Cost-Effective Pharmaceutical Implants in Fish: Validating the Performance of Slow-Release Implants for the Antidepressant Fluoxetine

. 2023 Jun ; 42 (6) : 1326-1336. [epub] 20230428

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36942382

Internal, slow-release implants can be an effective way to manipulate animal physiology or deliver a chemical exposure over long periods of time without the need for an exogenous exposure route. Slow-release implants involve dissolving a compound in a lipid-based carrier, which is inserted into the body of an organism. However, the release kinetics of the compound from the implant to body tissues also requires careful validation. We tested and validated a slow-release implant methodology for exposing fish to a pharmaceutical pollutant, fluoxetine. We tested two lipid-based carriers (coconut oil or vegetable shortening) in the common roach (Rutilus rutilus). The implants contained either a high (50 μg/g), low (25 μg/g), or control (0 μg/g) concentration of fluoxetine, and we measured tissue uptake in the brain, muscle, and plasma of implanted fish over 25 days. The two carriers released fluoxetine differently over time: coconut oil released fluoxetine in an accelerating manner (tissue uptake displayed a positive quadratic curvature), whereas vegetable shortening released fluoxetine in a decelerating manner (a negative quadratic curvature). For both carrier types, fluoxetine was measured at the highest concentration in the brain, followed by muscle and plasma. By comparing the implant exposures with waterborne exposures in the published literature, we showed that the implants delivered an internal exposure that would be similar if fish were exposed in surface waters containing effluents. Overall, we showed that slow-release internal implants are an effective method for delivering chronic exposures of fluoxetine over at least 1-month time scales. Internal exposures can be an especially powerful experimental tool when coupled with field-based study designs to assess the impacts of pharmaceutical pollutants in complex natural environments. Environ Toxicol Chem 2023;42:1326-1336. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

Zobrazit více v PubMed

Altamura, A. C., Moro, A. R., & Percudani, M. (1994). Clinical pharmacokinetics of fluoxetine. Clinical Pharmacokinetics, 26(3), 201-214. https://doi.org/10.2165/00003088-199426030-00004

Arnnok, P., Singh, R. R., Burakham, R., Pérez-Fuentetaja, A., & Aga, D. S. (2017). Selective uptake and bioaccumulation of antidepressants in fish from effluent-impacted Niagara River. Environmental Science & Technology, 51(18), 10652-10662. https://doi.org/10.1021/acs.est.7b02912

Berglund, I., Lundqvist, H., & Fängstam, H. (1994). Downstream migration of immature salmon (Salmo salar) smolts blocked by implantation of the androgen 11-ketoandrostenedione. Aquaculture, 121(1-3), 269-276. https://doi.org/10.1016/0044-8486(94)90026-4

Bertram, M. G., Martin, J. M., McCallum, E. S., Alton, L. A., Brand, J. A., Brooks, B. W., Cerveny, D., Fick, J., Ford, A. T., Hellström, G., Michelangeli, M., Nakagawa, S., Polverino, G., Saaristo, M., Sih, A., Tan, H., Tyler, C. R., Wong, B. B. M., & Brodin, T. (2022). Frontiers in quantifying wildlife behavioural responses to chemical pollution. Biological Reviews, 97(4), 1346-1364. https://doi.org/10.1111/brv.12844

Birnie-Gauvin, K., Peiman, K. S., Larsen, M. H., Aarestrup, K., Gilmour, K. M., & Cooke, S. J. (2018). Comparison of vegetable shortening and cocoa butter as vehicles for cortisol manipulation in Salmo trutta. Journal of Fish Biology, 92, 229-236. https://doi.org/10.1111/jfb.13513

Bolo, N. R., Hodé, Y., Nédélec, J. F., Lainé, E., Wagner, G., & MacHer, J. P. (2000). Brain pharmacokinetics and tissue distribution in vivo of fluvoxamine and fluoxetine by fluorine magnetic resonance spectroscopy. Neuropsychopharmacology, 23(4), 428-438. https://doi.org/10.1016/S0893-133X(00)00116-0

Brooks, M., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Maechler, M., & Bolker, B. M. (2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal, 9(2), 378-400.

