Characterization of Triacylglycerol Estolide Isomers Using High-Resolution Tandem Mass Spectrometry with Nanoelectrospray Ionization
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36979410
PubMed Central
PMC10046810
DOI
10.3390/biom13030475
PII: biom13030475
Knihovny.cz E-zdroje
- Klíčová slova
- collision-induced dissociation, estolide-branching isomers, glycerol sn-regioisomers, high-resolution mass spectrometry, higher-energy collisional dissociation, ozone-induced dissociation, triacylglycerol estolides,
- MeSH
- glycerol MeSH
- ionty MeSH
- lithium chemie MeSH
- mastné kyseliny chemie MeSH
- ozon * chemie MeSH
- sodík MeSH
- tandemová hmotnostní spektrometrie * metody MeSH
- triglyceridy chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glycerol MeSH
- ionty MeSH
- lithium MeSH
- mastné kyseliny MeSH
- ozon * MeSH
- sodík MeSH
- triglyceridy MeSH
Triacylglycerol estolides (TG-EST) are biologically active lipids extensively studied for their anti-inflammatory and anti-diabetic properties. In this work, eight standards of TG-EST were synthesized and systematically investigated by nanoelectrospray tandem mass spectrometry. Mass spectra of synthetic TG-EST were studied with the purpose of enabling the unambiguous identification of these lipids in biological samples. TG-EST glycerol sn-regioisomers and isomers with the fatty acid ester of hydroxy fatty acid (FAHFA) subunit branched in the ω-, α-, or 10-position were used. Ammonium, lithium, and sodium adducts of TG-EST formed by nanoelectrospray ionization were subjected to collision-induced dissociation (CID) and higher-energy collisional dissociation (HCD). Product ion spectra allowed for identification of fatty acid (FA) and FAHFA subunits originally linked to the glycerol backbone and distinguished the α-branching site of the FAHFA from other estolide-branching isomers. The ω- and 10-branching sites were determined by combining CID with ozone-induced dissociation (OzID). Lithium adducts provided the most informative product ions, enabling characterization of FA, hydroxy fatty acid (HFA), and FAHFA subunits. Glycerol sn-regioisomers were distinguished based on the relative abundance of product ions and unambiguously identified using CID/OzID of lithium and sodium adducts.
Zobrazit více v PubMed
Brejchova K., Balas L., Paluchova V., Brezinova M., Durand T., Kuda O. Understanding FAHFAs: From structure to metabolic regulation. Prog. Lipid Res. 2020;79:101053. doi: 10.1016/j.plipres.2020.101053. PubMed DOI
Riecan M., Paluchova V., Lopes M., Brejchova K., Kuda O. Branched and linear fatty acid esters of hydroxy fatty acids (FAHFA) relevant to human health. Pharmacol. Ther. 2021;231:107972. doi: 10.1016/j.pharmthera.2021.107972. PubMed DOI
Vavrušová A., Vrkoslav V., Plavka R., Bosáková Z., Cvačka J. Analysis of (O-acyl) alpha-and omega-hydroxy fatty acids in vernix caseosa by high-performance liquid chromatography-Orbitrap mass spectrometry. Anal. Bioanal. Chem. 2020;412:2291–2302. doi: 10.1007/s00216-019-02348-2. PubMed DOI
Chen Y., Biresaw G., Cermak S.C., Isbell T.A., Ngo H.L., Chen L., Durham A.L. Fatty Acid Estolides: A Review. J. Am. Oil Chem. Soc. 2020;97:231–241. doi: 10.1002/aocs.12323. DOI
McLean S., Davies N.W., Nichols D.S., McLeod B.J. Triacylglycerol estolides, a new class of mammalian lipids, in the paracloacal gland of the brushtail possum (Trichosurus vulpecula) Lipids. 2015;50:591–604. doi: 10.1007/s11745-015-4025-9. PubMed DOI
