Pharmaceutical pollution of the world's rivers
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
MR/R014876/1
Medical Research Council - United Kingdom
PubMed
35165193
PubMed Central
PMC8872717
DOI
10.1073/pnas.2113947119
PII: 2113947119
Knihovny.cz E-zdroje
- Klíčová slova
- antimicrobials, aquatic contamination, global pollution, pharmaceuticals, wastewater,
- MeSH
- chemické látky znečišťující vodu analýza MeSH
- chemické znečištění vody analýza prevence a kontrola MeSH
- ekosystém MeSH
- léčivé přípravky MeSH
- lidé MeSH
- monitorování životního prostředí MeSH
- odpadní voda analýza chemie MeSH
- řeky chemie MeSH
- voda analýza chemie MeSH
- vystavení vlivu životního prostředí MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chemické látky znečišťující vodu MeSH
- léčivé přípravky MeSH
- odpadní voda MeSH
- voda MeSH
Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world's rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals.
Al Quds Nutrition and Health Research Institute Al Quds University Abu Dies West Bank Palestine
Center for Applied Geoscience University of Tübingen Tübingen 72074 Germany
Center for Genomics Ecology and Environment Universidad Mayor 8580745 Santiago Chile
Centre de Recherches Oceanologiques 7XP 56V Abidjan Cote d'Ivoire
College of Natural Resources and Environmental Studies University of Juba Juba South Sudan
Departamento de Ingeniería Geográfica Universidad de Santiago de Chile 9170022 Santiago Chile
Department of Biology National of University of Lesotho Maseru 180 Lesotho
Department of Biology University of Ottawa Ottawa ON K1N 6N5 Canada
Department of Chemistry School of Environmental Sciences Njala University Bo Sierra Leone
Department of Chemistry Universidad del Valle Cali 25360 Colombia
Department of Chemistry University of Gujrat Gujrat 50700 Pakistan
Department of Civil Engineering Indian Institute of Technology Hyderabad Hyderabad 502285 India
Department of Environment and Geography University of York York YO10 5DD United Kingdom
Department of Environment and Geography University of York York YO10 5DD United Kingdom;
Department of Environmental Engineering Chung Yuan Christian University 320 Taoyuan Taiwan
Department of Environmental Geosciences University of Vienna 1010 Vienna Austria
Department of Environmental Science Stockholm University 114 19 Stockholm Sweden
Department of Geology University of Nairobi Nairobi 00100 Kenya
Department of Microbiology Tumor and Cell Biology Karolinska Institute Stockholm 171 77 Sweden
Department of Molecular and Cellular Biology University of Guelph Guelph ON N1G 2W1 Canada
Department of Planning and Environmental Policy University College Dublin Dublin D14 E099 Ireland
Department of Water Resources Ministry of Fisheries and Water Resources Banjul The Gambia
Division for Marine and Environmental Research Rudjer Boskovic Institute 10000 Zagreb Croatia
ECT Oekotoxikologie GmbH 65439 Flörsheim am Main Germany
Environment Laboratories International Atomic Energy Agency 98000 Monaco Principality of Monaco
Environmental Protection Agency of Liberia 1000 Monrovia Liberia
Facultad de Medicina Humana Universidad Nacional del Centro del Peru 12004 Huancayo Peru
Faculty of Chemistry Center for Ecological Safety Yerevan State University 0025 Yerevan Armenia
Faculty of Chemistry Universidad de la República 11200 Montevideo Uruguay
Faculty of Science Mbarara University of Science and Technology 9MM5 6GF Mbarara Uganda
Global Monitoring of Pharmaceutical Consortium York YO10 5NG United Kingdom
Institute for Environment and Sanitation Studies University of Ghana Accra LG 1181 Ghana
Institute of Biotechnology Addis Ababa University Addis Ababa 1176 Ethiopia
Institute of Environmental Sciences Bogazici University 34342 Istanbul Turkey
Institute of Resources Assessment University of Dar es Salaam Dar es Salaam Tanzania
Instituto Federal De Educacao Ciencia e Tecnologia do Rio Grande do Norte 1692 Natal Brazil
International Water Management Institute Colombo 10120 Sri Lanka
