Slow-Release Pharmaceutical Implants in Ecotoxicology: Validating Functionality across Exposure Scenarios
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39830719
PubMed Central
PMC11741056
DOI
10.1021/acsenvironau.4c00056
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Pharmaceutical contaminants have spread in natural environments across the globe, endangering biodiversity, ecosystem functioning, and public health. Research on the environmental impacts of pharmaceuticals is growing rapidly, although a majority of studies are still conducted under controlled laboratory conditions. As such, there is an urgent need to understand the impacts of pharmaceutical exposures on wildlife in complex, real-world scenarios. Here, we validate the performance of slow-release pharmaceutical implants-a recently developed tool in field-based ecotoxicology that allows for the controlled chemical dosing of free-roaming aquatic species-in terms of the accumulation and distribution of pharmaceuticals of interest in tissues. Across two years, we directly exposed 256 Atlantic salmon (Salmo salar) smolts to one of four pharmaceutical treatments: clobazam (50 μg g-1 of implant), tramadol (50 μg g-1), clobazam and tramadol (50 μg g-1 of each), and control (0 μg g-1). Fish dosed with slow-release implants containing clobazam or tramadol, or their mixture, accumulated these pharmaceuticals in all of the sampled tissues: brain, liver, and muscle. Concentrations of both pharmaceuticals peaked in all tissues at 1 day post-implantation, before reaching relatively stable, slowly declining concentrations for the remainder of the 30-day sampling period. Generally, the highest concentrations of clobazam and tramadol were detected in the liver, followed by the brain and then muscle, with observed concentrations of each pharmaceutical being higher in the single-exposure treatments relative to the mixture exposure. Taken together, our findings underscore the utility of slow-release implants as a tool in field-based ecotoxicology, which is an urgent research priority given the current lack of knowledge on the real-world impacts of pharmaceuticals on wildlife.
Australian Rivers Institute Griffith University Nathan 4111 Australia
Department of Chemistry Umeå University Umeå 907 36 Sweden
Department of Zoology Stockholm University Stockholm 114 18 Sweden
Institute of Zoology Zoological Society of London London NW1 4RY United Kingdom
School of Biological Sciences Monash University Melbourne 3800 Australia
School of Life and Environmental Sciences Deakin University Waurn Ponds 3216 Australia
TRANSfarm Science Engineering and Technology Group KU Leuven Lovenjoel 3360 Belgium
Zobrazit více v PubMed
Wilkinson J. L.; Boxall A. B.; Kolpin D. W.; Leung K. M.; Lai R. W.; Galbán-Malagón C.; Adell A. D.; Mondon J.; Metian M.; Marchant R. A.; Bouzas-Monroy A.; Cuni-Sanchez A.; Coors A.; Carriquiriborde P.; Rojo M.; et al. Pharmaceutical pollution of the world’s rivers. Proc. Natl. Acad. Sci. U.S.A. 2022, 119, e211394711910.1073/pnas.2113947119. PubMed DOI PMC
Brodin T.; Bertram M. G.; Arnold K.; Boxall A. B. A.; Brooks B. W.; Cerveny D.; Jörg M.; Kidd K. A.; Lertxundi U.; Martin J. M.; May L. T.; McCallum E. S.; Michelangeli M.; Tyler C. R.; Wong B. B. M.; Kümmerer K.; Orive G. The urgent need for designing greener drugs. Nat. Sustain. 2024, 7, 949–951. 10.1038/s41893-024-01374-y. DOI
Aris A. Z.; Shamsuddin A. S.; Praveena S. M. Occurrence of 17α-ethynylestradiol (EE2) in the environment and effect on exposed biota: a review. Environ. Int. 2014, 69, 104–119. 10.1016/j.envint.2014.04.011. PubMed DOI
