Variation in NAT2 acetylation phenotypes is associated with differences in food-producing subsistence modes and ecoregions in Africa

. 2015 Dec 01 ; 15 () : 263. [epub] 20151201

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26620671
Odkazy

PubMed 26620671
PubMed Central PMC4665893
DOI 10.1186/s12862-015-0543-6
PII: 10.1186/s12862-015-0543-6
Knihovny.cz E-zdroje

BACKGROUND: Dietary changes associated to shifts in subsistence strategies during human evolution may have induced new selective pressures on phenotypes, as currently held for lactase persistence. Similar hypotheses exist for arylamine N-acetyltransferase 2 (NAT2) mediated acetylation capacity, a well-known pharmacogenetic trait with wide inter-individual variation explained by polymorphisms in the NAT2 gene. The environmental causative factor (if any) driving its evolution is as yet unknown, but significant differences in prevalence of acetylation phenotypes are found between hunter-gatherer and food-producing populations, both in sub-Saharan Africa and worldwide, and between agriculturalists and pastoralists in Central Asia. These two subsistence strategies also prevail among sympatric populations of the African Sahel, but knowledge on NAT2 variation among African pastoral nomads was up to now very scarce. Here we addressed the hypothesis of different selective pressures associated to the agriculturalist or pastoralist lifestyles having acted on the evolution of NAT2 by sequencing the gene in 287 individuals from five pastoralist and one agriculturalist Sahelian populations. RESULTS: We show that the significant NAT2 genetic structure of African populations is mainly due to frequency differences of three major haplotypes, two of which are categorized as decreased function alleles (NAT2*5B and NAT2*6A), particularly common in populations living in arid environments, and one fast allele (NAT2*12A), more frequently detected in populations living in tropical humid environments. This genetic structure does associate more strongly with a classification of populations according to ecoregions than to subsistence strategies, mainly because most Sahelian and East African populations display little to no genetic differentiation between them, although both regions hold nomadic or semi-nomadic pastoralist and sedentary agriculturalist communities. Furthermore, we found significantly higher predicted proportions of slow acetylators in pastoralists than in agriculturalists, but also among food-producing populations living in the Sahelian and dry savanna zones than in those living in humid environments, irrespective of their mode of subsistence. CONCLUSION: Our results suggest a possible independent influence of both the dietary habits associated with subsistence modes and the chemical environment associated with climatic zones and biomes on the evolution of NAT2 diversity in sub-Saharan African populations.

Zobrazit více v PubMed

Laland KN, Odling-Smee J, Myles S. How culture shaped the human genome: bringing genetics and the human sciences together. Nat Rev Genet. 2010;11(2):137–148. doi: 10.1038/nrg2734. PubMed DOI

Richerson PJ, Boyd R, Henrich J. Colloquium paper: gene-culture coevolution in the age of genomics. Proc Natl Acad Sci U S A. 2010;107(Suppl 2):8985–8992. doi: 10.1073/pnas.0914631107. PubMed DOI PMC

Balaresque PL, Ballereau SJ, Jobling MA. Challenges in human genetic diversity: demographic history and adaptation. Hum Mol Genet. 2007;16(Spec No. 2):R134–139. doi: 10.1093/hmg/ddm242. PubMed DOI

Harris EE, Meyer D. The molecular signature of selection underlying human adaptations. Am J Phys Anthropol. 2006;Suppl 43:89–130. doi: 10.1002/ajpa.20518. PubMed DOI

Feldman MW, Laland KN. Gene-culture coevolutionary theory. Trends Ecol Evol. 1996;11(11):453–457. doi: 10.1016/0169-5347(96)10052-5. PubMed DOI

Lachance J, Tishkoff SA. Population Genomics of Human Adaptation. Annu Rev Ecol Evol Syst. 2013;44:123–143. doi: 10.1146/annurev-ecolsys-110512-135833. PubMed DOI PMC

