Anodic TiO2 Nanotube Layers for Wastewater and Air Treatments: Assessment of Performance Using Sulfamethoxazole Degradation and N2O Reduction
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-21-0039
Slovak Research and Development Agency
APVV-21-0053
Slovak Research and Development Agency
1/0062/22
VEGA
ITMS 2014+: 313021BUY3
ERDF
UK/180/2022
Comenius University Bratislava
LM2018098
ENERGAT
PubMed
36558093
PubMed Central
PMC9782093
DOI
10.3390/molecules27248959
PII: molecules27248959
Knihovny.cz E-zdroje
- Klíčová slova
- N2O, TiO2, air treatment, pharmaceutical, photocatalysis, water treatment,
- MeSH
- katalýza MeSH
- nanotrubičky * chemie MeSH
- odpadní voda * MeSH
- sulfamethoxazol chemie MeSH
- titan chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- odpadní voda * MeSH
- sulfamethoxazol MeSH
- titan MeSH
- titanium dioxide MeSH Prohlížeč
The preparation of anodic TiO2 nanotube layers has been performed using electrochemical anodization of Ti foil for 4 h at different voltages (from 0 V to 80 V). In addition, a TiO2 thin layer has been also prepared using the sol-gel method. All the photocatalysts have been characterized by XRD, SEM, and DRS to investigate the crystalline phase composition, the surface morphology, and the optical properties, respectively. The performance of the photocatalyst has been assessed in versatile photocatalytic reactions including the reduction of N2O gas and the oxidation of aqueous sulfamethoxazole. Due to their high specific surface area and excellent charge carriers transport, anodic TiO2 nanotube layers have exhibited the highest N2O conversion rate (up to 10% after 22 h) and the highest degradation extent of sulfamethoxazole (about 65% after 4 h) under UVA light. The degradation mechanism of sulfamethoxazole has been investigated by analyzing its transformation products by LC-MS and the predominant role of hydroxyl radicals has been confirmed. Finally, the efficiency of the anodic TiO2 nanotube layer has been tested in real wastewater reaching up to 45% of sulfamethoxazole degradation after 4 h.
Zobrazit více v PubMed
Hashimoto K., Irie H., Fujishima A. TiO2 Photocatalysis: A Historical Overview and Future Prospects. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 2005;44:8269–8285. doi: 10.1143/JJAP.44.8269. DOI
Schneider J., Matsuoka M., Takeuchi M., Zhang J., Horiuchi Y., Anpo M., Bahnemann A., Schneider D.W. Understanding TiO2 Photocatalysis Mechanisms and Materials. Chem. Rev. 2014;114:9919–9986. doi: 10.1021/cr5001892. PubMed DOI
Moradeeya P.G., Sharma A., Kumar M.A., Basha S. Titanium Dioxide Based Nanocomposites—Current Trends and Emerging Strategies for the Photocatalytic Degradation of Ruinous Environmental Pollutants. Environ. Res. 2022;204:112384. doi: 10.1016/j.envres.2021.112384. PubMed DOI
Wu M.J., Bak T., O’Doherty P.J., Moffitt M.C., Nowotny J., Bailey T.D., Kersaitis C. Photocatalysis of Titanium Dioxide for Water Disinfection: Challenges and Future Perspectives. Int. J. Photochem. 2014;2014:973484. doi: 10.1155/2014/973484. DOI
Kumar S.G., Devi L.G. Review on Modified TiO2 Photocatalysis under UV/Visible Light: Selected Results and Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics. J. Phys. Chem. A. 2011;115:13211–13241. doi: 10.1021/jp204364a. PubMed DOI
Lan Y., Lu Y., Ren Z. Mini Review on Photocatalysis of Titanium Dioxide Nanoparticles and Their Solar Applications. Nano Energy. 2013;2:1031–1045. doi: 10.1016/j.nanoen.2013.04.002. DOI
Motola M., Dworniczek E., Satrapinskyy L., Chodaczek G., Grzesiak J., Gregor M., Plecenik T., Nowicka J., Plesch G. UV Light-Induced Photocatalytic, Antimicrobial, and Antibiofilm Performance of Anodic TiO2 Nanotube Layers Prepared on Titanium Mesh and Ti Sputtered on Silicon. Chem. Pap. 2019;73:1163–1172. doi: 10.1007/s11696-018-0667-4. DOI
