Selected widely prescribed pharmaceuticals: toxicity of the drugs and the products of their photochemical degradation to aquatic organisms

. 2024 Mar ; 22 (1) : 1-11. [epub] 20240313

Jazyk angličtina Země Polsko Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38505965

Cholesterol-lowering drugs, antidiabetics, antiarrhythmics, antidepressants, and antibiotics belong to the most prescribed drugs worldwide. Because of the manufacture, excretion, and improper disposal of leftover drugs, the drugs enter waste waters and, subsequently, surface waters. They have been detected in surface waters all over the world, from concentrations of ng/l to concentrations several orders of magnitude higher. Since pharmaceuticals are designed to be both biologically and chemically stable, photochemical degradation by sun radiation represents a way of transformation in the natural environment. This review provides a survey of how selected drugs of the above-mentioned classes affect aquatic organisms of different trophic level. The emphasis is on the harmful effects of phototransformation products, an area of scientific investigation that has only attracted attention in the past few years, revealing the surprising fact that products of photochemical degradation might be even more toxic to aquatic organisms than the parent drugs.

Zobrazit více v PubMed

Ajima MNO, Pandey PK, Kumar K, Poojary N (2017a). Neurotoxic effects, molecular responses and oxidative stress biomarkers in Nile tilapia, Oreochromis niloticus (Linneaus, 1758). Comp Biochem Physiol C Toxicol Pharmacol 196: 44-52. DOI: 10.1016/j.cbpc.2017.03.009. PubMed DOI

Ajima MNO, Pandey PK, Kumar K, Poojary N (2017b). Assessment of mutagenic, hematological and oxidative stress biomarkers in liver of Nile tilapia, Oreochromis niloticus (Linnaeus, 1758) in response to sublethal verapamil exposure. Drug Chem Toxicol 40: 286-294. DOI: 10.1080/01480545.2016.1219914. PubMed DOI

Allouche M, Ishak S, Ben Ali M, Hedfi A, Almalku M, Karachle PK, et al. (2022). Molecular interactions of polyvinylchloride microplastics and beta-blockers (diltiazem and bisoprolol) and their effects on marine meiofauna: Combined in vivo and modeling study. J Hazard Mater 431: 128609. DOI: 10.1016/j.jhazmat.2022.128609. PubMed DOI

Alonso SG, Catalá M, Maroto RR, Gil JLR, de Miguel ÁG, Valcárcel Y (2010). Pollution by psychoactive pharmaceuticals in the rivers of Madrid metropolitan area (Spain). Environ Int 36: 195-201. DOI: 10.1016/j.envint.2009.11.004. PubMed DOI

Ambrosio-Albuquerque EP, Cusioli LF, Bergamasco R, Gigliolli AAS, Lupepsa L, Paupitz BR, et al. (2021). Metformin environmental exposure: A systematic review. Environ Toxicol Pharmacol 83: 103588. DOI: 10.1016/j.etap.2021.103588. PubMed DOI

Aus der Beek T, Weber FA, Bergmann A, Hickmann S, Ebert I, Hein A, Küster A (2016). Pharmaceutical in the environment - global occurrences and perspectives. Environ Toxicol Chem 35: 823-835. DOI: 10.1002/etc.3339. PubMed DOI

Bailey CJ (2017). Metformin: historical overview. Diabetologia 60: 1566-1576. DOI: 10.1007/s00125-017-4318-z. PubMed DOI

Barton AK, McGowan M, Smyth A, Wright GA, Gardner RS (2020). Classification and choice of antiarrhythmic therapies. Prescriber, Wiley Online Library, pp. 11-17. DOI: 10.1002/psb.1828. DOI

Batt AL, Kincaid TM, Kostich MS, Latorchak JM, Olsen AR (2015). Evaluating the extent of pharmaceuticals in surface waters of the United States using a national-scale rivers and streams assessment survey. Environ Toxicol Chem 35: 874-881. DOI: 10.1002/etc.3161. PubMed DOI