Vasseur E, Quintana-Murci L. The impact of natural selection on health and disease: uses of the population genetics approach in humans. Evol Appl. 2013;6(4):596–607. doi: 10.1111/eva.12045. PubMed DOI PMC

Barbujani G, Colonna V. Human genome diversity: frequently asked questions. Trends Genet. 2010;26(7):285–295. doi: 10.1016/j.tig.2010.04.002. PubMed DOI

Novembre J, Pritchard JK, Coop G. Adaptive drool in the gene pool. Nat Genet. 2007;39(10):1188–1190. doi: 10.1038/ng1007-1188. PubMed DOI

Bellwood P. First Farmers: The Origins of Agricultural Societies. Malden (MA): Blackwell; 2005.

Diamond J. Evolution, consequences and future of plant and animal domestication. Nature. 2002;418(6898):700–707. doi: 10.1038/nature01019. PubMed DOI

Cavalli-Sforza LL, Menozzi P, Piazza A. The History and Geography of Human Genes. Princeton, N.J.: Princeton University Press; 1994.

Jobling MA, Hollox E, Hurles M, Kivisild T, Tyler-Smith C. Human Evolutionary Genetics. 2. New York and London: Garland Science; 2014.

Hancock AM, Witonsky DB, Ehler E, Alkorta-Aranburu G, Beall C, Gebremedhin A, et al. Colloquium paper: human adaptations to diet, subsistence, and ecoregion are due to subtle shifts in allele frequency. Proc Natl Acad Sci U S A. 2010;107(Suppl 2):8924–8930. doi: 10.1073/pnas.0914625107. PubMed DOI PMC

Patin E, Quintana-Murci L. Demeter's legacy: rapid changes to our genome imposed by diet. Trends Ecol Evol. 2008;23(2):56–59. doi: 10.1016/j.tree.2007.11.002. PubMed DOI

Swallow DM. Genetics of lactase persistence and lactose intolerance. Annu Rev Genet. 2003;37:197–219. doi: 10.1146/annurev.genet.37.110801.143820. PubMed DOI

Tishkoff SA, Reed FA, Ranciaro A, Voight BF, Babbitt CC, Silverman JS, et al. Convergent adaptation of human lactase persistence in Africa and Europe. Nat Genet. 2007;39(1):31–40. doi: 10.1038/ng1946. PubMed DOI PMC

Macholdt E, Slatkin M, Pakendorf B, Stoneking M. New insights into the history of the C-14010 lactase persistence variant in Eastern and Southern Africa. Am J Phys Anthropol. 2015;156:661–4. doi: 10.1002/ajpa.22675. PubMed DOI PMC

Ranciaro A, Campbell MC, Hirbo JB, Ko WY, Froment A, Anagnostou P, et al. Genetic origins of lactase persistence and the spread of pastoralism in Africa. Am J Hum Genet. 2014;94(4):496–510. doi: 10.1016/j.ajhg.2014.02.009. PubMed DOI PMC

Priehodova E, Abdelsawy A, Heyer E, Cerny V. Lactase persistence variants in Arabia and in the African Arabs. Hum Biol. 2014;86(1):7–18. doi: 10.3378/027.086.0101. PubMed DOI

Gerbault P, Liebert A, Itan Y, Powell A, Currat M, Burger J, et al. Evolution of lactase persistence: an example of human niche construction. Philos Trans R Soc Lond Ser B Biol Sci. 2011;366(1566):863–877. doi: 10.1098/rstb.2010.0268. PubMed DOI PMC

Gerbault P, Moret C, Currat M, Sanchez-Mazas A. Impact of selection and demography on the diffusion of lactase persistence. PLoS ONE. 2009;4(7):e6369. doi: 10.1371/journal.pone.0006369. PubMed DOI PMC

Coop G, Pickrell JK, Novembre J, Kudaravalli S, Li J, Absher D, et al. The role of geography in human adaptation. PLoS Genet. 2009;5(6):e1000500. doi: 10.1371/journal.pgen.1000500. PubMed DOI PMC