Caccia, S., Cappi, M., Fracasso, C., & Garattini, S. (1990). Influence of dose and route of administration on the kinetics of fluoxetine and its metabolite norfluoxetine in the rat. Psychopharmacology, 100(4), 509-514. https://doi.org/10.1007/BF02244004

Correia, D., Domingues, I., Faria, M., & Oliveira, M. (2023). Effects of fluoxetine on fish: What do we know and where should we focus our efforts in the future. Science of the Total Environment, 857, 159486. https://doi.org/10.1016/j.scitotenv.2022.159486

Duarte, I. A., Fick, J., Cabral, H. N., & Fonseca, V. F. (2022). Bioconcentration of neuroactive pharmaceuticals in fish: Relation to lipophilicity, experimental design and toxicity in the aquatic environment. Science of the Total Environment, 812, 152543. https://doi.org/10.1016/j.scitotenv.2021.152543

Duarte, I. A., Reis-Santos, P., Novais, S. C., Rato, L. D., Lemos, M. F., Freitas, A., Pouca, A. S. V., Barbosa, J., Varal, H. N., & Fonseca, V. F. (2020). Depressed, hypertense and sore: Long-term effects of fluoxetine, propranolol and diclofenac exposure in a top predator fish. Science of the Total Environment, 712, 136564. https://doi.org/10.1016/j.scitotenv.2020.136564

Duval, V., & Karlsson, M. O. (2002). Impact of omission or replacement of data below the limit of quantification on parameter estimates in a two-compartment model. Pharmaceutical Research, 19(12), 1835-1840.

Ford, A. T., & Feuerhelm, E. (2020). Effects of the antidepressant fluoxetine on pigment dispersion in chromatophores of the common sand shrimp, Crangon crangon: Repeated experiments paint an inconclusive picture. Ecotoxicology, 29(9), 1368-1376. https://doi.org/10.1007/s10646-020-02272-7

Gamperl, A. K., Vijayan, M. M., & Boutilier, R. G. (1994). Experimental control of stress hormone levels in fishes: Techniques and applications. Reviews in Fish Biology and Fisheries, 4(2), 215-255. https://doi.org/10.1007/BF00044129

Giebułtowicz, J., & Nałecz-Jawecki, G. (2014). Occurrence of antidepressant residues in the sewage-impacted Vistula and Utrata rivers and in tap water in Warsaw (Poland). Ecotoxicology and Environmental Safety, 104(1), 103-109. https://doi.org/10.1016/j.ecoenv.2014.02.020

Gould, S. L., Winter, M. J., Norton, W. H. J., & Tyler, C. R. (2021). The potential for adverse effects in fish exposed to antidepressants in the aquatic environment. Environmental Science & Technology, 55(24), 16299-16312. https://doi.org/10.1021/acs.est.1c04724

Hellström, G., Klaminder, J., Jonsson, M., Fick, J., & Brodin, T. (2016). Upscaling behavioural studies to the field using acoustic telemetry. Aquatic Toxicology, 170, 384-389. https://doi.org/10.1016/j.aquatox.2015.11.005

Hiemke, C., & Härtter, S. (2000). Pharmacokinetics of selective serotonin reuptake inhibitors. Pharmacology and Therapeutics, 85, 11-28. https://doi.org/10.1016/S0163-7258(99)00048-0

Hughes, S. R., Kay, P., & Brown, L. E. (2013). Global synthesis and critical evaluation of pharmaceutical data sets collected from river systems. Environmental Science & Technology, 47(2), 661-677. https://doi.org/10.1021/es3030148

Johnson, R. D., Lewis, R. J., & Angier, M. K. (2007). The distribution of fluoxetine in human fluids and tissues. Journal of Analytical Toxicology, 31(7), 409-414. https://doi.org/10.1093/jat/31.7.409

Klaminder, J., Jonsson, M., Leander, J., Fahlman, J., Brodin, T., Fick, J., & Hellström, G. (2019). Less anxious salmon smolt become easy prey during downstream migration. Science of the Total Environment, 687, 488-493. https://doi.org/10.1016/j.scitotenv.2019.05.488