Boreen AL, Arnold WA, McNeill K (2003). Photodegradation of pharmaceutical in the aquatic environment: A review. Aquatic Sci 65: 320-341. DOI: 10.1007/s00027-003-0672-7. DOI

Briones R, Sarmah A, Padhye LP (2016). A global perspective on the use, occurrence, fate and effects of anti-diabetic drg metformin in natural and engineered ecosystems. Environ Pollut 219: 1007-1020. DOI: 10.1016/j.envpol.2016.07.040. PubMed DOI

Brocker CN, Velenose T, Flaten HK, McWilliams G, McDaniel K, Shelton SK, et al. (2020). Metabolomic profiling of metoprolol hypertension treatment reveals altered gut microbiota-derived urinary metabolites Hum Genomics 14: 10. DOI: 10.1186/s40246-020-00260-w. PubMed DOI

Calza P, Jiménez-Hogado C, Coha M, Chrimatopoulos C, Dal Bello F, Medana C, Sakkas V (2021). Study of the photoinduced transformation of sertraline in aqueous media. Sci Total Environ 756: 143805. DOI: 10.1016/j.scitotenv.2020.143805. PubMed DOI

Carvalho IT, Santos L (2016). Antibiotics in the aquatic environments: A review of the European scenario. Environ Int 94: 736-757. DOI: 10.1016/j.envint.2016.06.025. PubMed DOI

Četojević-Simin DD, Armaković SJ, Šojić DV, Abramović BF (2013). Toxicity assessment of metoprolol and its photodegradation mixtures obtained by using different type of TiO2 catalysts in the mammalian cell lines. Sci Total Environ 463-464: 968-974. DOI: 10.1016/j.scitotenv.2013.06.083. PubMed DOI

Chaudhury A, Duvoor C, Reddy Dendi VS, Kraleti A, Chada A, Ravilla R, et al. (2017). Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Front Endocrinol (Lausanne) 8: 6. DOI: 10.3389/fendo.2017.00006. PubMed DOI

ClinCalc (2021a). ClinCalc DrugStats Database, Free U.S. outpatient usage statistics. [online] [cit. 2023-01-22]. Available from: https://clincalc.com/DrugStats/

ClinCalc (2021b). Sertraline - Drug Usage Statistics, US 2013-2020. [online] [cit. 2023-01-22]. Available from: https://clincalc.com/DrugStats/Drugs/Sertraline

ClinCalc (2021c). Fluoxetine - Drug Usage Statistics, US 2013-2020. [online] [cit. 2023-01-22]. Available from: https://clincalc.com/DrugStats/Drugs/Fluoxetine

ClinCalc (2022). The top 200 of 2020. [online] [cit. 2023-01-22]. Available from: https://clincalc.com/DrugStats/Top200Drugs.aspx

ClinCalc (2023). Metformin - Drug Usage Statistics, US 2013-2020. [online] [cit. 2023-01-22]. Available from: https://clincalc.com/DrugStats/Drugs/Metformin

Conley JM, Symes SJ, Kindelberger SA, Richards SM (2008). Rapid liquid chromatography-tandem mass spectrometry method for the determination of a broad mixture of pharmaceuticals in surface water. J Chromatogr A 1185: 206-215. DOI: 10.1016/j.chroma.2008.01.064. PubMed DOI

Dahlén AD, Dashi G, Maslov I, Attwood MM, Jonsson J, Trukhan V, Schiöth HB (2022). Trends in antidiabetic drug discovery: FDA approved drugs, new drugs in clinical trials and global sales. Front Pharmacol 12: 807548. DOI: 10.3389/fphar.2021.807548. PubMed DOI

de Barros ALC, Schmidt FF, de Aquino SF, De Cássia Franco Afonso RJCF (2018). Determination of nine pharmaceutical active compounds in surface waters from Paraopeba River Basin in Brazil by LTPE-HPLC-ESI-MS/MS. Environ Sci Pollut Res Int 25: 19962-19974. DOI: 10.1007/s11356-018-2123-y. PubMed DOI

