Variation in NAT2 acetylation phenotypes is associated with differences in food-producing subsistence modes and ecoregions in Africa
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26620671
PubMed Central
PMC4665893
DOI
10.1186/s12862-015-0543-6
PII: 10.1186/s12862-015-0543-6
Knihovny.cz E-zdroje
- MeSH
- acetylace MeSH
- arylamin-N-acetyltransferasa genetika MeSH
- černoši MeSH
- haplotypy MeSH
- lékařská genetika MeSH
- lidé MeSH
- molekulární biologie * MeSH
- polymorfismus genetický MeSH
- populační genetika * MeSH
- potraviny MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- subsaharská Afrika MeSH
- Názvy látek
- arylamin-N-acetyltransferasa MeSH
- NAT2 protein, human MeSH Prohlížeč
BACKGROUND: Dietary changes associated to shifts in subsistence strategies during human evolution may have induced new selective pressures on phenotypes, as currently held for lactase persistence. Similar hypotheses exist for arylamine N-acetyltransferase 2 (NAT2) mediated acetylation capacity, a well-known pharmacogenetic trait with wide inter-individual variation explained by polymorphisms in the NAT2 gene. The environmental causative factor (if any) driving its evolution is as yet unknown, but significant differences in prevalence of acetylation phenotypes are found between hunter-gatherer and food-producing populations, both in sub-Saharan Africa and worldwide, and between agriculturalists and pastoralists in Central Asia. These two subsistence strategies also prevail among sympatric populations of the African Sahel, but knowledge on NAT2 variation among African pastoral nomads was up to now very scarce. Here we addressed the hypothesis of different selective pressures associated to the agriculturalist or pastoralist lifestyles having acted on the evolution of NAT2 by sequencing the gene in 287 individuals from five pastoralist and one agriculturalist Sahelian populations. RESULTS: We show that the significant NAT2 genetic structure of African populations is mainly due to frequency differences of three major haplotypes, two of which are categorized as decreased function alleles (NAT2*5B and NAT2*6A), particularly common in populations living in arid environments, and one fast allele (NAT2*12A), more frequently detected in populations living in tropical humid environments. This genetic structure does associate more strongly with a classification of populations according to ecoregions than to subsistence strategies, mainly because most Sahelian and East African populations display little to no genetic differentiation between them, although both regions hold nomadic or semi-nomadic pastoralist and sedentary agriculturalist communities. Furthermore, we found significantly higher predicted proportions of slow acetylators in pastoralists than in agriculturalists, but also among food-producing populations living in the Sahelian and dry savanna zones than in those living in humid environments, irrespective of their mode of subsistence. CONCLUSION: Our results suggest a possible independent influence of both the dietary habits associated with subsistence modes and the chemical environment associated with climatic zones and biomes on the evolution of NAT2 diversity in sub-Saharan African populations.
Zobrazit více v PubMed
Laland KN, Odling-Smee J, Myles S. How culture shaped the human genome: bringing genetics and the human sciences together. Nat Rev Genet. 2010;11(2):137–148. doi: 10.1038/nrg2734. PubMed DOI
Richerson PJ, Boyd R, Henrich J. Colloquium paper: gene-culture coevolution in the age of genomics. Proc Natl Acad Sci U S A. 2010;107(Suppl 2):8985–8992. doi: 10.1073/pnas.0914631107. PubMed DOI PMC
Balaresque PL, Ballereau SJ, Jobling MA. Challenges in human genetic diversity: demographic history and adaptation. Hum Mol Genet. 2007;16(Spec No. 2):R134–139. doi: 10.1093/hmg/ddm242. PubMed DOI
Harris EE, Meyer D. The molecular signature of selection underlying human adaptations. Am J Phys Anthropol. 2006;Suppl 43:89–130. doi: 10.1002/ajpa.20518. PubMed DOI
Feldman MW, Laland KN. Gene-culture coevolutionary theory. Trends Ecol Evol. 1996;11(11):453–457. doi: 10.1016/0169-5347(96)10052-5. PubMed DOI
Lachance J, Tishkoff SA. Population Genomics of Human Adaptation. Annu Rev Ecol Evol Syst. 2013;44:123–143. doi: 10.1146/annurev-ecolsys-110512-135833. PubMed DOI PMC
Vasseur E, Quintana-Murci L. The impact of natural selection on health and disease: uses of the population genetics approach in humans. Evol Appl. 2013;6(4):596–607. doi: 10.1111/eva.12045. PubMed DOI PMC
Barbujani G, Colonna V. Human genome diversity: frequently asked questions. Trends Genet. 2010;26(7):285–295. doi: 10.1016/j.tig.2010.04.002. PubMed DOI
Novembre J, Pritchard JK, Coop G. Adaptive drool in the gene pool. Nat Genet. 2007;39(10):1188–1190. doi: 10.1038/ng1007-1188. PubMed DOI
Bellwood P. First Farmers: The Origins of Agricultural Societies. Malden (MA): Blackwell; 2005.
