Anodic TiO2 Nanotube Layers for Wastewater and Air Treatments: Assessment of Performance Using Sulfamethoxazole Degradation and N2O Reduction

. 2022 Dec 16 ; 27 (24) : . [epub] 20221216

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36558093

Grantová podpora
APVV-21-0039 Slovak Research and Development Agency
APVV-21-0053 Slovak Research and Development Agency
1/0062/22 VEGA
ITMS 2014+: 313021BUY3 ERDF
UK/180/2022 Comenius University Bratislava
LM2018098 ENERGAT

The preparation of anodic TiO2 nanotube layers has been performed using electrochemical anodization of Ti foil for 4 h at different voltages (from 0 V to 80 V). In addition, a TiO2 thin layer has been also prepared using the sol-gel method. All the photocatalysts have been characterized by XRD, SEM, and DRS to investigate the crystalline phase composition, the surface morphology, and the optical properties, respectively. The performance of the photocatalyst has been assessed in versatile photocatalytic reactions including the reduction of N2O gas and the oxidation of aqueous sulfamethoxazole. Due to their high specific surface area and excellent charge carriers transport, anodic TiO2 nanotube layers have exhibited the highest N2O conversion rate (up to 10% after 22 h) and the highest degradation extent of sulfamethoxazole (about 65% after 4 h) under UVA light. The degradation mechanism of sulfamethoxazole has been investigated by analyzing its transformation products by LC-MS and the predominant role of hydroxyl radicals has been confirmed. Finally, the efficiency of the anodic TiO2 nanotube layer has been tested in real wastewater reaching up to 45% of sulfamethoxazole degradation after 4 h.

Zobrazit více v PubMed

Hashimoto K., Irie H., Fujishima A. TiO2 Photocatalysis: A Historical Overview and Future Prospects. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 2005;44:8269–8285. doi: 10.1143/JJAP.44.8269. DOI

Schneider J., Matsuoka M., Takeuchi M., Zhang J., Horiuchi Y., Anpo M., Bahnemann A., Schneider D.W. Understanding TiO2 Photocatalysis Mechanisms and Materials. Chem. Rev. 2014;114:9919–9986. doi: 10.1021/cr5001892. PubMed DOI

Moradeeya P.G., Sharma A., Kumar M.A., Basha S. Titanium Dioxide Based Nanocomposites—Current Trends and Emerging Strategies for the Photocatalytic Degradation of Ruinous Environmental Pollutants. Environ. Res. 2022;204:112384. doi: 10.1016/j.envres.2021.112384. PubMed DOI

Wu M.J., Bak T., O’Doherty P.J., Moffitt M.C., Nowotny J., Bailey T.D., Kersaitis C. Photocatalysis of Titanium Dioxide for Water Disinfection: Challenges and Future Perspectives. Int. J. Photochem. 2014;2014:973484. doi: 10.1155/2014/973484. DOI

Kumar S.G., Devi L.G. Review on Modified TiO2 Photocatalysis under UV/Visible Light: Selected Results and Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics. J. Phys. Chem. A. 2011;115:13211–13241. doi: 10.1021/jp204364a. PubMed DOI

Lan Y., Lu Y., Ren Z. Mini Review on Photocatalysis of Titanium Dioxide Nanoparticles and Their Solar Applications. Nano Energy. 2013;2:1031–1045. doi: 10.1016/j.nanoen.2013.04.002. DOI

Motola M., Dworniczek E., Satrapinskyy L., Chodaczek G., Grzesiak J., Gregor M., Plecenik T., Nowicka J., Plesch G. UV Light-Induced Photocatalytic, Antimicrobial, and Antibiofilm Performance of Anodic TiO2 Nanotube Layers Prepared on Titanium Mesh and Ti Sputtered on Silicon. Chem. Pap. 2019;73:1163–1172. doi: 10.1007/s11696-018-0667-4. DOI

Yemmireddy V.K., Hung Y.C. Using Photocatalyst Metal Oxides as Antimicrobial Surface Coatings to Ensure Food Safety—Opportunities and Challenges. Compr. Rev. Food Sci. Food Saf. 2017;16:617–631. doi: 10.1111/1541-4337.12267. PubMed DOI