Tan D., Ertunc M.E., Konduri S., Zhang J., Pinto A.M., Chu Q., Kahn B.B., Siegel D., Saghatelian A. Discovery of FAHFA-Containing Triacylglycerols and Their Metabolic Regulation. J. Am. Chem. Soc. 2019;141:8798–8806. doi: 10.1021/jacs.9b00045. PubMed DOI PMC
Brejchova K., Radner F.P.W., Balas L., Paluchova V., Cajka T., Chodounska H., Kudova E., Schratter M., Schreiber R., Durand T., et al. Distinct roles of adipose triglyceride lipase and hormone-sensitive lipase in the catabolism of triacylglycerol estolides. Proc. Natl. Acad. Sci. USA. 2021;118:e2020999118. doi: 10.1073/pnas.2020999118. PubMed DOI PMC
Paluchova V., Oseeva M., Brezinova M., Cajka T., Bardova K., Adamcova K., Zacek P., Brejchova K., Balas L., Chodounska H., et al. Lipokine 5-PAHSA Is Regulated by Adipose Triglyceride Lipase and Primes Adipocytes for De Novo Lipogenesis in Mice. Diabetes. 2020;69:300–312. doi: 10.2337/db19-0494. PubMed DOI PMC
Brezinova M., Cajka T., Oseeva M., Stepan M., Dadova K., Rossmeislova L., Matous M., Siklova M., Rossmeisl M., Kuda O. Exercise training induces insulin-sensitizing PAHSAs in adipose tissue of elderly women. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids. 2020;1865:158576. doi: 10.1016/j.bbalip.2019.158576. PubMed DOI
Saponara E., Penno C., Orsini V., Wang Z.-Y., Fischer A., Aebi A., Matadamas-Guzman M.L., Brun V., Fischer B., Brousseau M., et al. Loss of Hepatic Leucine-Rich Repeat-Containing G-protein Coupled Receptors 4 and 5 Promotes Nonalcoholic Fatty Liver Disease. Am. J. Pathol. 2023;193:161–181. doi: 10.1016/j.ajpath.2022.10.008. PubMed DOI
Brejchova K., Paluchova V., Brezinova M., Cajka T., Balas L., Durand T., Krizova M., Stranak Z., Kuda O. Triacylglycerols containing branched palmitic acid ester of hydroxystearic acid (PAHSA) are present in the breast milk and hydrolyzed by carboxyl ester lipase. Food Chem. 2022;388:132983. doi: 10.1016/j.foodchem.2022.132983. PubMed DOI
Sprecher H.W., Maier R., Barber M., Holman R.T. Structure of an optically active allene-containing tetraester triglyceride isolated from the seed oil of Sapium sebiferum. Biochemistry. 1965;4:1856–1863. doi: 10.1021/bi00885a024. DOI
Mikolajczak K.L., Smith C.R., Jr., Wolff I.A. Glyceride structure of Cardamine impatiens L. Seed oil. Lipids. 1968;3:215–220. doi: 10.1007/BF02531189. PubMed DOI
Christie W.W. The glyceride structure of sapium sebiferum seed oil. Biochim. Biophys. Acta (BBA)-Lipids Lipid Metab. 1969;187:1–5. doi: 10.1016/0005-2760(69)90125-8. PubMed DOI
Phillips B.E., Smith C.R., Jr. Glycerides of Monnina emarginata seed oil. Biochim. Biophys. Acta (BBA)-Lipids Lipid Metab. 1970;218:71–82. doi: 10.1016/0005-2760(70)90093-7. PubMed DOI
Kleiman R., Spencer G.F., Earle F.R., Nieschlag H.J., Barclay A.S. Tetra-acid triglycerides containing a new hydroxy eicosadienoyl moiety in Lesquerella auriculata seed oil. Lipids. 1972;7:660–665. doi: 10.1007/BF02533073. DOI
Payne-Wahl K., Plattner R.D., Spencer G.F., Kleiman R. Separation of tetra-, penta-, and hexaacyl triglycerides by high performance liquid chromatography. Lipids. 1979;14:601–605. doi: 10.1007/BF02533443. DOI
Plattner R.D., Payne-Wahl K., Tjarks L.W., Kleiman R. Hydroxy acids and estolide triglycerides of Heliophila amplexicaulis L.f. Seed oil. Lipids. 1979;14:576–579. doi: 10.1007/BF02533535. DOI
Madrigal R.V., Smith C.R., Jr. Estolide triglycerides of Trewia nudiflora seed oil. Lipids. 1982;17:650–655. doi: 10.1007/BF02535373. DOI
Payne-Wahl K. Quantitation of estolide triglycerides in sapium seeds by high performance liquid chromatography with infrared detection. J. Am. Oil Chem. Soc. 1983;60:1011–1012. doi: 10.1007/BF02660218. DOI