Sabbagh A, Langaney A, Darlu P, Gerard N, Krishnamoorthy R, Poloni ES. Worldwide distribution of NAT2 diversity: implications for NAT2 evolutionary history. BMC Genet. 2008;9:21. doi: 10.1186/1471-2156-9-21. PubMed DOI PMC

Luca F, Bubba G, Basile M, Brdicka R, Michalodimitrakis E, Rickards O, et al. Multiple advantageous amino acid variants in the NAT2 gene in human populations. PLoS ONE. 2008;3(9):e3136. doi: 10.1371/journal.pone.0003136. PubMed DOI PMC

Patin E, Barreiro LB, Sabeti PC, Austerlitz F, Luca F, Sajantila A, et al. Deciphering the ancient and complex evolutionary history of human arylamine N-acetyltransferase genes. Am J Hum Genet. 2006;78(3):423–436. doi: 10.1086/500614. PubMed DOI PMC

Meyer UA. Pharmacogenetics - five decades of therapeutic lessons from genetic diversity. Nat Rev Genet. 2004;5(9):669–676. doi: 10.1038/nrg1428. PubMed DOI

Husain A, Zhang X, Doll MA, States JC, Barker DF, Hein DW. Identification of N-acetyltransferase 2 (NAT2) transcription start sites and quantitation of NAT2-specific mRNA in human tissues. Drug Metab Dispos. 2007;35(5):721–727. doi: 10.1124/dmd.106.014621. PubMed DOI PMC

Sim E, Abuhammad A, Ryan A. Arylamine N-acetyltransferases: from drug metabolism and pharmacogenetics to drug discovery. Br J Pharmacol. 2014;171(11):2705–2725. doi: 10.1111/bph.12598. PubMed DOI PMC

Sugimura T, Wakabayashi K, Nakagama H, Nagao M. Heterocyclic amines: Mutagens/carcinogens produced during cooking of meat and fish. Cancer Sci. 2004;95(4):290–299. doi: 10.1111/j.1349-7006.2004.tb03205.x. PubMed DOI PMC

Kataoka H, Kijima K, Maruo G. Determination of mutagenic heterocyclic amines in combustion smoke samples. Bull Environ Contam Toxicol. 1998;60(1):60–67. doi: 10.1007/s001289900591. PubMed DOI

Hein DW. Molecular genetics and function of NAT1 and NAT2: role in aromatic amine metabolism and carcinogenesis. Mutat Res. 2002;506–507:65–77. doi: 10.1016/S0027-5107(02)00153-7. PubMed DOI

Ruiz JD, Martinez C, Anderson K, Gross M, Lang NP, Garcia-Martin E, et al. The differential effect of NAT2 variant alleles permits refinement in phenotype inference and identifies a very slow acetylation genotype. PLoS ONE. 2012;7(9):e44629. doi: 10.1371/journal.pone.0044629. PubMed DOI PMC

Selinski S, Blaszkewicz M, Ickstadt K, Hengstler JG, Golka K. Improvements in algorithms for phenotype inference: the NAT2 example. Curr Drug Metab. 2014;15(2):233–249. doi: 10.2174/1389200215666140202215717. PubMed DOI

Meisel P. Arylamine N-acetyltransferases and drug response. Pharmacogenomics. 2002;3(3):349–366. doi: 10.1517/14622416.3.3.349. PubMed DOI

Butcher NJ, Boukouvala S, Sim E, Minchin RF. Pharmacogenetics of the arylamine N-acetyltransferases. Pharmacogenomics J. 2002;2(1):30–42. doi: 10.1038/sj.tpj.6500053. PubMed DOI

McDonagh EM, Boukouvala S, Aklillu E, Hein DW, Altman RB, Klein TE. PharmGKB summary: very important pharmacogene information for N-acetyltransferase 2. Pharmacogenet Genomics. 2014;24(8):409–425. PubMed PMC

Sabbagh A, Darlu P, Crouau-Roy B, Poloni ES. Arylamine N-acetyltransferase 2 (NAT2) genetic diversity and traditional subsistence: a worldwide population survey. PLoS ONE. 2011;6(4):e18507. doi: 10.1371/journal.pone.0018507. PubMed DOI PMC

Evans DA, Manley KA, Mc KV. Genetic control of isoniazid metabolism in man. Br Med J. 1960;2(5197):485–491. doi: 10.1136/bmj.2.5197.485. PubMed DOI PMC

Weber WW. The acetylator genes and drug response. 1987.