Diamond J. Evolution, consequences and future of plant and animal domestication. Nature. 2002;418(6898):700–707. doi: 10.1038/nature01019. PubMed DOI
Cavalli-Sforza LL, Menozzi P, Piazza A. The History and Geography of Human Genes. Princeton, N.J.: Princeton University Press; 1994.
Jobling MA, Hollox E, Hurles M, Kivisild T, Tyler-Smith C. Human Evolutionary Genetics. 2. New York and London: Garland Science; 2014.
Hancock AM, Witonsky DB, Ehler E, Alkorta-Aranburu G, Beall C, Gebremedhin A, et al. Colloquium paper: human adaptations to diet, subsistence, and ecoregion are due to subtle shifts in allele frequency. Proc Natl Acad Sci U S A. 2010;107(Suppl 2):8924–8930. doi: 10.1073/pnas.0914625107. PubMed DOI PMC
Patin E, Quintana-Murci L. Demeter's legacy: rapid changes to our genome imposed by diet. Trends Ecol Evol. 2008;23(2):56–59. doi: 10.1016/j.tree.2007.11.002. PubMed DOI
Swallow DM. Genetics of lactase persistence and lactose intolerance. Annu Rev Genet. 2003;37:197–219. doi: 10.1146/annurev.genet.37.110801.143820. PubMed DOI
Tishkoff SA, Reed FA, Ranciaro A, Voight BF, Babbitt CC, Silverman JS, et al. Convergent adaptation of human lactase persistence in Africa and Europe. Nat Genet. 2007;39(1):31–40. doi: 10.1038/ng1946. PubMed DOI PMC
Macholdt E, Slatkin M, Pakendorf B, Stoneking M. New insights into the history of the C-14010 lactase persistence variant in Eastern and Southern Africa. Am J Phys Anthropol. 2015;156:661–4. doi: 10.1002/ajpa.22675. PubMed DOI PMC
Ranciaro A, Campbell MC, Hirbo JB, Ko WY, Froment A, Anagnostou P, et al. Genetic origins of lactase persistence and the spread of pastoralism in Africa. Am J Hum Genet. 2014;94(4):496–510. doi: 10.1016/j.ajhg.2014.02.009. PubMed DOI PMC
Priehodova E, Abdelsawy A, Heyer E, Cerny V. Lactase persistence variants in Arabia and in the African Arabs. Hum Biol. 2014;86(1):7–18. doi: 10.3378/027.086.0101. PubMed DOI
Gerbault P, Liebert A, Itan Y, Powell A, Currat M, Burger J, et al. Evolution of lactase persistence: an example of human niche construction. Philos Trans R Soc Lond Ser B Biol Sci. 2011;366(1566):863–877. doi: 10.1098/rstb.2010.0268. PubMed DOI PMC
Gerbault P, Moret C, Currat M, Sanchez-Mazas A. Impact of selection and demography on the diffusion of lactase persistence. PLoS ONE. 2009;4(7):e6369. doi: 10.1371/journal.pone.0006369. PubMed DOI PMC
Coop G, Pickrell JK, Novembre J, Kudaravalli S, Li J, Absher D, et al. The role of geography in human adaptation. PLoS Genet. 2009;5(6):e1000500. doi: 10.1371/journal.pgen.1000500. PubMed DOI PMC
Sabbagh A, Langaney A, Darlu P, Gerard N, Krishnamoorthy R, Poloni ES. Worldwide distribution of NAT2 diversity: implications for NAT2 evolutionary history. BMC Genet. 2008;9:21. doi: 10.1186/1471-2156-9-21. PubMed DOI PMC
Luca F, Bubba G, Basile M, Brdicka R, Michalodimitrakis E, Rickards O, et al. Multiple advantageous amino acid variants in the NAT2 gene in human populations. PLoS ONE. 2008;3(9):e3136. doi: 10.1371/journal.pone.0003136. PubMed DOI PMC