Aitzetmüller K., Xin Y., Werner G., Grönheim M. High-performance liquid chromatographic investigations of stillingia oil. J. Chromatogr. A. 1992;603:165–173. doi: 10.1016/0021-9673(92)85358-Z. DOI
Hayes D.G., Kleiman R., Phillips B.S. The triglyceride composition, structure, and presence of estolides in the oils of Lesquerella and related species. J. Am. Oil Chem. Soc. 1995;72:559–569. doi: 10.1007/BF02638857. DOI
Hayes D.G., Kleiman R., Weisleder D., Adlof R.O., Cuperus F.P., Derksen J.T.P. Occurrence of estolides in processed Dimorphotheca pluvialis seed oil. Ind. Crops Prod. 1995;4:295–301. doi: 10.1016/0926-6690(95)00045-3. DOI
Spitzer V., Tomberg W., Pohlentz G. Structure analysis of an allene-containing estolide tetraester triglyceride in the seed oil of Sebastiana commersoniana (Euphorbiaceae) Lipids. 1997;32:549–557. doi: 10.1007/s11745-997-0070-8. PubMed DOI
Lin J.-T., Arcinas A., Harden L.R., Fagerquist C.K. Identification of (12-Ricinoleoylricinoleoyl)diricinoleoylglycerol, an Acylglycerol Containing Four Acyl Chains, in Castor (Ricinus communis L.) Oil by LC-ESI-MS. J. Agric. Food Chem. 2006;54:3498–3504. doi: 10.1021/jf060150e. PubMed DOI
Lin J.-T., Arcinas A. Regiospecific Identification of 2-(12-Ricinoleoylricinoleoyl)-1,3-diricinoleoyl-sn-glycerol in Castor (Ricinus communis L.) Oil by ESI-MS4. J. Agric. Food Chem. 2008;56:3616–3622. doi: 10.1021/jf072750z. PubMed DOI
Lin J.-T., Chen G.Q. Identification of Minor Acylglycerols Less Polar than Triricinolein in Castor Oil by Mass Spectrometry. J. Am. Oil Chem. Soc. 2012;89:1773–1784. doi: 10.1007/s11746-012-2082-2. DOI
Lin J.-T., Chen G.Q. Ratios of Regioisomers of Minor Acylglycerols Less Polar than Triricinolein in Castor Oil Estimated by Mass Spectrometry. J. Am. Oil Chem. Soc. 2012;89:1785–1792. doi: 10.1007/s11746-012-2083-1. DOI
Zhang H., Olson D.J.H., Van D., Purves R.W., Smith M.A. Rapid identification of triacylglycerol-estolides in plant and fungal oils. Ind. Crops Prod. 2012;37:186–194. doi: 10.1016/j.indcrop.2011.10.026. DOI
Lin J.-T., Chen G.Q. Identification of Tetraacylglycerols in Lesquerella Oil by Electrospray Ionization Mass Spectrometry of the Lithium Adducts. J. Am. Oil Chem. Soc. 2013;90:1831–1836. doi: 10.1007/s11746-013-2332-y. DOI
Smith M.A., Zhang H., Forseille L., Purves R.W. Characterization of novel triacylglycerol estolides from the seed oil of Mallotus philippensis and Trewia nudiflora. Lipids. 2013;48:75–85. doi: 10.1007/s11745-012-3721-y. PubMed DOI
Lin J.-T., Chen G. Quantification of the molecular species of tetraacylglycerols in lesquerella (Physaria fendleri) Oil by HPLC and MS. Enliven Bio Anal. Tech. 2014;1:1–5.
Zhang H., Smith M.A., Purves R.W. Optimization of triacylglycerol-estolide analysis by matrix-assisted laser desorption/ionization-mass spectrometry. J. Am. Oil Chem. Soc. 2014;91:905–915. doi: 10.1007/s11746-014-2437-y. DOI
Smith M.A., Zhang H. Apocynaceae seed lipids: Characterization and occurrence of isoricinoleic acid and triacylglycerol estolides. J. Am. Oil Chem. Soc. 2016;93:105–114. doi: 10.1007/s11746-015-2741-1. DOI
Lin J.-T., Chen G.Q. Structural characteristics of the molecular species of tetraacylglycerols in lesquerella (Physaria fendleri) oil elucidated by mass spectrometry. Biocatal. Agric. Biotechnol. 2017;10:167–173. doi: 10.1016/j.bcab.2017.03.005. DOI
Romsdahl T., Shirani A., Minto R.E., Zhang C., Cahoon E.B., Chapman K.D., Berman D. Nature-Guided Synthesis of Advanced Bio-Lubricants. Sci. Rep. 2019;9:11711. doi: 10.1038/s41598-019-48165-6. PubMed DOI PMC