Weber WW, Hein DW. N-acetylation pharmacogenetics. Pharmacol Rev. 1985;37(1):25–79. PubMed

Mortensen HM, Froment A, Lema G, Bodo JM, Ibrahim M, Nyambo TB, et al. Characterization of genetic variation and natural selection at the arylamine N-acetyltransferase genes in global human populations. Pharmacogenomics. 2011;12(11):1545–1558. doi: 10.2217/pgs.11.88. PubMed DOI PMC

Magalon H, Patin E, Austerlitz F, Hegay T, Aldashev A, Quintana-Murci L, et al. Population genetic diversity of the NAT2 gene supports a role of acetylation in human adaptation to farming in Central Asia. Eur J Hum Genet. 2008;16(2):243–251. doi: 10.1038/sj.ejhg.5201963. PubMed DOI

Patin E, Harmant C, Kidd KK, Kidd J, Froment A, Mehdi SQ, et al. Sub-Saharan African coding sequence variation and haplotype diversity at the NAT2 gene. Hum Mutat. 2006;27(7):720. doi: 10.1002/humu.9438. PubMed DOI

Valente C, Alvarez L, Marks SJ, Lopez-Parra AM, Parson W, Oosthuizen O, et al. Exploring the relationship between lifestyles, diets and genetic adaptations in humans. BMC Genet. 2015;16:55. doi: 10.1186/s12863-015-0212-1. PubMed DOI PMC

Smith AB. African herders : emergence of pastoral traditions. Walnut Creek: AltaMira Press; 2005.

Neumann K. The late emergence of agriculture in sub-Saharan Africa: archaeobotanical evidence and ecological considerations. In: Neumann K, Butler A, Kahlheber S, editors. Food, fuel and fields Progress in African archaeobotany. Koln: Heinrich-Barth-Institute; 2003. pp. 71–92.

Marshall F, Hildebrand E. Cattle Before Crops: The Beginnings of Food Production in Africa. J World Prehistory. 2002;16(2):99–143. doi: 10.1023/A:1019954903395. DOI

Hanotte O, Bradley DG, Ochieng JW, Verjee Y, Hill EW, Rege JE. African pastoralism: genetic imprints of origins and migrations. Science. 2002;296(5566):336–339. doi: 10.1126/science.1069878. PubMed DOI

Loftus RT, MacHugh DE, Bradley DG, Sharp PM, Cunningham P. Evidence for two independent domestications of cattle. Proc Natl Acad Sci U S A. 1994;91(7):2757–2761. doi: 10.1073/pnas.91.7.2757. PubMed DOI PMC

Homewood K. Ecology of African Pastoralist Societies. Oxford and Athens: James Currey and Ohio University Press; 2008.

Pedersen J, Benjaminsen TA. One Leg or Two? Food Security and Pastoralism in the Northern Sahel. Hum Ecol. 2008;36(1):43–57. doi: 10.1007/s10745-007-9136-3. DOI

Genomes Project C. Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56–65. doi: 10.1038/nature11632. PubMed DOI PMC

Cerny V, Pereira L, Musilova E, Kujanova M, Vasikova A, Blasi P, et al. Genetic structure of pastoral and farmer populations in the African Sahel. Mol Biol Evol. 2011;28(9):2491–2500. doi: 10.1093/molbev/msr067. PubMed DOI