Patin E, Barreiro LB, Sabeti PC, Austerlitz F, Luca F, Sajantila A, et al. Deciphering the ancient and complex evolutionary history of human arylamine N-acetyltransferase genes. Am J Hum Genet. 2006;78(3):423–436. doi: 10.1086/500614. PubMed DOI PMC
Meyer UA. Pharmacogenetics - five decades of therapeutic lessons from genetic diversity. Nat Rev Genet. 2004;5(9):669–676. doi: 10.1038/nrg1428. PubMed DOI
Husain A, Zhang X, Doll MA, States JC, Barker DF, Hein DW. Identification of N-acetyltransferase 2 (NAT2) transcription start sites and quantitation of NAT2-specific mRNA in human tissues. Drug Metab Dispos. 2007;35(5):721–727. doi: 10.1124/dmd.106.014621. PubMed DOI PMC
Sim E, Abuhammad A, Ryan A. Arylamine N-acetyltransferases: from drug metabolism and pharmacogenetics to drug discovery. Br J Pharmacol. 2014;171(11):2705–2725. doi: 10.1111/bph.12598. PubMed DOI PMC
Sugimura T, Wakabayashi K, Nakagama H, Nagao M. Heterocyclic amines: Mutagens/carcinogens produced during cooking of meat and fish. Cancer Sci. 2004;95(4):290–299. doi: 10.1111/j.1349-7006.2004.tb03205.x. PubMed DOI PMC
Kataoka H, Kijima K, Maruo G. Determination of mutagenic heterocyclic amines in combustion smoke samples. Bull Environ Contam Toxicol. 1998;60(1):60–67. doi: 10.1007/s001289900591. PubMed DOI
Hein DW. Molecular genetics and function of NAT1 and NAT2: role in aromatic amine metabolism and carcinogenesis. Mutat Res. 2002;506–507:65–77. doi: 10.1016/S0027-5107(02)00153-7. PubMed DOI
Ruiz JD, Martinez C, Anderson K, Gross M, Lang NP, Garcia-Martin E, et al. The differential effect of NAT2 variant alleles permits refinement in phenotype inference and identifies a very slow acetylation genotype. PLoS ONE. 2012;7(9):e44629. doi: 10.1371/journal.pone.0044629. PubMed DOI PMC
Selinski S, Blaszkewicz M, Ickstadt K, Hengstler JG, Golka K. Improvements in algorithms for phenotype inference: the NAT2 example. Curr Drug Metab. 2014;15(2):233–249. doi: 10.2174/1389200215666140202215717. PubMed DOI
Meisel P. Arylamine N-acetyltransferases and drug response. Pharmacogenomics. 2002;3(3):349–366. doi: 10.1517/14622416.3.3.349. PubMed DOI
Butcher NJ, Boukouvala S, Sim E, Minchin RF. Pharmacogenetics of the arylamine N-acetyltransferases. Pharmacogenomics J. 2002;2(1):30–42. doi: 10.1038/sj.tpj.6500053. PubMed DOI
McDonagh EM, Boukouvala S, Aklillu E, Hein DW, Altman RB, Klein TE. PharmGKB summary: very important pharmacogene information for N-acetyltransferase 2. Pharmacogenet Genomics. 2014;24(8):409–425. PubMed PMC
Sabbagh A, Darlu P, Crouau-Roy B, Poloni ES. Arylamine N-acetyltransferase 2 (NAT2) genetic diversity and traditional subsistence: a worldwide population survey. PLoS ONE. 2011;6(4):e18507. doi: 10.1371/journal.pone.0018507. PubMed DOI PMC
Evans DA, Manley KA, Mc KV. Genetic control of isoniazid metabolism in man. Br Med J. 1960;2(5197):485–491. doi: 10.1136/bmj.2.5197.485. PubMed DOI PMC
Weber WW. The acetylator genes and drug response. 1987.