Matsuzawa Y., Higashi Y., Takano K., Takahashi M., Yamada Y., Okazaki Y., Nakabayashi R., Saito K., Tsugawa H. Food Lipidomics for 155 Agricultural Plant Products. J. Agric. Food Chem. 2021;69:8981–8990. doi: 10.1021/acs.jafc.0c07356. PubMed DOI
Liu Y., Tu X., Lin L., Du L., Feng X. Analysis of Lipids in Pitaya Seed Oil by Ultra-Performance Liquid Chromatography-Time-of-Flight Tandem Mass Spectrometry. Foods. 2022;11:2988. doi: 10.3390/foods11192988. PubMed DOI PMC
Morris L.J., Hall S.W. The structure of the glycerides of ergot oils. Lipids. 1966;1:188–196. doi: 10.1007/BF02531871. PubMed DOI
Batrakov S.G., Tolkachev O.N. The structures of triacylglycerols from sclerotia of the rye ergot Claviceps purpurea (Fries) Tul. Chem. Phys. Lipids. 1997;86:1–12. doi: 10.1016/S0009-3084(96)02653-9. PubMed DOI
Lucejko J.J., La Nasa J., Porta F., Vanzetti A., Tanda G., Mangiaracina C.F., Corretti A., Colombini M.P., Ribechini E. Long-lasting ergot lipids as new biomarkers for assessing the presence of cereals and cereal products in archaeological vessels. Sci. Rep. 2018;8:3935. doi: 10.1038/s41598-018-22140-z. PubMed DOI PMC
Patel R., Santoro A., Hofer P., Tan D., Oberer M., Nelson A.T., Konduri S., Siegel D., Zechner R., Saghatelian A., et al. ATGL is a biosynthetic enzyme for fatty acid esters of hydroxy fatty acids. Nature. 2022;606:968–975. doi: 10.1038/s41586-022-04787-x. PubMed DOI PMC
Nelson A.T., Kolar M.J., Chu Q., Syed I., Kahn B.B., Saghatelian A., Siegel D. Stereochemistry of Endogenous Palmitic Acid Ester of 9-Hydroxystearic Acid and Relevance of Absolute Configuration to Regulation. J. Am. Chem. Soc. 2017;139:4943–4947. doi: 10.1021/jacs.7b01269. PubMed DOI PMC
Yasuda S., Okahashi N., Tsugawa H., Ogata Y., Ikeda K., Suda W., Arita M. Elucidation of Gut Microbiota-Associated Lipids Using LC-MS/MS and 16S rRNA Sequence Analyses. iScience. 2020;23:101841. doi: 10.1016/j.isci.2020.101841. PubMed DOI PMC
Thomas M.C., Mitchell T.W., Harman D.G., Deeley J.M., Nealon J.R., Blanksby S.J. Ozone-Induced Dissociation: Elucidation of Double Bond Position within Mass-Selected Lipid Ions. Anal. Chem. 2008;80:303–311. doi: 10.1021/ac7017684. PubMed DOI
Brown S.H.J., Mitchell T.W., Blanksby S.J. Analysis of unsaturated lipids by ozone-induced dissociation. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids. 2011;1811:807–817. doi: 10.1016/j.bbalip.2011.04.015. PubMed DOI
Poad B.L.J., Marshall D.L., Harazim E., Gupta R., Narreddula V.R., Young R.S.E., Duchoslav E., Campbell J.L., Broadbent J.A., Cvačka J., et al. Combining Charge-Switch Derivatization with Ozone-Induced Dissociation for Fatty Acid Analysis. J. Am. Soc. Mass Spectrom. 2019;30:2135–2143. doi: 10.1007/s13361-019-02285-5. PubMed DOI
Pham H.T., Maccarone A.T., Thomas M.C., Campbell J.L., Mitchell T.W., Blanksby S.J. Structural characterization of glycerophospholipids by combinations of ozone-and collision-induced dissociation mass spectrometry: The next step towards “top-down” lipidomics. Analyst. 2014;139:204–214. doi: 10.1039/C3AN01712E. PubMed DOI
Marshall D.L., Saville J.T., Maccarone A.T., Ailuri R., Kelso M.J., Mitchell T.W., Blanksby S.J. Determination of ester position in isomeric (O-acyl)-hydroxy fatty acids by ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 2016;30:2351–2359. doi: 10.1002/rcm.7715. PubMed DOI
Marshall D.L., Pham H.T., Bhujel M., Chin J.S.R., Yew J.Y., Mori K., Mitchell T.W., Blanksby S.J. Sequential Collision- and Ozone-Induced Dissociation Enables Assignment of Relative Acyl Chain Position in Triacylglycerols. Anal. Chem. 2016;88:2685–2692. doi: 10.1021/acs.analchem.5b04001. PubMed DOI