Lajeunesse, A., Gagnon, C., Gagné, F., Louis, S., Čejka, P., & Sauvé, S. (2011). Distribution of antidepressants and their metabolites in brook trout exposed to municipal wastewaters before and after ozone treatment-Evidence of biological effects. Chemosphere, 83, 564-571. https://doi.org/10.1016/j.chemosphere.2010.12.026

Lenth, R. (2022). _emmeans: Estimated marginal means, aka least-squares means_. R package Ver. 1.8.0. https://CRAN.R-project.org/package=emmeans

Liu, Y. H., Lv, Y. Z., Huang, Z., Guan, Y. F., Huang, J. W., Zhao, J. L., & Ying, G. G. (2021). Uptake, elimination, and toxicokinetics of selected pharmaceuticals in multiple tissues of Nile tilapia (Oreochromis niloticus) exposed to environmentally relevant concentrations. Ecotoxicology and Environmental Safety, 226, 112874. https://doi.org/10.1016/j.ecoenv.2021.112874

Luo, Y., Kataoka, Y., Ostinelli, E. G., Cipriani, A., & Furukawa, T. A. (2020). National prescription patterns of antidepressants in the treatment of adults with major depression in the US between 1996 and 2015: A population representative survey based analysis. Frontiers in Psychiatry, 11(February), 1-11. https://doi.org/10.3389/fpsyt.2020.00035

Margiotta-Casaluci, L., Owen, S. F., Cumming, R. I., De Polo, A., Winter, M. J., Panter, G. H., Rand-Weaver, M., & Sumpter, J. P. (2014). Quantitative cross-species extrapolation between humans and fish: The case of the anti-depressant fluoxetine. PLoS One, 9(10), e110467. https://doi.org/10.1371/journal.pone.0110467

Martin, J. M., Bertram, M. G., Saaristo, M., Fursdon, J. B., Hannington, S. L., Brooks, B. W., Burket, S. R., Mole, R. A., Deal, N. D. S., & Wong, B. B. M. (2019). Antidepressants in surface waters: Fluoxetine influences mosquitofish anxiety-related behavior at environmentally relevant levels. Environmental Science & Technology, 53(10), 6035-6043. https://doi.org/10.1021/acs.est.9b00944

Martin, J. M., Saaristo, M., Bertram, M. G., Lewis, P. J., Coggan, T. L., Clarke, B. O., & Wong, B. B. M. (2017). The psychoactive pollutant fluoxetine compromises antipredator behaviour in fish. Environmental Pollution, 222, 592-599. https://doi.org/10.1016/j.envpol.2016.10.010

McCallum, E. S., Bose, A. P. H., Warriner, T. R., & Balshine, S. (2017). An evaluation of behavioural endpoints: The pharmaceutical pollutant fluoxetine decreases aggression across multiple contexts in round goby (Neogobius melanostomus). Chemosphere, 175, 401-410. https://doi.org/10.1016/j.chemosphere.2017.02.059

McCallum, E. S., Cerveny, D., Fick, J., & Brodin, T. (2019). Slow-release implants for manipulating contaminant exposures in aquatic wildlife: A new tool for field ecotoxicology. Environmental Science & Technology, 53, 8282-8290. https://doi.org/10.1021/acs.est.9b01975

McDonald, M. D., Gonzalez, A., & Sloman, K. A. (2011). Higher levels of aggression are observed in socially dominant toadfish treated with the selective serotonin reuptake inhibitor, fluoxetine. Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP, 153(1), 107-112. https://doi.org/10.1016/j.cbpc.2010.09.006.