Weber WW, Hein DW. N-acetylation pharmacogenetics. Pharmacol Rev. 1985;37(1):25–79. PubMed
Mortensen HM, Froment A, Lema G, Bodo JM, Ibrahim M, Nyambo TB, et al. Characterization of genetic variation and natural selection at the arylamine N-acetyltransferase genes in global human populations. Pharmacogenomics. 2011;12(11):1545–1558. doi: 10.2217/pgs.11.88. PubMed DOI PMC
Magalon H, Patin E, Austerlitz F, Hegay T, Aldashev A, Quintana-Murci L, et al. Population genetic diversity of the NAT2 gene supports a role of acetylation in human adaptation to farming in Central Asia. Eur J Hum Genet. 2008;16(2):243–251. doi: 10.1038/sj.ejhg.5201963. PubMed DOI
Patin E, Harmant C, Kidd KK, Kidd J, Froment A, Mehdi SQ, et al. Sub-Saharan African coding sequence variation and haplotype diversity at the NAT2 gene. Hum Mutat. 2006;27(7):720. doi: 10.1002/humu.9438. PubMed DOI
Valente C, Alvarez L, Marks SJ, Lopez-Parra AM, Parson W, Oosthuizen O, et al. Exploring the relationship between lifestyles, diets and genetic adaptations in humans. BMC Genet. 2015;16:55. doi: 10.1186/s12863-015-0212-1. PubMed DOI PMC
Smith AB. African herders : emergence of pastoral traditions. Walnut Creek: AltaMira Press; 2005.
Neumann K. The late emergence of agriculture in sub-Saharan Africa: archaeobotanical evidence and ecological considerations. In: Neumann K, Butler A, Kahlheber S, editors. Food, fuel and fields Progress in African archaeobotany. Koln: Heinrich-Barth-Institute; 2003. pp. 71–92.
Marshall F, Hildebrand E. Cattle Before Crops: The Beginnings of Food Production in Africa. J World Prehistory. 2002;16(2):99–143. doi: 10.1023/A:1019954903395. DOI
Hanotte O, Bradley DG, Ochieng JW, Verjee Y, Hill EW, Rege JE. African pastoralism: genetic imprints of origins and migrations. Science. 2002;296(5566):336–339. doi: 10.1126/science.1069878. PubMed DOI
Loftus RT, MacHugh DE, Bradley DG, Sharp PM, Cunningham P. Evidence for two independent domestications of cattle. Proc Natl Acad Sci U S A. 1994;91(7):2757–2761. doi: 10.1073/pnas.91.7.2757. PubMed DOI PMC
Homewood K. Ecology of African Pastoralist Societies. Oxford and Athens: James Currey and Ohio University Press; 2008.