Kozlowski R.L., Mitchell T.W., Blanksby S.J. Separation and Identification of Phosphatidylcholine Regioisomers by Combining Liquid Chromatography with a Fusion of Collision-and Ozone-Induced Dissociation. Eur. J. Mass Spectrom. 2015;21:191–200. doi: 10.1255/ejms.1300. PubMed DOI
Liebisch G., Fahy E., Aoki J. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J. Lipid Res. 2020;61:1539–1555. doi: 10.1194/jlr.S120001025. PubMed DOI PMC
Machara A., Křivánek J., Dolejšová K., Havlíčková J., Bednárová L., Hanus R., Kyjaková P. Identification and Enantiodivergent Synthesis of (5Z,9S)-Tetradec-5-en-9-olide, a Queen-Specific Volatile of the Termite Silvestritermes minutus. J. Nat. Prod. 2018;81:2266–2274. doi: 10.1021/acs.jnatprod.8b00632. PubMed DOI
Tupec M., Culka M., Machara A., Macháček S., Bím D., Svatoš A., Rulíšek L., Pichová I. Understanding desaturation/hydroxylation activity of castor stearoyl Δ9-Desaturase through rational mutagenesis. Comput. Struct. Biotechnol. J. 2022;20:1378–1388. doi: 10.1016/j.csbj.2022.03.010. PubMed DOI PMC
Poad B.L., Young R.S., Marshall D.L., Trevitt A.J., Blanksby S.J. Accelerating Ozonolysis Reactions Using Supplemental RF-Activation of Ions in a Linear Ion Trap Mass Spectrometer. Anal. Chem. 2022;94:3897–3903. doi: 10.1021/acs.analchem.1c04915. PubMed DOI
McAnoy A.M., Wu C.C., Murphy R.C. Direct qualitative analysis of triacylglycerols by electrospray mass spectrometry using a linear ion trap. J. Am. Soc. Mass Spectrom. 2005;16:1498–1509. doi: 10.1016/j.jasms.2005.04.017. PubMed DOI
Dorschel C.A. Characterization of the TAG of peanut oil by electrospray LC-MS-MS. J. Am. Oil Chem. Soc. 2002;79:749–753. doi: 10.1007/s11746-002-0553-z. DOI
Murphy R.C. Tandem Mass Spectrometry of Lipids: Molecular Analysis of Complex Lipids. Royal Society of Chemistry; Cambridge, UK: 2015.
Hsu F.F., Turk J. Structural characterization of triacylglycerols as lithiated adducts by electrospray ionization mass spectrometry using low-energy collisionally activated dissociation on a triple stage quadrupole instrument. J. Am. Soc. Mass Spectrom. 1999;10:587–599. doi: 10.1016/S1044-0305(99)00035-5. PubMed DOI
Tran A., Wan L., Xu Z., Haro J.M., Li B., Jones J.W. Lithium Hydroxide Hydrolysis Combined with MALDI TOF Mass Spectrometry for Rapid Sphingolipid Detection. J. Am. Soc. Mass Spectrom. 2021;32:289–300. doi: 10.1021/jasms.0c00322. PubMed DOI PMC
Hsu F.-F., Bohrer A., Turk J. Formation of lithiated adducts of glycerophosphocholine lipids facilitates their identification by electrospray ionization tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 1998;9:516–526. doi: 10.1016/S1044-0305(98)00012-9. PubMed DOI
Young R.S.E., Flakelar C.L., Narreddula V.R., Jekimovs L.J., Menzel J.P., Poad B.L.J., Blanksby S.J. Identification of Carbon-Carbon Double Bond Stereochemistry in Unsaturated Fatty Acids by Charge-Remote Fragmentation of Fixed-Charge Derivatives. Anal. Chem. 2022;94:16180–16188. doi: 10.1021/acs.analchem.2c03625. PubMed DOI
Buenger E.W., Reid G.E. Shedding light on isomeric FAHFA lipid structures using 213 nm ultraviolet photodissociation mass spectrometry. Eur. J. Mass Spectrom. 2020;26:311–323. doi: 10.1177/1469066720960341. PubMed DOI
Herrera L.C., Potvin M.A., Melanson J.E. Quantitative analysis of positional isomers of triacylglycerols via electrospray ionization tandem mass spectrometry of sodiated adducts. Rapid Commun. Mass Spectrom. 2010;24:2745–2752. doi: 10.1002/rcm.4700. PubMed DOI
Laakso P. Mass spectrometry of triacylglycerols. Eur. J. Lipid Sci. Technol. 2002;104:43–49. doi: 10.1002/1438-9312(200201)104:1<43::AID-EJLT43>3.0.CO;2-J. DOI