De Farias O, Oliveira R, Sousa-Moura E, De Oliveira RCS, Carvalho Rodrigues MA, Sousa Andrade T, et al. (2019). Exposure to low concentration of fluoxetine affects development, behaviour and acetylcholinesterase activity of zebrafish embryos. Comp Biochem Physiol Part C Toxicol Pharmacol 215: 1-8. DOI: 10.1016/j.cbpc.2018.08.009. PubMed DOI

Dinh QT, Moreau-Guigon E, Labadie P, Alliot F, Teil MJ, Blanchard M, Chevreuil M (2017). Occurrence of antibiotics in rural catchment. Chemosphere 168: 483-490. DOI: 10.1016/j.chemosphere.2016.10.106. PubMed DOI

Edinoff AN, Akuly HA, Hanna TA, Ochoa CO, Patti SJ, Ghaffar Ya, et al. (2021). Selective serotonin reuptake inhibitors and adverse effects: A narrative review. Neurol Inf 13: 387-401. DOI: 10.3390/neurolint13030038. PubMed DOI

Elizalde-Velázquez GA, Gómez-Oliván LM, García-Medina S, Islas-Flores H, Hernánez-Navarro MD, Galar-Martínez M (2021). Antidiabetic drug metformin disrupts the embryogenesis in zebrafish through an oxidative stress mechanism. Chemosphere 285: 131213. DOI: 10.1016/j.chemosphere.2021.131213. PubMed DOI

Fact Sheet (2021). Fact Sheet: FDA at a glance. [online] [cit. 2023-01-22]. Available from: https://www.fda.gov/about-fda/fda-basics/fact-sheet-fda-glance

Falfushynska H, Sokolov EP, Haider F, Oppeermann C, Kragl U, Ruth W, et al. (2019). Effects of a common pharmaceutical, atorvastatin, on energy metabolism and detoxification mechanisms of a marine bivalve Mytilus edulis. Aquat Toxicol 208: 47-61. DOI: 10.1016/j.aquatox.2018.12.022. PubMed DOI

Gong L, Goswami S, Giacomini KM, Altman RB, Klein TE (2012). Metformin pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics 22: 820-827. DOI: 10.1097/FPC.0b013e3283559b22. PubMed DOI

Godoy AA, Domingues I, Arsénia Nogueira AJ, Kummrow F (2018). Ecotoxicological effects, water quality standards and risk assessment for the anti-diabetic metformin. Environ Pollut 243(Pt A): 534-542. DOI: 10.1016/j.envpol.2018.09.031. PubMed DOI

Gwenzi W, Selvasembian R, Offiong NAO, Mahmoud AED, Sanganyado E, Mal J (2022). COVID-19 drugs in aquatic systems: a review. Environ Chem Lett 20: 1275-1294. DOI: 10.1007/s10311-021-01356-y. PubMed DOI

Harrison TJ, Chen X, Yasoshima K, Bauer D (2023). Phototoxicity - medicinal chemistry strageties for risk mitigation in drug discovery. J Med Chem 66: 9345-9362. DOI: 10.1021/acs.jmedchem.3c00749. PubMed DOI

Hu L, Ding R, Nie X (2022): Comparison of toxic effects of atorvastatin and gemfibrozil on Daphnia magna. Compa Biochem Physiol C Toxicol Pharmacol 252: 109224. DOI: 10.1016/j.cbpc.2021.109224. PubMed DOI

Iancu VI, Puiu D, Radu GL (2020). Determination of some beta-blockers in surface water samples. UPB Sci Bull, Series B 82. [online] [cit. 2023-01-22]. Available from: https://www.researchgate.net/publication/342201065_DETERMINATION_OF_SOME_BETA-BLOCKERS_IN_SURFACE_WATER_SAMPLES

Jacob S, Knoll S, Huhn C, Köhler H-R, Tisler S, Zwiener C, Triebskorn R (2019). Effects of guanylurea, the transformation product of the antidiabetic drug metformin, on the health of brown trout (Salmo trutta f. fario). Peer J 7: e7289. DOI: 10.7717/peerj.7289. PubMed DOI