Mikó, Z., Ujszegi, J., Gál, Z., Imrei, Z., & Hettyey, A. (2015). Choice of experimental venue matters in ecotoxicology studies: Comparison of a laboratory-based and an outdoor mesocosm experiment. Aquatic Toxicology, 167, 20-30. https://doi.org/10.1016/j.aquatox.2015.07.014

Mole, R. A., & Brooks, B. W. (2019). Global scanning of selective serotonin reuptake inhibitors: Occurrence, wastewater treatment and hazards in aquatic systems. Environmental Pollution, 250, 1019-1031. https://doi.org/10.1016/j.envpol.2019.04.118

Morando, M. B., Medeiros, L. R., & McDonald, M. D. (2009). Fluoxetine treatment affects nitrogen waste excretion and osmoregulation in a marine teleost fish. Aquatic Toxicology, 93(4), 253-260. https://doi.org/10.1016/j.aquatox.2009.03.011

Muir, D., Simmons, D., Wang, X., Peart, T., Villella, M., Miller, J., & Sherry, J. (2017). Bioaccumulation of pharmaceuticals and personal care product chemicals in fish exposed to wastewater effluent in an urban wetland. Scientific Reports, 7(1), 1-11. https://doi.org/10.1038/s41598-017-15462-x

Nakamura, Y., Yamamoto, H., Sekizawa, J., Kondo, T., Hirai, N., & Tatarazako, N. (2008). The effects of pH on fluoxetine in Japanese medaka (Oryzias latipes): Acute toxicity in fish larvae and bioaccumulation in juvenile fish. Chemosphere, 70(5), 865-873. https://doi.org/10.1016/j.chemosphere.2007.06.089

Nilsen, E., Smalling, K. L., Ahrens, L., Gros, M., Miglioranza, K. S. B., Pico, Y., & Schoenfuss, H. L. (2018). Grand challenges in assessing the adverse effects of contaminants of emerging concern on aquatic food webs. Environmental Toxicology and Chemistry, 38(1), 46-60. https://doi.org/10.1002/etc.4290

O'Connor, C. M., Gilmour, K. M., Arlinghaus, R., Van Der Kraak, G., & Cooke, S. J. (2009). Stress and parental care in a wild teleost fish: Insights from exogenous supraphysiological cortisol implants. Physiological and Biochemical Zoology, 82(6), 709-719. https://doi.org/10.1086/605914

Painter, M., Buerkley, M., Julius, M., Vajda, A., Norris, D., Barber, L., Furlong, E., Schultz, M., & Schoenfuss, H. L. (2009). Antidepressants at environmentally relevant concentrations affect predator avoidance behavior of larval fathead minnows (Pimephales promelas). Environmental Toxicology and Chemistry, 28(12), 2677-2684. https://doi.org/10.1897/08-556.1

Pan, C., Yang, M., Xu, H., Xu, B., Jiang, L., & Wu, M. (2018). Tissue bioconcentration and effects of fluoxetine in zebrafish (Danio rerio) and red crucian cap (Carassius auratus) after short-term and long-term exposure. Chemosphere, 205, 8-14.

Paterson, G., & Metcalfe, C. D. (2008). Uptake and depuration of the anti-depressant fluoxetine by the Japanese medaka (Oryzias latipes). Chemosphere, 74(1), 125-130. https://doi.org/10.1016/j.chemosphere.2008.08.022

Pickering, A. D., & Duston, J. (1983). Administration of cortisol to brown trout, Salmo trutta L., and its effects on the susceptibility to Saprolegnia infection and furunculosis. Journal of Fish Biology, 23(2), 163-175. https://doi.org/10.1111/j.1095-8649.1983.tb02891.x

Polverino, G., Martin, J. M., Bertram, M. G., Soman, V. R., Tan, H., Brand, J. A., Mason, R. T., & Wong, B. B. M. (2021). Psychoactive pollution suppresses individual differences in fish behaviour. Proceedings of the Royal Society B: Biological Sciences, 288, 20202294. https://doi.org/10.1098/rspb.2020.2294

R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/

Salahinejad, A., Attaran, A., Meuthen, D., Chivers, D. P., & Niyogi, S. (2022). Proximate causes and ultimate effects of common antidepressants, fluoxetine and venlafaxine, on fish behavior. Science of the Total Environment, 807, 150846. https://doi.org/10.1016/j.scitotenv.2021.150846