Aulsebrook L. C.; Bertram M. G.; Martin J. M.; Aulsebrook A. E.; Brodin T.; Evans J. P.; Hall M. D.; O’Bryan M. K.; Pask A. J.; Tyler C. R.; Wong B. B. M. Reproduction in a polluted world: implications for wildlife. Reproduction 2020, 160, R13–R23. 10.1530/REP-20-0154. PubMed DOI
Daughton C. G.; Ternes T. A. Pharmaceuticals and personal care products in the environment: agents of subtle change?. Environ. Health Perspect. 1999, 107, 907–938. 10.1289/ehp.99107s6907. PubMed DOI PMC
Santos L. H.; Araújo A. N.; Fachini A.; Pena A.; Delerue-Matos C.; Montenegro M. C. B. S. M. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J. Hazard. Mater. 2010, 175, 45–95. 10.1016/j.jhazmat.2009.10.100. PubMed DOI
Saaristo M.; Brodin T.; Balshine S.; Bertram M. G.; Brooks B. W.; Ehlman S. M.; McCallum E. S.; Sih A.; Sundin J.; Wong B. B. M.; Arnold K. E. Direct and indirect effects of chemical contaminants on the behaviour, ecology and evolution of wildlife. Proc. R. Soc. London, B, Biol. Sci. 2018, 285, 20181297.10.1098/rspb.2018.1297. PubMed DOI PMC
Bertram M. G.; Martin J. M.; McCallum E. S.; Alton L. A.; Brand J. A.; Brooks B. W.; Cerveny D.; Fick J.; Ford A. T.; Hellström G.; Michelangeli M.; Nakagawa S.; Polverino G.; Saaristo M.; Sih A.; Tan H.; Tyler C. R.; Wong B. B. M.; Brodin T. Frontiers in quantifying wildlife behavioural responses to chemical pollution. Biol. Rev. 2022, 97, 1346–1364. 10.1111/brv.12844. PubMed DOI PMC
Wong B. B. M.; Candolin U. Behavioral responses to changing environments. Behav. Ecol. 2015, 26, 665–673. 10.1093/beheco/aru183. DOI
Ågerstrand M.; Arnold K.; Balshine S.; Brodin T.; Brooks B. W.; Maack G.; McCallum E. S.; Pyle G.; Saaristo M.; Ford A. T. Emerging investigator series: use of behavioural endpoints in the regulation of chemicals. Environ. Sci.: Process. Impacts 2020, 22, 49–65. 10.1039/C9EM00463G. PubMed DOI
Ford A. T.; Ågerstrand M.; Brooks B. W.; Allen J.; Bertram M. G.; Brodin T.; Dang Z.; Duquesne S.; Sahm R.; Hoffmann F.; Hollert H.; Jacob S.; Klüver N.; Lazorchak J.; Ledesma M.; Melvin S. D.; Mohr S.; Padilla S.; Pyle G.; Scholz S.; Saaristo M.; Smit E.; Steevens J. A.; van den Berg S.; Kloas W.; Wong B. B. M.; Ziegler M.; Maack G. The role of behavioral ecotoxicology in environmental protection. Environ. Sci. Technol. 2021, 55, 5620–5628. 10.1021/acs.est.0c06493. PubMed DOI PMC
Hellström G.; Lennox R. J.; Bertram M. G.; Brodin T. Acoustic telemetry. Curr. Biol. 2022, 32, R863–R865. 10.1016/j.cub.2022.05.032. PubMed DOI
Nathan R.; Monk C.; Arlinghaus R.; Adam T.; Alós J.; Assaf M.; Baktoft H.; Beardsworth C. E.; Bertram M. G.; Bijleveld A.; Brodin T.; Brooks J.; Campos-Candela A.; Cooke S. J.; Gjelland K. J.; Gupte P. R.; Harel R.; Hellström G.; Jeltsch F.; Killen S.; Klefoth T.; Langrock R.; Lennox R. J.; Lourie E.; Madden J. R.; Orchan Y.; Pauwels I.; Riha M.; Roeleke M.; Schlägel U.; Shohami D.; Singer J.; Toledo S.; Vilk O.; Westrelin S.; Whiteside M.; Jarić I. Big-data approaches lead to an increased understanding of the ecology of animal movement. Science 2022, 375, eabg178010.1126/science.abg1780. PubMed DOI
Lennox R. J.; Aarestrup K.; Alós J.; Arlinghaus R.; Aspillaga E.; Bertram M. G.; Birnie-Gauvin K.; Brodin T.; Cooke S. J.; Dahlmo L. S.; Dhellemmes F.; Gjelland K. Ø.; Hellström G.; Hershey H.; Holbrook C.; Klefoth T.; Lowerre-Barbieri S.; Monk C. T.; Nilsen C. I.; Pauwels I.; Pickholtz R.; Prchalova M.; Reubens J.; Říha M.; Villegas-Rios D.; Vollset K. W.; Westrelin S.; Baktoft H. Positioning aquatic animals with acoustic transmitters. Methods Ecol. Evol. 2023, 14, 2514–2530. 10.1111/2041-210X.14191. DOI
Whitford M.; Klimley A. P. An overview of behavioral, physiological, and environmental sensors used in animal biotelemetry and biologging studies. Anim. Biotelemetry 2019, 7, 1–24. 10.1186/s40317-019-0189-z. DOI