Khasawneh OFS, Palaniandy P (2021). Occurrence and removal of pharmaceuticals in wastewater treatment plants. Process Safety Environ Protection 150: 532-556. DOI: 10.1016/j.psep.2021.04.045. DOI

Khetan SK, Collins TJ (2007). Human pharmaceuticals in the aquatic environment: A challenge to green chemistry. Chem Rev 107: 2319-2364. DOI: 10.1021/cr020441w. PubMed DOI

Klein EY, Van Boeckel TP, Martinez EM, Pant S, Gandra S, Levin SA, et al. (2018). Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proceed Nat Acad Sci USA 115: E3463-E3470. DOI: 10.1073/pnas.1717295115. PubMed DOI

Klelemen H, Hancu G, Kascó E, Papp LA (2022). Photosensitivity reactions induced by photochemical degradation of drugs. Adv Pharm Bull 12: 77-85. DOI: 10.34172/apb.2022.010. PubMed DOI

Klementová Š, Hornychová L, Šorf M, Zemanová J, Kahoun D (2019). Toxicity of atrazine and the products of its homogeneous photocatalytic degradation on the aquatic organisms Lemna minor and Daphnia magna. Environ Sci Pollut Res 26: 27259-27267. DOI: 10.1007/s11356-019-05710-0. PubMed DOI

Klementová Š, Kahoun D, Doubková L, Frejlachová K, Dušáková M, Zlámal M (2017). Catalytic photodegradation of pharmaceuticals - homogeneous and heterogeneous photocatalysis. Photochem Photobiol Sci 16: 67-71. DOI: 10.1039/c6pp00164e. PubMed DOI

Klementová Š, Petráňová P, Fojtíková P (2021). Photodegradation of atorvastatin under light conditions relevant to natural waters and photoproducts toxicity assessment. Open J Appl Sci 11: 489-499. DOI: 10.4236/ojapps.2021.104035. DOI

Klementová Š, Poncarová M, Kahoun D, Šorf M, Dokoupilová E, Fojtíková P (2020). Toxicity assessment of verapamil and its photodegradation products. Environ Sci Pollut Res 27: 35650-35660. DOI: 10.1007/s11356-020-09830-w. PubMed DOI

Klementová Š, Poncarová M, Langhansová H, Lieskovská J, Kahoun D, Fojtíková P (2022). Photodegradation of fluoroquinolones in aqueous solution under light conditions relevant to surface waters, toxicity assessment of photoproduct mixtures. Environ Sci Pollut Res 29: 13941-13962. DOI:10.1007/s11356-021-16182-6. PubMed DOI

Komesli OT, Muz M, Ak MS, Bakirdere S, Gokcay CF (2015). Occurrence, fate and removal of endocrine disrupting compounds (IDCs) in Turkish wastewater treatment plants. Chem Eng J 277: 202-208. DOI: 10.1016/j.cej.2015.04.115. DOI

Kostich MS, Batt AL, Lazorchak JM (2014). Concentrations of prioritized pharmaceuticals in effluents from 50 large wastewater treatment plants in the US and implications for risk estimation. Environ Pollut 184: 354-359. DOI: 10.1016/j.envpol.2013.09.013. PubMed DOI

Kovalakova P, Cizmas L, McDonald TJ, Marsalek B, Feng M, Sharma VK (2020). Occurrence and toxicity of antibiotics in the aquatic environment. A review. Chemosphere 251: 126351. DOI: 10.1016/j.chemosphere.2020.126351. PubMed DOI

Kumar S, Trivedi PK (2018). Glutathione S-transferases: Role in Combating abiotic stresses including arsenic detoxification in plants. Front Plant Sci 9: 751. DOI: 10.3389/fpls.2018.00751. PubMed DOI

Kusi J, Ojewole CO, Ojewole AE, Nwi-Mozu I (2022). Antimicrobial Resistance Development Pathways in Surface Waters and Publick Health Implications. Antibiotics (Basel) 11: 821. DOI: 10.3390/antibiotics11060821. PubMed DOI