Buckova J, Cerny V, Novelletto A. Multiple and differentiated contributions to the male gene pool of pastoral and farmer populations of the African Sahel. Am J Phys Anthropol. 2013;151(1):10–21. doi: 10.1002/ajpa.22236. PubMed DOI

Podgorna E, Soares P, Pereira L, Cerny V. The genetic impact of the lake chad basin population in North Africa as documented by mitochondrial diversity and internal variation of the L3e5 haplogroup. Ann Hum Genet. 2013;77(6):513–523. doi: 10.1111/ahg.12040. PubMed DOI

Cerny V, Salas A, Hajek M, Zaloudkova M, Brdicka R. A bidirectional corridor in the Sahel-Sudan belt and the distinctive features of the Chad Basin populations: a history revealed by the mitochondrial DNA genome. Ann Hum Genet. 2007;71(Pt 4):433–452. doi: 10.1111/j.1469-1809.2006.00339.x. PubMed DOI

Aime C, Verdu P, Segurel L, Martinez-Cruz B, Hegay T, Heyer E, et al. Microsatellite data show recent demographic expansions in sedentary but not in nomadic human populations in Africa and Eurasia. Eur J Hum Genet. 2014;22(10):1201–1207. doi: 10.1038/ejhg.2014.2. PubMed DOI PMC

Aime C, Laval G, Patin E, Verdu P, Segurel L, Chaix R, et al. Human genetic data reveal contrasting demographic patterns between sedentary and nomadic populations that predate the emergence of farming. Mol Biol Evol. 2013;30(12):2629–2644. doi: 10.1093/molbev/mst156. PubMed DOI

Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123(3):585–595. PubMed PMC

Buhler S, Sanchez-Mazas A. HLA DNA sequence variation among human populations: molecular signatures of demographic and selective events. PLoS ONE. 2011;6(2):e14643. doi: 10.1371/journal.pone.0014643. PubMed DOI PMC

Przeworski M, Coop G, Wall JD. The signature of positive selection on standing genetic variation. Evolution. 2005;59(11):2312–2323. doi: 10.1554/05-273.1. PubMed DOI

Patillon B, Luisi P, Poloni ES, Boukouvala S, Darlu P, Genin E, et al. A Homogenizing Process of Selection Has Maintained an "Ultra-Slow" Acetylation NAT2 Variant in Humans. Hum Biol. 2014;86(3):185–214. doi: 10.13110/humanbiology.86.3.0185. PubMed DOI

Poloni ES, Naciri Y, Bucho R, Niba R, Kervaire B, Excoffier L, et al. Genetic evidence for complexity in ethnic differentiation and history in East Africa. Ann Hum Genet. 2009;73(Pt 6):582–600. doi: 10.1111/j.1469-1809.2009.00541.x. PubMed DOI

Sanchez-Mazas A, Poloni ES. Encyclopedia of Life Sciences. Chichester: John Wiley & Sons, Ltd.; 2008. Genetic Diversity in Africa.

Excoffier L, Pellegrini B, Sanchez-Mazas A, Simon C, Langaney A. Genetics and history of sub-Saharan Africa. Yearb Phys Anthropol. 1987;30:151–194. doi: 10.1002/ajpa.1330300510. DOI

Bryc K, Auton A, Nelson MR, Oksenberg JR, Hauser SL, Williams S, et al. Genome-wide patterns of population structure and admixture in West Africans and African Americans. Proc Natl Acad Sci U S A. 2010;107(2):786–791. doi: 10.1073/pnas.0909559107. PubMed DOI PMC

Tishkoff SA, Reed FA, Friedlaender FR, Ehret C, Ranciaro A, Froment A, et al. The genetic structure and history of Africans and African Americans. Science. 2009;324(5930):1035–1044. doi: 10.1126/science.1172257. PubMed DOI PMC

Sanchez-Mazas A, Lemaître JF, Currat M. Distinct evolutionary strategies of human leucocyte antigen loci in pathogen-rich environments. Philos Trans R Soc Lond Ser B Biol Sci. 2012;367(1590):830–839. doi: 10.1098/rstb.2011.0312. PubMed DOI PMC