Pedersen J, Benjaminsen TA. One Leg or Two? Food Security and Pastoralism in the Northern Sahel. Hum Ecol. 2008;36(1):43–57. doi: 10.1007/s10745-007-9136-3. DOI
Genomes Project C. Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56–65. doi: 10.1038/nature11632. PubMed DOI PMC
Cerny V, Pereira L, Musilova E, Kujanova M, Vasikova A, Blasi P, et al. Genetic structure of pastoral and farmer populations in the African Sahel. Mol Biol Evol. 2011;28(9):2491–2500. doi: 10.1093/molbev/msr067. PubMed DOI
Buckova J, Cerny V, Novelletto A. Multiple and differentiated contributions to the male gene pool of pastoral and farmer populations of the African Sahel. Am J Phys Anthropol. 2013;151(1):10–21. doi: 10.1002/ajpa.22236. PubMed DOI
Podgorna E, Soares P, Pereira L, Cerny V. The genetic impact of the lake chad basin population in North Africa as documented by mitochondrial diversity and internal variation of the L3e5 haplogroup. Ann Hum Genet. 2013;77(6):513–523. doi: 10.1111/ahg.12040. PubMed DOI
Cerny V, Salas A, Hajek M, Zaloudkova M, Brdicka R. A bidirectional corridor in the Sahel-Sudan belt and the distinctive features of the Chad Basin populations: a history revealed by the mitochondrial DNA genome. Ann Hum Genet. 2007;71(Pt 4):433–452. doi: 10.1111/j.1469-1809.2006.00339.x. PubMed DOI
Aime C, Verdu P, Segurel L, Martinez-Cruz B, Hegay T, Heyer E, et al. Microsatellite data show recent demographic expansions in sedentary but not in nomadic human populations in Africa and Eurasia. Eur J Hum Genet. 2014;22(10):1201–1207. doi: 10.1038/ejhg.2014.2. PubMed DOI PMC
Aime C, Laval G, Patin E, Verdu P, Segurel L, Chaix R, et al. Human genetic data reveal contrasting demographic patterns between sedentary and nomadic populations that predate the emergence of farming. Mol Biol Evol. 2013;30(12):2629–2644. doi: 10.1093/molbev/mst156. PubMed DOI
Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123(3):585–595. PubMed PMC
Buhler S, Sanchez-Mazas A. HLA DNA sequence variation among human populations: molecular signatures of demographic and selective events. PLoS ONE. 2011;6(2):e14643. doi: 10.1371/journal.pone.0014643. PubMed DOI PMC
Przeworski M, Coop G, Wall JD. The signature of positive selection on standing genetic variation. Evolution. 2005;59(11):2312–2323. doi: 10.1554/05-273.1. PubMed DOI
Patillon B, Luisi P, Poloni ES, Boukouvala S, Darlu P, Genin E, et al. A Homogenizing Process of Selection Has Maintained an "Ultra-Slow" Acetylation NAT2 Variant in Humans. Hum Biol. 2014;86(3):185–214. doi: 10.13110/humanbiology.86.3.0185. PubMed DOI
Poloni ES, Naciri Y, Bucho R, Niba R, Kervaire B, Excoffier L, et al. Genetic evidence for complexity in ethnic differentiation and history in East Africa. Ann Hum Genet. 2009;73(Pt 6):582–600. doi: 10.1111/j.1469-1809.2009.00541.x. PubMed DOI
Sanchez-Mazas A, Poloni ES. Encyclopedia of Life Sciences. Chichester: John Wiley & Sons, Ltd.; 2008. Genetic Diversity in Africa.