Yemmireddy V.K., Hung Y.C. Using Photocatalyst Metal Oxides as Antimicrobial Surface Coatings to Ensure Food Safety—Opportunities and Challenges. Compr. Rev. Food Sci. Food Saf. 2017;16:617–631. doi: 10.1111/1541-4337.12267. PubMed DOI
Fagan R., McCormack D.E., Dionysiou D.D., Pillai S.C. A Review of Solar and Visible Light Active TiO2 Photocatalysis for Treating Bacteria, Cyanotoxins and Contaminants of Emerging Concern. Mater. Sci. Semicond. Process. 2016;42:2–14. doi: 10.1016/j.mssp.2015.07.052. DOI
Motola M., Zazpe R., Hromadko L., Prikryl J., Cicmancova V., Rodriguez-Pereira J., Sopha H., Macak J.M. Anodic TiO2 Nanotube Walls Reconstructed: Inner Wall Replaced by ALD TiO2 Coating. Appl. Surf. Sci. 2021;549:149306. doi: 10.1016/j.apsusc.2021.149306. DOI
Macak J.M., Zlamal M., Krysa J., Schmuki P. Self-Organized TiO2 Nanotube Layers as Highly Efficient Photocatalysts. Small. 2007;3:300–304. doi: 10.1002/smll.200600426. PubMed DOI
Kubacka A., Diez M.S., Rojo D., Bargiela R., Ciordia S., Zapico I., Albar J.P., Barbas C., Martins Dos Santos V.A.P., Fernández-García M., et al. Understanding the Antimicrobial Mechanism of TiO2-Based Nanocomposite Films in a Pathogenic Bacterium. Sci. Rep. 2014;4:4134. doi: 10.1038/srep04134. PubMed DOI PMC
Macák J.M., Tsuchiya H., Ghicov A., Schmuki P. Dye-Sensitized Anodic TiO2 Nanotubes. Electrochem. Commun. 2005;7:1133–1137. doi: 10.1016/j.elecom.2005.08.013. DOI
Regonini D., Chen G., Leach C., Clemens F.J. Comparison of Photoelectrochemical Properties of TiO2 Nanotubes and Sol-Gel. Electrochim. Acta. 2016;213:31–36. doi: 10.1016/j.electacta.2016.07.097. DOI
Beranek R., Tsuchiya H., Sugishima T., Macak J.M., Taveira L., Fujimoto S., Kisch H., Schmuki P. Enhancement and Limits of the Photoelectrochemical Response from Anodic TiO2 Nanotubes. Appl. Phys. Lett. 2005;87:243114. doi: 10.1063/1.2140085. DOI
Thompson T.L., Yates J.T. Surface Science Studies of the Photoactivation of TIO2—New Photochemical Processes. Chem. Rev. 2006;106:4428–4453. doi: 10.1021/cr050172k. PubMed DOI
Lee K., Mazare A., Schmuki P. One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes. Chem. Rev. 2014;114:9385–9454. doi: 10.1021/cr500061m. PubMed DOI
Roy P., Berger S., Schmuki P. TiO2 Nanotubes: Synthesis and Applications. Angew. Chem.—Int. Ed. 2011;50:2904–2939. doi: 10.1002/anie.201001374. PubMed DOI
Sopha H., Baudys M., Krbal M., Zazpe R., Prikryl J., Krysa J., Macak J.M. Scaling up Anodic TiO2 Nanotube Layers for Gas Phase Photocatalysis. Electrochem. Commun. 2018;97:91–95. doi: 10.1016/j.elecom.2018.10.025. DOI
Hanif M.B., Sihor M., Liapun V., Makarov H., Monfort O., Motola M. Porous vs. Nanotubular Anodic TiO2: Does the Morphology Really Matters for the Photodegradation of Caffeine? Coatings. 2022;12:1002. doi: 10.3390/coatings12071002. DOI
Crini G., Lichtfouse E. Advantages and Disadvantages of Techniques Used for Wastewater Treatment. Environ. Chem. Lett. 2019;17:145–155. doi: 10.1007/s10311-018-0785-9. DOI
Devipriya S., Yesodharan S. Photocatalytic Degradation of Pesticide Contaminants in Water. Sol. Energy Mater. Sol. Cells. 2005;86:309–348. doi: 10.1016/j.solmat.2004.07.013. DOI
Wilkinson J.L., Boxall A.B.A., Kolpin D.W., Leung K.M.Y., Lai R.W.S., Wong D., Ntchantcho R., Pizarro J., Mart J., Echeverr S., et al. Pharmaceutical Pollution of the World’s Rivers. Proc. Natl. Acad. Sci. USA. 2022;119:e2113947119. doi: 10.1073/pnas.2113947119. PubMed DOI PMC
Mackuľak T., Černanský S., Fehér M., Birošová L., Gál M. Pharmaceuticals, Drugs, and Resistant Microorganisms—Environmental Impact on Population Health. Curr. Opin. Environ. Sci. Health. 2019;9:40–48. doi: 10.1016/j.coesh.2019.04.002. DOI
Decision 2020/1161/EU Commission Implementing Decision (EU) 2020/1161-4 August 2020 Establishing a Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/EC of the European Parliament and of the Council. Off. J. Eur. Union. 2020;257:32–35.