Fagan R., McCormack D.E., Dionysiou D.D., Pillai S.C. A Review of Solar and Visible Light Active TiO2 Photocatalysis for Treating Bacteria, Cyanotoxins and Contaminants of Emerging Concern. Mater. Sci. Semicond. Process. 2016;42:2–14. doi: 10.1016/j.mssp.2015.07.052. DOI

Motola M., Zazpe R., Hromadko L., Prikryl J., Cicmancova V., Rodriguez-Pereira J., Sopha H., Macak J.M. Anodic TiO2 Nanotube Walls Reconstructed: Inner Wall Replaced by ALD TiO2 Coating. Appl. Surf. Sci. 2021;549:149306. doi: 10.1016/j.apsusc.2021.149306. DOI

Macak J.M., Zlamal M., Krysa J., Schmuki P. Self-Organized TiO2 Nanotube Layers as Highly Efficient Photocatalysts. Small. 2007;3:300–304. doi: 10.1002/smll.200600426. PubMed DOI

Kubacka A., Diez M.S., Rojo D., Bargiela R., Ciordia S., Zapico I., Albar J.P., Barbas C., Martins Dos Santos V.A.P., Fernández-García M., et al. Understanding the Antimicrobial Mechanism of TiO2-Based Nanocomposite Films in a Pathogenic Bacterium. Sci. Rep. 2014;4:4134. doi: 10.1038/srep04134. PubMed DOI PMC

Macák J.M., Tsuchiya H., Ghicov A., Schmuki P. Dye-Sensitized Anodic TiO2 Nanotubes. Electrochem. Commun. 2005;7:1133–1137. doi: 10.1016/j.elecom.2005.08.013. DOI

Regonini D., Chen G., Leach C., Clemens F.J. Comparison of Photoelectrochemical Properties of TiO2 Nanotubes and Sol-Gel. Electrochim. Acta. 2016;213:31–36. doi: 10.1016/j.electacta.2016.07.097. DOI

Beranek R., Tsuchiya H., Sugishima T., Macak J.M., Taveira L., Fujimoto S., Kisch H., Schmuki P. Enhancement and Limits of the Photoelectrochemical Response from Anodic TiO2 Nanotubes. Appl. Phys. Lett. 2005;87:243114. doi: 10.1063/1.2140085. DOI

Thompson T.L., Yates J.T. Surface Science Studies of the Photoactivation of TIO2—New Photochemical Processes. Chem. Rev. 2006;106:4428–4453. doi: 10.1021/cr050172k. PubMed DOI

Lee K., Mazare A., Schmuki P. One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes. Chem. Rev. 2014;114:9385–9454. doi: 10.1021/cr500061m. PubMed DOI

Roy P., Berger S., Schmuki P. TiO2 Nanotubes: Synthesis and Applications. Angew. Chem.—Int. Ed. 2011;50:2904–2939. doi: 10.1002/anie.201001374. PubMed DOI

Sopha H., Baudys M., Krbal M., Zazpe R., Prikryl J., Krysa J., Macak J.M. Scaling up Anodic TiO2 Nanotube Layers for Gas Phase Photocatalysis. Electrochem. Commun. 2018;97:91–95. doi: 10.1016/j.elecom.2018.10.025. DOI

Hanif M.B., Sihor M., Liapun V., Makarov H., Monfort O., Motola M. Porous vs. Nanotubular Anodic TiO2: Does the Morphology Really Matters for the Photodegradation of Caffeine? Coatings. 2022;12:1002. doi: 10.3390/coatings12071002. DOI

Crini G., Lichtfouse E. Advantages and Disadvantages of Techniques Used for Wastewater Treatment. Environ. Chem. Lett. 2019;17:145–155. doi: 10.1007/s10311-018-0785-9. DOI

Devipriya S., Yesodharan S. Photocatalytic Degradation of Pesticide Contaminants in Water. Sol. Energy Mater. Sol. Cells. 2005;86:309–348. doi: 10.1016/j.solmat.2004.07.013. DOI

Wilkinson J.L., Boxall A.B.A., Kolpin D.W., Leung K.M.Y., Lai R.W.S., Wong D., Ntchantcho R., Pizarro J., Mart J., Echeverr S., et al. Pharmaceutical Pollution of the World’s Rivers. Proc. Natl. Acad. Sci. USA. 2022;119:e2113947119. doi: 10.1073/pnas.2113947119. PubMed DOI PMC

Mackuľak T., Černanský S., Fehér M., Birošová L., Gál M. Pharmaceuticals, Drugs, and Resistant Microorganisms—Environmental Impact on Population Health. Curr. Opin. Environ. Sci. Health. 2019;9:40–48. doi: 10.1016/j.coesh.2019.04.002. DOI

Decision 2020/1161/EU Commission Implementing Decision (EU) 2020/1161-4 August 2020 Establishing a Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/EC of the European Parliament and of the Council. Off. J. Eur. Union. 2020;257:32–35.