Lajeunesse A, Smyth SA, Barclay K, Sauve S, Gagnon C (2012). Distribution of antidepressant residues in wastewater and biosolids following different treatment processes by municipal wastewater treatment plants in Canada. Water Res 46: 5600-5612. DOI: 10.1016/j.watres.2012.07.042. PubMed DOI

Lalji HM, McGrogan A, Bailey SJ (2021). An analysis of antidepressant prescribing trends in England 2015-2019. J Affect Disord Rep 6: 100205. DOI: 10.1016/j.jadr.2021.100205. PubMed DOI

Latini R, Tognoni G, Kates RE (1984). Clinical pharmacokinetics of amiodarone. Clin Pharmacokinet 9: 136-156. DOI: 10.2165/00003088-198409020-00002. PubMed DOI

Lee HB, Peart TE, Svoboda ML, Backus S (2009). Occurrence and fate of rosuvastatin, rosuvastatin lactone, and atorvastatin in Canadian sewage and surface water samples. Chemosphere 77: 1285-1291. DOI: 10.1016/j.chemosphere.2009.09.068. PubMed DOI

Li WC (2014). Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environ Pollut 187: 193-201. DOI: 10.1016/j.envpol.2014.01.015. PubMed DOI

Mayo Clinic (2023). Type 1 diabetes, diagnosis and treatment. [online] [cit. 2023-01-22]. Available from: https://www.mayoclinic.org/diseases-conditions/type-1-diabetes/diagnosis-treatment/drc-20353017

Mezzelani M, Gorbi S, Regoli F (2018). Pharmaceutical in the aquatic environments: Evidence of emerged threat and future challenges for marine organisms. Mar Environ Res 140: 41-60. DOI: 10.1016/j.marenvres.2018.05.001. PubMed DOI

Minguez L, Pedelucq J, Farcy E, Ballandonne C, Budzinski H, Halm-Lemeille MP (2016). Toxicities of 48 pharmaceuticals and their freshwater and marine environmental assessment in northwestern France. Environ Sci Pollut Res 23: 4992-5001. DOI: 10.1007/s11356-014-3662-5. PubMed DOI

Ministry of Agriculture of the Czech Republic (2019). Zpráva o stavu vodního hospodářství České republiky v roce 2018. [online] [cit. 2023-01-22]. Available from: https://eagri.cz/public/portal/mze/voda/osveta-a-publikace/publikace-a-dokumenty/modre-zpravy/zprava-o-stavu-vodniho-hosp-2018.html

NHS (2021). Overview - Antidepressants. [online] [cit. 2023-01-22]. Available from: https://www.nhs.uk/mental-health/talking-therapies-medicine-treatments/medicines-and-psychiatry/antidepressants/overview/

OECD 201 (2011). OECD guidelines for testing of chemicals. Test No. 201: Freshwater alga and cyanobacteria, growth inhibition test. [online] [cit. 2023-01-22]. Available from: https://www.oecd-ilibrary.org/environment/test-no-201-alga-growth-inhibition-test_9789264069923-en

OECD 202 (2004). OECD guidelines for testing of chemicals. Test No. 202: Daphnia sp. acute immobilisation test. [online] [cit. 2023-01-22]. Available from: https://read.oecd-ilibrary.org/environment/test-no-202-daphnia-sp-acute-immobilisation-test_9789264069947-en#page1

OECD 203 (2019). OECD guidelines for testing of chemicals. Test No. 203: Fish, acute toxicity test. [online] [cit. 2023-01-22]. Available from: https://www.oecd-ilibrary.org/environment/test-no-203-fish-acute-toxicity-test_9789264069961-en

OECD 211 (2012). OECD guidelines for testing of chemicals. Test No. 211: Daphnia magna reproduction test. [online] [cit. 2023-01-22]. Available from: https://www.oecd.org/chemicalsafety/test-no-211-daphnia-magna-reproduction-test-9789264185203-en.htm

OECD 221 (2006). OECD guidelines for testing of chemicals. Test No. 221: Lemna sp. growth inhibition test. [online] [cit. 2023-01-22]. Available from: https://www.oecd-ilibrary.org/environment/test-no-221-lemna-sp-growth-inhabition-test_9789264016194-en