Novembre J, Han E. Human population structure and the adaptive response to pathogen-induced selection pressures. Philos Trans R Soc Lond Ser B Biol Sci. 2012;367(1590):878–886. doi: 10.1098/rstb.2011.0305. PubMed DOI PMC

Fumagalli M, Sironi M, Pozzoli U, Ferrer-Admetlla A, Pattini L, Nielsen R. Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution. PLoS Genet. 2011;7(11):e1002355. doi: 10.1371/journal.pgen.1002355. PubMed DOI PMC

Dos Santos FR, Buhler S, Nunes JM, Bitarello BD, Franca GS, Meyer D, et al. HLA supertype variation across populations: new insights into the role of natural selection in the evolution of HLA-A and HLA-B polymorphisms. Immunogenetics. 2015;67:651–63. doi: 10.1007/s00251-015-0875-9. PubMed DOI PMC

Eny KM, Lutgers HL, Maynard J, Klein BEK, Lee KE, Atzmon G, et al. GWAS identifies an NAT2 acetylator status tag single nucleotide polymorphism to be a major locus for skin fluorescence. Diabetologia. 2014;57(8):1623–1634. doi: 10.1007/s00125-014-3286-9. PubMed DOI PMC

Knowles JW, Xie W, Zhang Z, Chennemsetty I, Assimes TL, Paananen J, et al. Identification and validation of N-acetyltransferase 2 as an insulin sensitivity gene. J Clin Invest. 2015;125(4):1739–1751. doi: 10.1172/JCI74692. PubMed DOI PMC

Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466(7307):707–713. doi: 10.1038/nature09270. PubMed DOI PMC

Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45(11):1274−+. doi: 10.1038/ng.2797. PubMed DOI PMC

Fuselli S, Gilman RH, Chanock SJ, Bonatto SL, De Stefano G, Evans CA, et al. Analysis of nucleotide diversity of NAT2 coding region reveals homogeneity across Native American populations and high intra-population diversity. Pharmacogenomics J. 2007;7(2):144–152. doi: 10.1038/sj.tpj.6500407. PubMed DOI PMC

Peter BM, Huerta-Sanchez E, Nielsen R. Distinguishing between selective sweeps from standing variation and from a de novo mutation. PLoS Genet. 2012;8(10):e1003011. doi: 10.1371/journal.pgen.1003011. PubMed DOI PMC

Gurdasani D, Carstensen T, Tekola-Ayele F, Pagani L, Tachmazidou I, Hatzikotoulas K, et al. The African Genome Variation Project shapes medical genetics in Africa. Nature. 2015;517(7534):327–332. doi: 10.1038/nature13997. PubMed DOI PMC

Pickrell JK, Patterson N, Loh PR, Lipson M, Berger B, Stoneking M, et al. Ancient west Eurasian ancestry in southern and eastern Africa. Proc Natl Acad Sci U S A. 2014;111(7):2632–2637. doi: 10.1073/pnas.1313787111. PubMed DOI PMC

Pagani L, Kivisild T, Tarekegn A, Ekong R, Plaster C, Gallego Romero I, et al. Ethiopian genetic diversity reveals linguistic stratification and complex influences on the Ethiopian gene pool. Am J Hum Genet. 2012;91(1):83–96. doi: 10.1016/j.ajhg.2012.05.015. PubMed DOI PMC

Wang D, Para MF, Koletar SL, Sadee W. Human N-acetyltransferase 1 *10 and *11 alleles increase protein expression through distinct mechanisms and associate with sulfamethoxazole-induced hypersensitivity. Pharmacogenet Genomics. 2011;21(10):652–664. doi: 10.1097/FPC.0b013e3283498ee9. PubMed DOI PMC

Linseele V. From first stock keepers to specialised pastoralists in the West African savannah. In: Bollig M, Schnegg M, Wotzka H-P, editors. Pastoralism in Africa: Past, Present and Future. New York and Oxford: Berghahn Books; 2013. pp. 145–170.