Schultz, M. M., Furlong, E. T., Kolpin, D. W., Werner, S. L., Schoenfuss, H. L., Barber, L. B., Blazer, V. S., Norris, D. O., & Vajda, A. M. (2010). Antidepressant pharmaceuticals in two U.S. effluent-impacted streams: Occurrence and fate in water and sediment and selective uptake in fish neural tissue. Environmental Science & Technology, 44(6), 1918-1925. https://doi.org/10.1021/es9022706

Schultz, M. M., Painter, M. M., Bartell, S. E., Logue, A., Furlong, E. T., Werner, S. L., & Schoenfuss, H. L. (2011). Selective uptake and biological consequences of environmentally relevant antidepressant pharmaceutical exposures on male fathead minnows. Aquatic Toxicology, 104(1-2), 38-47. https://doi.org/10.1016/j.aquatox.2011.03.011

Smith, E. M., Chu, S., Paterson, G., Metcalfe, C. D., & Wilson, J. Y. (2010). Cross-species comparison of fluoxetine metabolism with fish liver microsomes. Chemosphere, 79(1), 26-32. https://doi.org/10.1016/j.chemosphere.2010.01.058.

Sumpter, J. P., Donnachie, R. L., & Johnson, A. C. (2014). The apparently very variable potency of the anti-depressant fluoxetine. Aquatic Toxicology, 151, 57-60. https://doi.org/10.1016/j.aquatox.2013.12.010

Sopinka, N. M., Patterson, L. D., Redfern, J. C., Pleizier, N. K., Belanger, C. B., Midwood, J. D., Crossin, G. T., & Cooke, S. J. (2015). Manipulating glucocorticoids in wild animals: Basic and applied perspectives. Conservation Physiology, 3(1), cov031. https://doi.org/10.1093/conphys/cov031

Thoré, E. S. J., Philippe, C., Brendonck, L., & Pinceel, T. (2020). Antidepressant exposure reduces body size, increases fecundity and alters social behavior in the short-lived killifish Nothobranchius furzeri. Environmental Pollution, 265, 115068. https://doi.org/10.1016/j.envpol.2020.115068

Togunde, O. P., Oakes, K. D., Servos, M. R., & Pawliszyn, J. (2012). Determination of pharmaceutical residues in fish bile by solid-phase microextraction couple with liquid chromatography-tandem mass spectrometry (LC/MS/MS). Environmental Science & Technology, 46(10), 5302-5309. https://doi.org/10.1021/es203758n

Wenthur, C. J., Bennett, M. R., & Lindsley, C. W. (2014). Classics in chemical neuroscience: Fluoxetine (Prozac). ACS Chemical Neuroscience, 5, 14-23. https://doi.org/10.1021/cn400186j

Wilkinson, J. L., Boxall, A. B. A., Kolpin, D. W., Leung, K. M. Y., Lai, R. W. S., Galbán-Malagón, C., Adell, A. D., Mondon, J., Metian, M., Marchant, R. A., Bouzas-Monroy, A., Cuni-Sanchez, A., Coors, A., Carriquiriborde, P., Rojo, M., Gordon, C., Cara, M., Moermond, M., Luarte, T., … Teta, C. (2022). Pharmaceutical pollution of the world's rivers. Proceedings of the National Academy of Sciences of the United States of America, 119(8), 1-10. https://doi.org/10.1073/pnas.2113947119/-/DCSupplemental.Published

Wille, S. M. R., De Letter, E. A., Piette, M. H. A., Van Overschelde, L. K., Van Peteghem, C. H., & Lambert, W. E. (2009). Determination of antidepressants in human postmortem blood, brain tissue, and hair using gas chromatography-mass spectrometry. International Journal of Legal Medicine, 123(6), 451-458. https://doi.org/10.1007/s00414-008-0287-6

Windsor, F. M., Ormerod, S. J., & Tyler, C. R. (2017). Endocrine disruption in aquatic systems: Up-scaling research to address ecological consequences. Biological Reviews, 93(1), 626-641. https://doi.org/10.1111/brv.12360

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...