Ofoegbu PU, Lourenco J, Mendo S, Soares AMVM, Pestana JLT (2019). Effects of low concentration of psychiatric drugs (carbamazepine and fluoxetine) on the freshwater planarian, Schmidtea mediterranea. Chemosphere 217: 542-549. DOI: 10.1016/j.chemosphere.2018.10.198. PubMed DOI

Overturf MD, Overturf CL, Baxter D, Hala DN, Constantine L, Venables B, Huggett DB (2012). Early life-stage toxicity of eight pharmaceuticals to the fathead minnow, Pimephales promelas. Arch Environ Contam Toxicol 62: 455-464. DOI: 10.1007/s00244-011-9723-6. PubMed DOI

Pahan K (2006). Lipid-lowering drugs. Cell Mol Life Sci 63: 1165-1178. DOI: 10.1007/s00018-005-5406-7. PubMed DOI

Pan C, Zhu F, Wu M, Jiang L, Zhao X, Yang M (2022). Degradation and toxicity of the antidepressant fluoxetine in an aqueous systemby UV irradiation. Chemosphere 287: 132434. DOI: 10.1016/j.chemosphere.2021.132434. PubMed DOI

Patel M, Kumar R, Kishor K, Mlsna T, Pittman CU, Jr., Mohan D (2019). Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods. Chem Rev 119: 3510-3673. DOI: 10.1021/acs.chemrev.8b00299. PubMed DOI

Ribeiro S, Torres T, Martins R, Santos MM (2015). Toxicity screening of diclofenac, propranolol, sertraline and simvastatin using Danio rerio and Paracentrotus lividus embryo bioassays. Ecotox Environ Saf 114: 67-74. DOI: 10.1016/j.ecoenv.2015.01.008. PubMed DOI

Sanoh S, Hanada H, Kashiwagi K, Mori T, Goto-Inoue N, Suzuki KT, et al. (2020). Amiodarone bioconcentration and suppression of metamorphosis in Xenopus. Aquat Toxicol 228: 105623. DOI: 10.1016/j.aquatox.2020.105623. PubMed DOI

Santarsieri D, Schwartz TL (2015). Antidepressant efficacy and side-effect burden: A quick guide for clinicans. Drugs Context 4: 212290. DOI: 10.7573/dic.212290. PubMed DOI

Santos LHMLM, Araújo AN, Fachini A, Pena A, Delerue-Matos C, Montenegro MCBSM (2010). Ecotoxicological aspect related to the presence of pharmaceuticals in the aquatic environment. J. Hazard Mater 175: 45-95. DOI: 10.1016/j.jhazmat.2009.10.100. PubMed DOI

Santos LHMLM, Gros M, Mozaz SR, Matos CD, Pena A, Barceló D, Montenegro MCBSM (2013). Contribution of hospital effluents to the load of pharmaceuticals in urban wastewater: identification of ecologically relevant pharmaceutical. Sci Total Environ 461-462: 302-316. DOI: 10.1016/j.scitotenv.2013.04.077. PubMed DOI

Santos TP, Da Silva Bastos PE, Da Sila JF, De Medeiros Vieira SM, Da Silva MCG, De Andrade ALC, et al. (2023). Single and joint toxic effects of thyroid hormone, levothyroxine, and amiodarone on embryo-larval stages of zebrafish (Danio rerio). Ecotoxicol 32: 525-535. DOI: 10.1007/s10646-023-02655-6. PubMed DOI

Sebastine IM, Wakeman RJ (2003). Consumption and environmental hazards of pharmaceutical substances in the UK. Process Saf Environ Prot 81: 229-235. DOI: 10.1205/095758203322299743. DOI

Shi H, Sun Z, Liu Z, Xue Y (2012). Effects of clotrimazole and amiodarone on early development of amphibian (Xenopus tropicalis). Toxicol Environ Chem 94: 128-135. DOI: 10.1080/02772248.2011.634643. DOI

Stancu C, Sima A (2001). Statins: mechanism of action and effects. Cell Mol Med 5: 378-387. DOI: 10.1111/j.1582-4934.2001.tb00172.x. PubMed DOI