Ebitani K., Morokuma M., Kim J.H., Morikawa A. Photocatalytic Decomposition of Nitrous Oxide on Cu Ion-Containing ZSM-5 Catalyst. J. Catal. 1993;141:725–728. doi: 10.1006/jcat.1993.1177. DOI
deRichter R., Caillol S. Fighting Global Warming: The Potential of Photocatalysis against CO2, CH4, N2O, CFCs, Tropospheric O3, BC and Other Major Contributors to Climate Change. J. Photochem. Photobiol. C Photochem. Rev. 2011;12:1–19. doi: 10.1016/j.jphotochemrev.2011.05.002. DOI
Sano T., Negishi N., Mas D., Takeuchi K. Photocatalytic Decomposition of N2O on Highly Dispersed Ag+ Ions on TiO2 Prepared by Photodeposition. J. Catal. 2000;194:71–79. doi: 10.1006/jcat.2000.2915. DOI
Obalová L., Reli M., Lang J., Matějka V., Kukutschová J., Lacný Z., Kočí K. Photocatalytic Decomposition of Nitrous Oxide Using TiO2 and Ag-TiO2 Nanocomposite Thin Films. Catal. Today. 2013;209:170–175. doi: 10.1016/j.cattod.2012.11.012. DOI
Kočí K., Krejčíková S., Šolcová O., Obalová L. Photocatalytic Decomposition of N2O on Ag-TiO2. Catal. Today. 2012;191:134–137. doi: 10.1016/j.cattod.2012.01.021. DOI
Matějová L., Polách L., Lang J., Šihor M., Reli M., Brunátová T., Daniš S., Peikertová P., Troppová I., Kočí K. Novel TiO2 Prepared from Titanyl Sulphate by Using Pressurized Water Processing and Its Photocatalytic Activity Evaluation. Mater. Res. Bull. 2017;95:30–46. doi: 10.1016/j.materresbull.2017.07.010. DOI
Kočí K., Reli M., Troppová I., Šihor M., Kupková J., Kustrowski P., Praus P. Photocatalytic Decomposition of N2O over TiO2/g-C3N4 Photocatalysts Heterojunction. Appl. Surf. Sci. 2017;396:1685–1695. doi: 10.1016/j.apsusc.2016.11.242. DOI
Yuan R., Wang M., Liao L., Hu W., Liu Z., Liu Z., Guo L., Li K., Cui Y., Lin F., et al. 100% N2O Inhibition in Photocatalytic NOx Reduction by Carbon Particles over Bi2WO6/TiO2 Z-Scheme Heterojunctions. Chem. Eng. J. 2023;453:139892. doi: 10.1016/j.cej.2022.139892. DOI
Sihor M., Hanif M.B., Thirunavukkarasu G.K., Liapun V., Edelmannova M.F., Roch T., Satrapinskyy L., Pleceník T., Rauf S., Hensel K., et al. Anodization of Large Area Ti: A Versatile Material for Caffeine Photodegradation and Hydrogen Production. Catal. Sci. Technol. 2022;12:5045–5052. doi: 10.1039/D2CY00593J. DOI
Monfort O., Roch T., Gregor M., Satrapinskyy L., Raptis D., Lianos P., Plesch G. Photooxidative Properties of Various BiVO4/TiO2 Layered Composite Films and Study of Their Photocatalytic Mechanism in Pollutant Degradation. J. Environ. Chem. Eng. 2017;5:5143–5149. doi: 10.1016/j.jece.2017.09.050. DOI
Ao X., Liu W., Sun W., Yang C., Lu Z., Li C. Mechanisms and Toxicity Evaluation of the Degradation of Sulfamethoxazole by MPUV/PMS Process. Chemosphere. 2018;212:365–375. doi: 10.1016/j.chemosphere.2018.08.031. PubMed DOI