Ebitani K., Morokuma M., Kim J.H., Morikawa A. Photocatalytic Decomposition of Nitrous Oxide on Cu Ion-Containing ZSM-5 Catalyst. J. Catal. 1993;141:725–728. doi: 10.1006/jcat.1993.1177. DOI

deRichter R., Caillol S. Fighting Global Warming: The Potential of Photocatalysis against CO2, CH4, N2O, CFCs, Tropospheric O3, BC and Other Major Contributors to Climate Change. J. Photochem. Photobiol. C Photochem. Rev. 2011;12:1–19. doi: 10.1016/j.jphotochemrev.2011.05.002. DOI

Sano T., Negishi N., Mas D., Takeuchi K. Photocatalytic Decomposition of N2O on Highly Dispersed Ag+ Ions on TiO2 Prepared by Photodeposition. J. Catal. 2000;194:71–79. doi: 10.1006/jcat.2000.2915. DOI

Obalová L., Reli M., Lang J., Matějka V., Kukutschová J., Lacný Z., Kočí K. Photocatalytic Decomposition of Nitrous Oxide Using TiO2 and Ag-TiO2 Nanocomposite Thin Films. Catal. Today. 2013;209:170–175. doi: 10.1016/j.cattod.2012.11.012. DOI

Kočí K., Krejčíková S., Šolcová O., Obalová L. Photocatalytic Decomposition of N2O on Ag-TiO2. Catal. Today. 2012;191:134–137. doi: 10.1016/j.cattod.2012.01.021. DOI

Matějová L., Polách L., Lang J., Šihor M., Reli M., Brunátová T., Daniš S., Peikertová P., Troppová I., Kočí K. Novel TiO2 Prepared from Titanyl Sulphate by Using Pressurized Water Processing and Its Photocatalytic Activity Evaluation. Mater. Res. Bull. 2017;95:30–46. doi: 10.1016/j.materresbull.2017.07.010. DOI

Kočí K., Reli M., Troppová I., Šihor M., Kupková J., Kustrowski P., Praus P. Photocatalytic Decomposition of N2O over TiO2/g-C3N4 Photocatalysts Heterojunction. Appl. Surf. Sci. 2017;396:1685–1695. doi: 10.1016/j.apsusc.2016.11.242. DOI

Yuan R., Wang M., Liao L., Hu W., Liu Z., Liu Z., Guo L., Li K., Cui Y., Lin F., et al. 100% N2O Inhibition in Photocatalytic NOx Reduction by Carbon Particles over Bi2WO6/TiO2 Z-Scheme Heterojunctions. Chem. Eng. J. 2023;453:139892. doi: 10.1016/j.cej.2022.139892. DOI

Sihor M., Hanif M.B., Thirunavukkarasu G.K., Liapun V., Edelmannova M.F., Roch T., Satrapinskyy L., Pleceník T., Rauf S., Hensel K., et al. Anodization of Large Area Ti: A Versatile Material for Caffeine Photodegradation and Hydrogen Production. Catal. Sci. Technol. 2022;12:5045–5052. doi: 10.1039/D2CY00593J. DOI

Monfort O., Roch T., Gregor M., Satrapinskyy L., Raptis D., Lianos P., Plesch G. Photooxidative Properties of Various BiVO4/TiO2 Layered Composite Films and Study of Their Photocatalytic Mechanism in Pollutant Degradation. J. Environ. Chem. Eng. 2017;5:5143–5149. doi: 10.1016/j.jece.2017.09.050. DOI

Ao X., Liu W., Sun W., Yang C., Lu Z., Li C. Mechanisms and Toxicity Evaluation of the Degradation of Sulfamethoxazole by MPUV/PMS Process. Chemosphere. 2018;212:365–375. doi: 10.1016/j.chemosphere.2018.08.031. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...