L N Gumilyov Eurasian National University 010000 Nur Sultan Kazakhstan
Lancaster Environment Centre Lancaster University Lancaster LA1 4YQ United Kingdom
Life and Environmental Sciences Deakin University Warrnambool 3280 VIC Australia
Molecular Biology and Biotechnology Institute Universidad Mayor de San Andres 6042 La Paz Bolivia
National Pedagogical University of Kinshasa Kinshasa 8815 Democratic Republic of Congo
Plant Protection Department Agricultural University of Tirana Tirana 1000 Albania
Research Centre in Sudurnes University of Iceland Reykjavík 600169 Iceland
School of Chemical Engineering National Technical University of Athens 10682 Athens Greece
School of Chemistry University of Sydney Sydney 2006 NSW Australia
School of Engineering and Digital Sciences Nazarbayev University Nur Sultan 010000 Kazakhstan
School of Public Health Imperial College London London SW7 2AZ United Kingdom
School of Science and Mathematics College of Southern Nevada Henderson NV 89002
Sciences Appliquées et Technologies Université de Dédougou Ouagadougou BP 176 Burkina Faso
Seoul National University 599 Seoul South Korea
Smithsonian Tropical Research Institute Panama City 0843 03092 Republic of Panama
Spatial Dynamics Lab University College Dublin Dublin 4 Ireland
US Geological Survey Central Midwest Water Science Center Iowa City IA 52240
Veterinary Faculty University of Ljubljana SI 1000 Ljubljana Slovenia
Water Centre Council for Scientific and Industrial Research 0184 Pretoria South Africa
Zobrazit více v PubMed
Kidd K. A., et al. , Collapse of a fish population after exposure to a synthetic estrogen. Proc. Natl. Acad. Sci. U.S.A. 104, 8897–8901 (2007). PubMed PMC
Wellington E. M., et al. , The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. Lancet Infect. Dis. 13, 155–165 (2013). PubMed
Brodin T., Fick J., Jonsson M., Klaminder J., Dilute concentrations of a psychiatric drug alter behavior of fish from natural populations. Science 339, 814–815 (2013). PubMed
Horký P., et al. , Methamphetamine pollution elicits addiction in wild fish. J. Exp. Biol. 224, jeb242145 (2021). PubMed
Umwelt Bundesamt, “Database- Pharmaceuticals in the environment” Umwelt Bundesamt (2021). https://www.umweltbundesamt.de/en/database-pharmaceuticals-in-the-environment-0. Accessed 2 January 2021.
Boxall A. B., et al. , Pharmaceuticals and personal care products in the environment: What are the big questions? Environ. Health Perspect. 120, 1221–1229 (2012). PubMed PMC
aus der Beek T., et al. , Pharmaceuticals in the environment—Global occurrences and perspectives. Environ. Toxicol. Chem. 35, 823–835 (2016). PubMed
Kolpin D. W., et al. , Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: A national reconnaissance. Environ. Sci. Technol. 36, 1202–1211 (2002). PubMed
Hughes S. R., Kay P., Brown L. E., Global synthesis and critical evaluation of pharmaceutical data sets collected from river systems. Environ. Sci. Technol. 47, 661–677 (2013). PubMed PMC
Kookana R. S., et al. , Potential ecological footprints of active pharmaceutical ingredients: An examination of risk factors in low-, middle- and high-income countries. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130586 (2014). PubMed PMC
Furlong E. T., et al. , “Determination of human-use pharmaceuticals in filtered water by direct aqueous injection–High-performance liquid chromatography/tandem mass spectrometry” in Laboratory Analysis, US Geological Survey, Ed.(Techniques and Methods, US Geological Survey, Department of the Interior, 2014), Chapter 10, Book 5.
Burns E. E., Thomas-Oates J., Kolpin D. W., Furlong E. T., Boxall A. B. A., Are exposure predictions, used for the prioritization of pharmaceuticals in the environment, fit for purpose? Environ. Toxicol. Chem. 36, 2823–2832 (2017). PubMed
Wilkinson J. L., Boxall A., Kolpin D. W., A novel method to characterise levels of pharmaceutical pollution in large-scale aquatic monitoring campaigns. Appl. Sci. (Basel) 9, 1368 (2019).