Lennox R. J.; Dahlmo L. S.; Ford A. T.; Sortland L. K.; Vogel E. F.; Vollset K. W. Predation research with electronic tagging. Wildl. Biol. 2023, 2023, e0104510.1002/wlb3.01045. DOI
Hellström G.; Klaminder J.; Jonsson M.; Fick J.; Brodin T. Upscaling behavioural studies to the field using acoustic telemetry. Aquat. Toxicol. 2016, 170, 384–389. 10.1016/j.aquatox.2015.11.005. PubMed DOI
Hellström G.; Klaminder J.; Finn F.; Persson L.; Alanärä A.; Jonsson M.; Fick J.; Brodin T. GABAergic anxiolytic drug in water increases migration behaviour in salmon. Nat. Commun. 2016, 7, 13460.10.1038/ncomms13460. PubMed DOI PMC
Fahlman J.; Hellström G.; Jonsson M.; Fick J.; Rosvall M.; Klaminder J. Impacts of oxazepam on perch (Perca fluviatilis) behavior: fish familiarized to lake conditions do not show predicted anti-anxiety response. Environ. Sci. Technol. 2021, 55, 3624–3633. 10.1021/acs.est.0c05587. PubMed DOI PMC
McCallum E. S.; Cerveny D.; Fick J.; Brodin T. Slow-release implants for manipulating contaminant exposures in aquatic wildlife: a new tool for field ecotoxicology. Environ. Sci. Technol. 2019, 53, 8282–8290. 10.1021/acs.est.9b01975. PubMed DOI
McCallum E. S.; Cerveny D.; Bose A. P. H.; Fick J.; Brodin T. Cost-effective pharmaceutical implants in fish: validating the performance of slow-release implants for the antidepressant fluoxetine. Environ. Toxicol. Chem. 2023, 42, 1326–1336. 10.1002/etc.5613. PubMed DOI
Fick J.; Brodin T.; Heynen M.; Klaminder J.; Jonsson M.; Grabicova K.; Loos R. Screening of benzodiazepines in thirty European rivers. Chemosphere 2017, 176, 324–332. 10.1016/j.chemosphere.2017.02.126. PubMed DOI
U.S. Food and Drug Administration . Drug Safety Communication: FDA warns about serious risks and death when combining opioid pain or cough medicines with benzodiazepines; requires its strongest warning. 2016. https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-warns-about-serious-risks-and-death-when-combining-opioid-pain-or. Accessed: 13-11-2024.
Magnér J.; Filipovic M.; Alsberg T. Application of a novel solid-phase-extraction sampler and ultra-performance liquid chromatography quadrupole-time-of-flight mass spectrometry for determination of pharmaceutical residues in surface sea water. Chemosphere 2010, 80, 1255–1260. 10.1016/j.chemosphere.2010.06.065. PubMed DOI
Borova V. L.; Maragou N. C.; Gago-Ferrero P.; Pistos C.; Τhomaidis Ν. S. Highly sensitive determination of 68 psychoactive pharmaceuticals, illicit drugs, and related human metabolites in wastewater by liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2014, 406, 4273–4285. 10.1007/s00216-014-7819-3. PubMed DOI
Fernandez-Rubio J.; Rodriguez-Gil J. L.; Postigo C.; Mastroianni N.; Lopez de Alda M.; Barcelo D.; Valcarcel Y. Psychoactive pharmaceuticals and illicit drugs in coastal waters of North-Western Spain: Environmental exposure and risk assessment. Chemosphere 2019, 224, 379–389. 10.1016/j.chemosphere.2019.02.041. PubMed DOI
White D.; Lapworth D. J.; Civil W.; Williams P. Tracking changes in the occurrence and source of pharmaceuticals within the River Thames, UK; from source to sea. Environ. Pollut. 2019, 249, 257–266. 10.1016/j.envpol.2019.03.015. PubMed DOI
Gago-Ferrero P.; Bletsou A. A.; Damalas D. E.; Aalizadeh R.; Alygizakis N. A.; Singer H. P.; Thomaidis N. S. Wide-scope target screening of > 2000 emerging contaminants in wastewater samples with UPLC-Q-ToF-HRMS/MS and smart evaluation of its performance through the validation of 195 selected representative analytes. J. Hazard. Mater. 2020, 387, 121712.10.1016/j.jhazmat.2019.121712. PubMed DOI
