl Carrier Protein Desaturase in Thunbergia alata Endosperm. J Biol Chem. 1994;269(44):27519–27526. doi: 10.1016/S0021-9258(18)47015-9. PubMed DOI
Broadwater J.A., Ai J.Y., Loehr T.M., Sanders-Loehr J., Fox B.G. Peroxodiferric intermediate of stearoyl-acyl carrier protein Δ9 desaturase: Oxidase reactivity during single turnover and implications for the mechanism of desaturation. Biochemistry-Us. 1998;37(42):14664–14671. doi: 10.1021/bi981839i. PubMed DOI
Plate M., Overs M., Schafer H.J. Synthesis of enantioenriched methyl vic-dihydroxystearates. Synthesis. 1998;9:1255–1258. doi: 10.1055/s-1998-6084. DOI
Bouchakour M., Daaou M., Duguet N. Synthesis of Imidazoles from Fatty 1,2-Diketones. Eur J Org Chem. 2021;2021(11):1647–1652. doi: 10.1002/ejoc.202100053. DOI
Frankel EN, Garwood RF, Khambay BPS, Moss GP, Weedon BCL. Stereochemistry of Olefin and Fatty-Acid Oxidation .3. The Allylic Hydroperoxides from the Autoxidation of Methyl Oleate. J Chem Soc Perk T 1. 1984(10):2233-2240. doi:10.1039/p19840002233.
Lindqvist Y., Huang W.J., Schneider G., Shanklin J. Crystal structure of Δ9 stearoyl-acyl carrier protein desaturase from castor seed and its relationship to other di-iron proteins. Embo J. 1996;15(16):4081–4092. doi: 10.1002/j.1460-2075.1996.tb00783.x. PubMed DOI PMC
Jaworski J.G., Stumpf P.K. Fat-metabolism in higher-plants - properties of soluble stearyl-acyl carrier protein desaturase from maturing Carthamus tinctorius. Arch Biochem Biophys. 1974;162(1):158–165. doi: 10.1016/0003-9861(74)90114-3. PubMed DOI
Kleiman R., Spencer G.F. Gas chromatography mass spectrometry of methyl-esters of unsaturated oxygenated fatty-acids. J Am Oil Chem Soc. 1973;50(2):31–38. doi: 10.1007/Bf02886864. DOI
Kishino S., Takeuchi M., Park S.B., et al. Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition. P Natl Acad Sci USA. 2013;110(44):17808–17813. doi: 10.1073/pnas.1312937110. PubMed DOI PMC
Wilson R., Smith R., Wilson P., Shepherd M.J., Riemersma R.A. Quantitative gas chromatography mass spectrometry isomer-specific measurement of hydroxy fatty acids in biological samples and food as a marker of lipid peroxidation. Anal Biochem. 1997;248(1):76–85. doi: 10.1006/abio.1997.2084. PubMed DOI
Xia W., Budge S.M. GC-MS characterization of hydroxy fatty acids generated from lipid oxidation in vegetable oils. Eur J Lipid Sci Tech. 2018;120(2):1700313. doi: 10.1002/ejlt.201700313. DOI
Xia W., Budge S.M. Simultaneous quantification of epoxy and hydroxy fatty acids as oxidation products of triacylglycerols in edible oils. J Chromatogr A. 2018;1537:83–90. doi: 10.1016/j.chroma.2017.12.066. PubMed DOI
Sobrado P., Lyle K.S., Kaul S.P., et al. Identification of the binding region of the [2Fe-2S] ferredoxin in stearoyl-acyl carrier protein desaturase: Insight into the catalytic complex and mechanism of action. Biochemistry-Us. 2006;45(15):4848–4858. doi: 10.1021/bi0600547. PubMed DOI PMC