Sellen DW, Mace R. Fertility and mode of subsistence: a phylogenetic analysis. Curr Anthropol. 1997;38(5):878–889. doi: 10.1086/204677. DOI

Nicolaisen I. Elusive hunters: the Haddad of Kanem and the Bahr el Ghazal. Copenhagen: Aarhus University Press; 2010.

Batello C, Marzot M, Touré AH. The future is an ancient lake : traditional knowledge, biodiversity and genetic resources for food and agriculture in Lake Chad Basin ecosystems. Rome: FAO; 2004.

Bouchette F, Schuster M, Ghienne J-F, Denamiel C, Roquin C, Moussa A, et al. Hydrodynamics in Holocene Lake Mega-Chad. Quat Res. 2010;73(2):226–236. doi: 10.1016/j.yqres.2009.10.010. DOI

Drake NA, Blench RM, Armitage SJ, Bristow CS, White KH. Ancient watercourses and biogeography of the Sahara explain the peopling of the desert. Proc Natl Acad Sci U S A. 2011;108(2):458–462. doi: 10.1073/pnas.1012231108. PubMed DOI PMC

Cerny V, Hajek M, Bromova M, Cmejla R, Diallo I, Brdicka R. MtDNA of Fulani nomads and their genetic relationships to neighboring sedentary populations. Hum Biol. 2006;78(1):9–27. doi: 10.1353/hub.2006.0024. PubMed DOI

Hajek M, Cerny V, Bruzek J. Mitochondrial DNA and craniofacial covariability of Chad Basin females indicate past population events. Am J Hum Biol. 2008;20(4):465–474. doi: 10.1002/ajhb.20779. PubMed DOI

Cerezo M, Cerny V, Carracedo A, Salas A. New insights into the Lake Chad Basin population structure revealed by high-throughput genotyping of mitochondrial DNA coding SNPs. PLoS ONE. 2011;6(4):e18682. doi: 10.1371/journal.pone.0018682. PubMed DOI PMC

Cerny V, Hajek M, Cmejla R, Bruzek J, Brdicka R. mtDNA sequences of Chadic-speaking populations from northern Cameroon suggest their affinities with eastern Africa. Ann Hum Biol. 2004;31(5):554–569. doi: 10.1080/03014460412331287182. PubMed DOI

Stephens M, Scheet P. Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet. 2005;76(3):449–462. doi: 10.1086/428594. PubMed DOI PMC

Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data. Am J Hum Genet. 2001;68(4):978–989. doi: 10.1086/319501. PubMed DOI PMC

Excoffier L, Lischer HE. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10(3):564–567. doi: 10.1111/j.1755-0998.2010.02847.x. PubMed DOI

Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. PubMed DOI PMC

Matimba A, Del-Favero J, Van Broeckhoven C, Masimirembwa C. Novel variants of major drug-metabolising enzyme genes in diverse African populations and their predicted functional effects. Hum Genomics. 2009;3(2):169–190. doi: 10.1186/1479-7364-3-2-169. PubMed DOI PMC

QGIS Development Team . Open Source Geospatial Foundation Project. 2014. QGIS Geographic Information System.

UNEP . Division of Early Warning and Assessment (DEWA) Nairobi, Kenya: UNEPU; 2008. Africa: Atlas of Our Changing Environment.

R Core Team . R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2013.

Rosenberg MS, Anderson CD. PASSaGE: Pattern Analysis, Spatial Statistics and Geographic Exegesis. Version 2. Methods Ecol Evol. 2011;2(3):229–232. doi: 10.1111/j.2041-210X.2010.00081.x. DOI

Boukouvala S, Sim E. Structural analysis of the genes for human arylamine N-acetyltransferases and characterisation of alternative transcripts. Basic Clin Pharmacol Toxicol. 2005;96(5):343–351. doi: 10.1111/j.1742-7843.2005.pto_02.x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...