Baker D. R.; Kasprzyk-Hordern B. Spatial and temporal occurrence of pharmaceuticals and illicit drugs in the aqueous environment and during wastewater treatment: new developments. Sci. Total Environ. 2013, 454, 442–456. 10.1016/j.scitotenv.2013.03.043. PubMed DOI
Loos R.; Carvalho R.; António D. C.; Comero S.; Locoro G.; Tavazzi S.; Gawlik B. M. EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Res. 2013, 47, 6475–6487. 10.1016/j.watres.2013.08.024. PubMed DOI
Petrie B.; Youdan J.; Barden R.; Kasprzyk-Hordern B. Multi-residue analysis of 90 emerging contaminants in liquid and solid environmental matrices by ultra-high-performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2016, 1431, 64–78. 10.1016/j.chroma.2015.12.036. PubMed DOI
Αntonopoulou Μ.; Thoma A.; Konstantinou F.; Vlastos D.; Hela D. Assessing the human risk and the environmental fate of pharmaceutical Tramadol. Sci. Total Environ. 2020, 710, 135396.10.1016/j.scitotenv.2019.135396. PubMed DOI
Aherne J.; Yargeau V.; Metcalfe C. D. Compounds of wastewater origin in remote upland lakes in Ireland. Chemosphere 2023, 311, 137076.10.1016/j.chemosphere.2022.137076. PubMed DOI
Grabicova K.; Grabic R.; Fedorova G.; Fick J.; Cerveny D.; Kolarova J.; Turek J.; Zlabek V.; Randak T. Bioaccumulation of psychoactive pharmaceuticals in fish in an effluent dominated stream. Water Res. 2017, 124, 654–662. 10.1016/j.watres.2017.08.018. PubMed DOI
Malev O.; Lovrić M.; Stipaničev D.; Repec S.; Martinović-Weigelt D.; Zanella D.; Klobučar G. Toxicity prediction and effect characterization of 90 pharmaceuticals and illicit drugs measured in plasma of fish from a major European river (Sava, Croatia). Environ. Pollut. 2020, 266, 115162.10.1016/j.envpol.2020.115162. PubMed DOI
Cerveny D.; Grabic R.; Grabicová K.; Randák T.; Larsson D. J.; Johnson A. C.; Fick J. Neuroactive drugs and other pharmaceuticals found in blood plasma of wild European fish. Environ. Int. 2021, 146, 106188.10.1016/j.envint.2020.106188. PubMed DOI
Bürkner P. C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 2017, 80, 1–28. 10.18637/jss.v080.i01. DOI
R Development Core Team . R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2019.
Lenth R. V.; Buerkner P.; Giné-Vázquez I.; Herve M.; Jung M.; Love J.; Miguez F.; Riebl H.; Singmann H.. emmeans: estimated marginal means, aka least-squares means (R package version 1.8.2). 2022.
Lüdecke D.; Ben-Shachar M. S.; Patil I.; Wiernik B. M.; Bacher E.; Thériault R.; Makowski D.. easystats: framework for Easy Statistical Modeling, Visualization, and Reporting. CRAN. https://easystats.github.io/easystats/. 2022.
Duarte I. A.; Reis-Santos P.; Fick J.; Cabral H. N.; Duarte B.; Fonseca V. F. Neuroactive pharmaceuticals in estuaries: occurrence and tissue-specific bioaccumulation in multiple fish species. Environ. Pollut. 2023, 316, 120531.10.1016/j.envpol.2022.120531. PubMed DOI
Cerveny D.; Brodin T.; Cisar P.; McCallum E. S.; Fick J. Bioconcentration and behavioral effects of four benzodiazepines and their environmentally relevant mixture in wild fish. Sci. Total Environ. 2020, 702, 134780.10.1016/j.scitotenv.2019.134780. PubMed DOI
König J.; Müller F.; Fromm M. F. Transporters and drug-drug interactions: important determinants of drug disposition and effects. Pharmacol. Rev. 2013, 65, 944–966. 10.1124/pr.113.007518. PubMed DOI
Matthee C.; Brown A. R.; Lange A.; Tyler C. R. Factors determining the susceptibility of fish to effects of human pharmaceuticals. Environ. Sci. Technol. 2023, 57, 8845–8862. 10.1021/acs.est.2c09576. PubMed DOI PMC
Madenjian C. P.; Rediske R. R.; Krabbenhoft D. P.; et al. Sex differences in contaminant concentrations of fish: a synthesis. Biol. Sex Differ. 2016, 7, 42.10.1186/s13293-016-0090-x. PubMed DOI PMC