Nickolai D. J., et al. , Effects of storage temperature and pH on the stability of eleven beta-lactam antibiotics in MIC trays. J. Clin. Microbiol. 21, 366–370 (1985). PubMed PMC
Huang Q., Yu Y., Tang C., Peng X., Determination of commonly used azole antifungals in various waters and sewage sludge using ultra-high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 1217, 3481–3488 (2010). PubMed
Gornik T., Kovacic A., Heath E., Hollender J., Kosjek T., Biotransformation study of antidepressant sertraline and its removal during biological wastewater treatment. Water Res. 181, 115864 (2020). PubMed
Mendis S., et al. , The availability and affordability of selected essential medicines for chronic diseases in six low- and middle-income countries. Bull. World Health Organ. 85, 279–288 (2007). PubMed PMC
Bin Nafisah S., et al. , Over-the-counter antibiotics in Saudi Arabia, an urgent call for policy makers. J. Infect. Public Health 10, 522–526 (2017). PubMed
Babar Z. U. D., et al. , The availability, pricing and affordability of essential diabetes medicines in 17 low-, middle-and high-income countries. Front. Pharmacol. 10, 1375 (2019). PubMed PMC
Ekwochi U., Chinawa J. M., Obi I., Obu H. A., Agwu S., Use and/or misuse of antibiotics in management of diarrhea among children in Enugu, Southeast Nigeria. J. Trop. Pediatr. 59, 314–316 (2013). PubMed
Mukonzo J. K., et al. , Over-the-counter suboptimal dispensing of antibiotics in Uganda. J. Multidiscip. Healthc. 6, 303–310 (2013). PubMed PMC
Gebretekle G. B., Serbessa M. K., Exploration of over the counter sales of antibiotics in community pharmacies of Addis Ababa, Ethiopia: Pharmacy professionals’ perspective. Antimicrob. Resist. Infect. Control 5, 2 (2016). PubMed PMC
Rodrigues C. F., Self-medication with antibiotics in Maputo, Mozambique: Practices, rationales and relationships. Palgrave Commun. 6, 1–12 (2020).
Limbu S. M., “Antibiotics use in African aquaculture: Their potential risks on fish and human health” in Current Microbiological Research in Africa, Abia A. L. K., Lanza G. R., Eds. (Springer Cham, 2020), pp. 203–221.
Van T. T. H., Yidana Z., Smooker P. M., Coloe P. J., Antibiotic use in food animals worldwide, with a focus on Africa: Pluses and minuses. J. Glob. Antimicrob. Resist. 20, 170–177 (2020). PubMed
Choi P. M., et al. , Population socioeconomics predicted using wastewater. Environ. Sci. Technol. Lett. 7, 567–572 (2020).
UNESCO, United Nations World Water Development Report 2020: Water and Climate Change: WWDR 2020 (UNESCO Publishing, Paris, 2020).
Ewen M., Zweekhorst M., Regeer B., Laing R., Baseline assessment of WHO’s target for both availability and affordability of essential medicines to treat non-communicable diseases. PLoS One 12, e0171284 (2017). PubMed PMC
Auta A., et al. , Global access to antibiotics without prescription in community pharmacies: A systematic review and meta-analysis. J. Infect. 78, 8–18 (2019). PubMed
Persaud N., et al. , Comparison of essential medicines lists in 137 countries. Bull. World Health Organ. 97, 394–404C (2019). PubMed PMC
Access to Medicines Foundation, Access to medicines index, Access to Medicines Foundation (2021). https://accesstomedicinefoundation.org/. Accessed 8 March 2021.
Cossio C., Norrman J., McConville J., Mercado A., Rauch S., Indicators for sustainability assessment of small-scale wastewater treatment plants in low and lower-middle income countries. Environmental and Sustainability Indicators 6, 100028 (2020).
World Bank, DataBank: World development indicators, World Bank Group (2021). https://databank.worldbank.org/home. Accessed 9 May 2021.
European Medicines Agency, Guideline on the environmental risk assessment of medicinal products for human use, Committee for Medicinal Products for Human Use (CHMP), London (2006). https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-environmental-risk-assessment-medicinal-products-human-use-first-version_en.pdf. Accessed 15 June 2018.
Gunnarsson L., et al. , Pharmacology beyond the patient—The environmental risks of human drugs. Environ. Int. 129, 320–332 (2019). PubMed
Vestel J., et al. , Use of acute and chronic ecotoxicity data in environmental risk assessment of pharmaceuticals. Environ. Toxicol. Chem. 35, 1201–1212 (2016). PubMed
Fick J., Lindberg R. H., Tysklind M., Larsson D. G., Predicted critical environmental concentrations for 500 pharmaceuticals. Regul. Toxicol. Pharmacol. 58, 516–523 (2010). PubMed
Backhaus T., Medicines, shaken and stirred: A critical review on the ecotoxicology of pharmaceutical mixtures. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130585 (2014). PubMed PMC
Tell J., et al. , Science‐based targets for antibiotics in receiving waters from pharmaceutical manufacturing operations. Integr. Environ. Assess. Manag. 15, 312–319 (2019). PubMed PMC
Bengtsson-Palme J., Larsson D. G. J., Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environ. Int. 86, 140–149 (2016). PubMed
United Nations, Transforming our world: The 2030 agenda for sustainable development (2015). https://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E. Accessed 10 May 2021.
Psychoactive pollutant alters movement dynamics of fish in a natural lake system
Conflicts of Interest in the Assessment of Chemicals, Waste, and Pollution
Microalgae, a current option for the bioremediation of pharmaceuticals: a review
Frontiers in quantifying wildlife behavioural responses to chemical pollution