Excoffier L, Pellegrini B, Sanchez-Mazas A, Simon C, Langaney A. Genetics and history of sub-Saharan Africa. Yearb Phys Anthropol. 1987;30:151–194. doi: 10.1002/ajpa.1330300510. DOI
Bryc K, Auton A, Nelson MR, Oksenberg JR, Hauser SL, Williams S, et al. Genome-wide patterns of population structure and admixture in West Africans and African Americans. Proc Natl Acad Sci U S A. 2010;107(2):786–791. doi: 10.1073/pnas.0909559107. PubMed DOI PMC
Tishkoff SA, Reed FA, Friedlaender FR, Ehret C, Ranciaro A, Froment A, et al. The genetic structure and history of Africans and African Americans. Science. 2009;324(5930):1035–1044. doi: 10.1126/science.1172257. PubMed DOI PMC
Sanchez-Mazas A, Lemaître JF, Currat M. Distinct evolutionary strategies of human leucocyte antigen loci in pathogen-rich environments. Philos Trans R Soc Lond Ser B Biol Sci. 2012;367(1590):830–839. doi: 10.1098/rstb.2011.0312. PubMed DOI PMC
Novembre J, Han E. Human population structure and the adaptive response to pathogen-induced selection pressures. Philos Trans R Soc Lond Ser B Biol Sci. 2012;367(1590):878–886. doi: 10.1098/rstb.2011.0305. PubMed DOI PMC
Fumagalli M, Sironi M, Pozzoli U, Ferrer-Admetlla A, Pattini L, Nielsen R. Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution. PLoS Genet. 2011;7(11):e1002355. doi: 10.1371/journal.pgen.1002355. PubMed DOI PMC
Dos Santos FR, Buhler S, Nunes JM, Bitarello BD, Franca GS, Meyer D, et al. HLA supertype variation across populations: new insights into the role of natural selection in the evolution of HLA-A and HLA-B polymorphisms. Immunogenetics. 2015;67:651–63. doi: 10.1007/s00251-015-0875-9. PubMed DOI PMC
Eny KM, Lutgers HL, Maynard J, Klein BEK, Lee KE, Atzmon G, et al. GWAS identifies an NAT2 acetylator status tag single nucleotide polymorphism to be a major locus for skin fluorescence. Diabetologia. 2014;57(8):1623–1634. doi: 10.1007/s00125-014-3286-9. PubMed DOI PMC
Knowles JW, Xie W, Zhang Z, Chennemsetty I, Assimes TL, Paananen J, et al. Identification and validation of N-acetyltransferase 2 as an insulin sensitivity gene. J Clin Invest. 2015;125(4):1739–1751. doi: 10.1172/JCI74692. PubMed DOI PMC
Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466(7307):707–713. doi: 10.1038/nature09270. PubMed DOI PMC
Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45(11):1274−+. doi: 10.1038/ng.2797. PubMed DOI PMC
Fuselli S, Gilman RH, Chanock SJ, Bonatto SL, De Stefano G, Evans CA, et al. Analysis of nucleotide diversity of NAT2 coding region reveals homogeneity across Native American populations and high intra-population diversity. Pharmacogenomics J. 2007;7(2):144–152. doi: 10.1038/sj.tpj.6500407. PubMed DOI PMC
Peter BM, Huerta-Sanchez E, Nielsen R. Distinguishing between selective sweeps from standing variation and from a de novo mutation. PLoS Genet. 2012;8(10):e1003011. doi: 10.1371/journal.pgen.1003011. PubMed DOI PMC
Gurdasani D, Carstensen T, Tekola-Ayele F, Pagani L, Tachmazidou I, Hatzikotoulas K, et al. The African Genome Variation Project shapes medical genetics in Africa. Nature. 2015;517(7534):327–332. doi: 10.1038/nature13997. PubMed DOI PMC
Pickrell JK, Patterson N, Loh PR, Lipson M, Berger B, Stoneking M, et al. Ancient west Eurasian ancestry in southern and eastern Africa. Proc Natl Acad Sci U S A. 2014;111(7):2632–2637. doi: 10.1073/pnas.1313787111. PubMed DOI PMC
Pagani L, Kivisild T, Tarekegn A, Ekong R, Plaster C, Gallego Romero I, et al. Ethiopian genetic diversity reveals linguistic stratification and complex influences on the Ethiopian gene pool. Am J Hum Genet. 2012;91(1):83–96. doi: 10.1016/j.ajhg.2012.05.015. PubMed DOI PMC
Wang D, Para MF, Koletar SL, Sadee W. Human N-acetyltransferase 1 *10 and *11 alleles increase protein expression through distinct mechanisms and associate with sulfamethoxazole-induced hypersensitivity. Pharmacogenet Genomics. 2011;21(10):652–664. doi: 10.1097/FPC.0b013e3283498ee9. PubMed DOI PMC
Linseele V. From first stock keepers to specialised pastoralists in the West African savannah. In: Bollig M, Schnegg M, Wotzka H-P, editors. Pastoralism in Africa: Past, Present and Future. New York and Oxford: Berghahn Books; 2013. pp. 145–170.