Steinbach C, Burkina V, Schmidt H (2016). Effect of the human therapeutic drug diltiazem on the haematological parameters, histology and selected enzymatic activities of rainbow trout Oncorhynchus mykiss. Chemosphere 157: 57-64. DOI: 10.1016/j.chemosphere.2016.04.137. PubMed DOI

Steinbach C, Fedorova G, Prokes M, Grabicova K, Machova J, Grabic R, et al. (2013). Toxic effects, bioconcentration and depuration of verapamil in the early life stages of common carp (Cyprinus carpio L.). Sci Total Environ 461-462: 198-206. DOI: 10.1016/j.scitotenv.2013.05.002. PubMed DOI

Steinkey D, Lari E, Woodman SG, Steinkey R, Luong KH, Wong CS, Pyle GG (2019). The effects of diltiazem on growth, reproduction, energy reserves, and calcium-dependent physiology in Daphna magna. Chemosphere 232: 424-429. DOI: 10.1016/j.chemosphere.2019.05.176. PubMed DOI

Stöppler MC (2023). Definition of antidepressant. RxList. [online] [cit. 2023-01-22]. Available from: https://www.rxlist.com/antidepressants/definition.htm

Sturini M, Speltini A, Maraschi F, Pretali L, Ferri EN, Profumo A (2015). Sunlight-induced degradation of fluoroquinolones in wastewater effluent: Photoproducts identification and toxicity. Chemosphere 134: 313-318. DOI: 10.1016/j.chemosphere.2015.04.081. PubMed DOI

Taljera O, Cassagnol M (2022). Diltiazem. Nat. Center for Biotechnol Inf., Statpearls Publishing. [online] [cit. 2023-01-22]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK532937/

Tete VS, Nyoni H, Mamba BB, Msagati TAM (2020). Occurrence and spatial distribution of statins, fibrates and their metabolites in aquatic environments. Arab J Chem 13: 4358-4373. DOI: 10.1016/j.arabjc.2019.08.003. DOI

Tixier C, Sancelme M, Ait-Aissa S, Gadona-Widehem P (2002). Biotransformation of phenylurea herbicides by a soil bacterial strain, Arthrobacter sp. N2: Structure, ecotoxicity and fate of diuron metabolite with soil fungi. Chemosphere 46: 519-526. DOI: 10.1016/S0045-6535(01)00193-X. PubMed DOI

Tixier C, Sancelme M, Bonnemoy F, Cuer A, Veschambre H (2009). Degradation products of a phenylurea herbicide, diuron. Synthesis, ecotoxicity, and biotransformation. Environ Toxicol Chem 20: 1381-1389. DOI: 10.1002/etc.5620200701. DOI

Tran NH, Reinhard M, Gin KYH (2018). Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions - a review. Water Res 133: 182-207. DOI: 10.1016/j.watres.2017.12.029. PubMed DOI

Trautwein C, Kümmerer K (2011). Incomplete aerobic degradation of the antidiabetic drug metformin and identification of the bacterial dead-end transformation product guanylurea. Chemospere 85: 765-773. DOI: 10.1016/j.chemosphere.2011.06.057. PubMed DOI

Trawiński J, Skibiński R (2022). Comparative analysis of in vivo and in silico toxicity evaluation of the organoiodine compounds towards D. magna using multivariate chemometric approach: A study on the example of amiodarone phototransformation products. Chemosphere 292: 133420. DOI: 10.1016/j.chemosphere.2021.133420. PubMed DOI

Ussery E, Nielsen KM, Pandelides Z, Kirkwood AE, Guchardi J, Holdway D (2019). Developmental and full-life cycle exposures to guanylurea and guanylurea-metformin mixtures result in adverse effects on Japanese Medaka (Oryzias latipes). Environ Toxicol Chem 38: 1023-1028. DOI: 10.1002/etc.4403. PubMed DOI

Van Boeckel TP, Brower C, Gilbert M, Laxminarayan R (2015). Global trends in antimicrobial use in food animals. PNAS 112: 5649-5654. DOI: 10.1073/pnas.150314111. DOI

Van Boeckel TP, Gandra S, Ashok A, Caudron Q, Grenfell BT, Levin SA, Laxminarayan R (2014). Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect Dis 14: 742-750. DOI: 10.1016/S1473-3099(14)70780-7. PubMed DOI

Veloutsou S, Bizani E, Fytianos K (2014). Photo-Fenton decomposition of β-blockers atenolol and metoprolol; study and optimization of system parameters and identification of intermediates. Chemosphere 107: 180-186. DOI: 10.1016/j.chemosphere.2013.12.031. PubMed DOI

Wei Z, Wei Y, Li H, Shi D, Yang D, Yin J (2022). Emerging pollutant metformin in water promotes the development of multiple-antibiotic resistance in Escherichia coli via chromosome mutagenesis. J Hazard Mater. 430: 128474. DOI: 10.1016/j.jhazmat.2022.128474. PubMed DOI

Werth BJ (2022). Overview of antibiotics. MSD Manual. [online] [cit. 2023-01-22]. Available from: https://www.msdmanuals.com/home/infections/antibiotics/overview-of-antibiotics

Wilkinson JL, Boxall ABA, Kolpin DW, Leung KMY Lai RWS, Galbán-Malagón C, et al. (2022). Pharmaceutical pollution of the world's rivers. Prot Natl Acad Sci USA 119: e2113947119. DOI: 10.1073/pnas.2113947119. PubMed DOI

Wu M, Xiang J, Que C, Chen F, Xu G (2015). Occurrence and fate of psychiatric pharmaceuticals in the urban water system of Shanghai, China. Chemosphere 138: 486-493. DOI: 10.1016/j.chemosphere.2015.07.002. PubMed DOI

Yan JH, Xiao Y, Tan DQ, Shao XT, Wang Z, Wang DG (2019). Wastewater analysis reveals spatial pattern in consumption of anti-diabetes drug metformin in China. Chemosphere 222: 688-695. DOI: 10.1016/j.chemosphere.2019.01.151. PubMed DOI

Yang Z, Lu T, Zhu Y, Zhang Q, Zhou Z, Pan X, Qian H (2019). Aquatic ecotoxicity of an antidepressant, sertraline hydrochloride, on microbial communities. Sci Total Environ 654: 129-134. DOI: 10.1016/j.scitotenv.2018.11.164. PubMed DOI

Ying Han, Yuanyuan Ma, Junwei Tong, Jingpu Zha (2022). Systems assessment of statins hazard: Integrating in silico prediction, developmental toxicity profile and transcriptomics in zebafish. Ecotoxicol Environ Saf 243: 113981. DOI: 10.1016/j.ecoenv.2022.113981. PubMed DOI

Yuan F, Hu C, Hu X, Wei D, Chen Y, Qu J (2011). Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2process. J Hazard Mater 185: 1256-1263. DOI: 10.1016/j.jhazmat.2010.10.040. PubMed DOI

Yuan SL, Jiang XM, Xia XH, Zhang HX, Zheng SK (2013). Detection, occurrence and fate of 22 psychiatric pharmaceuticals in psychiatric hospital and municipal wastewater treatment plants in Beijing, China. Chemosphere 90: 2520-2525. DOI: 10.1016/j.chemosphere.2012.10.089. PubMed DOI

Zhi-Hua L, Ping L, Randak T (2010). Ecotoxicological effects of short-term exposure to a human pharmaceutical verapamil injuvenile rainbow trout (Oncorhynchus mykiss). Comp Biochem Phys C Toxicol Pharmacol 152: 385-391. DOI: 10.1016/j.cbpc.2010.06.007. PubMed DOI

Zhi-Hua L, Velisek J, Zlabek V, Grabic R, Machova J, Kolarova J, Ping L, Randak T (2011). Chronic toxicity of verapamil on juvenile rainbow trout (Onkorhynchus mykiss): effects on morphological indices, hematological parameters and antioxidant responses. J Hazard Mater 185: 870-880. DOI: 10.1016/j.jhazmat.2010.09.102. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...