Sellen DW, Mace R. Fertility and mode of subsistence: a phylogenetic analysis. Curr Anthropol. 1997;38(5):878–889. doi: 10.1086/204677. DOI
Nicolaisen I. Elusive hunters: the Haddad of Kanem and the Bahr el Ghazal. Copenhagen: Aarhus University Press; 2010.
Batello C, Marzot M, Touré AH. The future is an ancient lake : traditional knowledge, biodiversity and genetic resources for food and agriculture in Lake Chad Basin ecosystems. Rome: FAO; 2004.
Bouchette F, Schuster M, Ghienne J-F, Denamiel C, Roquin C, Moussa A, et al. Hydrodynamics in Holocene Lake Mega-Chad. Quat Res. 2010;73(2):226–236. doi: 10.1016/j.yqres.2009.10.010. DOI
Drake NA, Blench RM, Armitage SJ, Bristow CS, White KH. Ancient watercourses and biogeography of the Sahara explain the peopling of the desert. Proc Natl Acad Sci U S A. 2011;108(2):458–462. doi: 10.1073/pnas.1012231108. PubMed DOI PMC
Cerny V, Hajek M, Bromova M, Cmejla R, Diallo I, Brdicka R. MtDNA of Fulani nomads and their genetic relationships to neighboring sedentary populations. Hum Biol. 2006;78(1):9–27. doi: 10.1353/hub.2006.0024. PubMed DOI
Hajek M, Cerny V, Bruzek J. Mitochondrial DNA and craniofacial covariability of Chad Basin females indicate past population events. Am J Hum Biol. 2008;20(4):465–474. doi: 10.1002/ajhb.20779. PubMed DOI
Cerezo M, Cerny V, Carracedo A, Salas A. New insights into the Lake Chad Basin population structure revealed by high-throughput genotyping of mitochondrial DNA coding SNPs. PLoS ONE. 2011;6(4):e18682. doi: 10.1371/journal.pone.0018682. PubMed DOI PMC
Cerny V, Hajek M, Cmejla R, Bruzek J, Brdicka R. mtDNA sequences of Chadic-speaking populations from northern Cameroon suggest their affinities with eastern Africa. Ann Hum Biol. 2004;31(5):554–569. doi: 10.1080/03014460412331287182. PubMed DOI
Stephens M, Scheet P. Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet. 2005;76(3):449–462. doi: 10.1086/428594. PubMed DOI PMC
Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data. Am J Hum Genet. 2001;68(4):978–989. doi: 10.1086/319501. PubMed DOI PMC
Excoffier L, Lischer HE. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10(3):564–567. doi: 10.1111/j.1755-0998.2010.02847.x. PubMed DOI
Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. PubMed DOI PMC
Matimba A, Del-Favero J, Van Broeckhoven C, Masimirembwa C. Novel variants of major drug-metabolising enzyme genes in diverse African populations and their predicted functional effects. Hum Genomics. 2009;3(2):169–190. doi: 10.1186/1479-7364-3-2-169. PubMed DOI PMC
QGIS Development Team . Open Source Geospatial Foundation Project. 2014. QGIS Geographic Information System.
UNEP . Division of Early Warning and Assessment (DEWA) Nairobi, Kenya: UNEPU; 2008. Africa: Atlas of Our Changing Environment.
R Core Team . R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2013.
Rosenberg MS, Anderson CD. PASSaGE: Pattern Analysis, Spatial Statistics and Geographic Exegesis. Version 2. Methods Ecol Evol. 2011;2(3):229–232. doi: 10.1111/j.2041-210X.2010.00081.x. DOI
Boukouvala S, Sim E. Structural analysis of the genes for human arylamine N-acetyltransferases and characterisation of alternative transcripts. Basic Clin Pharmacol Toxicol. 2005;96(5):343–351. doi: 10.1111/j.1742-7843.2005.pto_02.x. PubMed DOI
Demographic and Selection Histories of Populations Across the Sahel/Savannah Belt