Photodynamic effect of TPP encapsulated in polystyrene nanoparticles toward multi-resistant pathogenic bacterial strains: AFM evaluation
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33762617
PubMed Central
PMC7990921
DOI
10.1038/s41598-021-85828-9
PII: 10.1038/s41598-021-85828-9
Knihovny.cz E-resources
- MeSH
- Bacteria drug effects radiation effects MeSH
- Photochemical Processes * MeSH
- Photochemotherapy methods MeSH
- Microscopy, Atomic Force MeSH
- Nanoparticles * chemistry MeSH
- Polystyrenes * chemistry MeSH
- Porphyrins administration & dosage chemistry MeSH
- Drug Compounding * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Polystyrenes * MeSH
- Porphyrins MeSH
- tetraphenylporphyrin MeSH Browser
Photodynamic inactivation (PDI) is a promising approach for the efficient killing of pathogenic microbes. In this study, the photodynamic effect of sulfonated polystyrene nanoparticles with encapsulated hydrophobic 5,10,15,20-tetraphenylporphyrin (TPP-NP) photosensitizers on Gram-positive (including multi-resistant) and Gram-negative bacterial strains was investigated. The cell viability was determined by the colony forming unit method. The results showed no dark cytotoxicity but high phototoxicity within the tested conditions. Gram-positive bacteria were more sensitive to TPP-NPs than Gram-negative bacteria. Atomic force microscopy was used to detect changes in the morphological properties of bacteria before and after the PDI treatment.
See more in PubMed
Farkas J. Physical Methods of Food Preservation. In: Doyle M, Beuchat L, editors. Food Microbiology: Fundamentals and Frontiers. 3. Washington: ASM Press; 2007. pp. 685–712.
Dobrynin D, Fridman G, Friedman G, Fridman A. Physical and biological mechanisms of direct plasma interaction with living tissue. New J. Phys. 2009;11:115020. doi: 10.1088/1367-2630/11/11/115020. DOI
Dillow AK, Dehghani F, Hrkach JS, Foster NR, Langer R. Bacterial inactivation by using near- and supercritical carbon dioxide. PNAS. 1999;96(18):10344–10348. doi: 10.1073/pnas.96.18.10344. PubMed DOI PMC
Ye M, Sun M, Huang D, Zhang Z, Zhang H, Zhang S, et al. A review of bacteriophage therapy for pathogenic bacteria inactivation inthe soil environment. Environ. Int. 2019;129:488–496. doi: 10.1016/j.envint.2019.05.062. PubMed DOI
Mohanty S, Mishra S, Jena P, Jacob B, Sarkar B, Sonawane A. An investigation on the antibacterial, cytotoxic and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomed. Nanotechnol. 2012;8:916–924. doi: 10.1016/j.nano.2011.11.007. PubMed DOI
Salomoni, R., Léo, P., Rodrigues, M. Antibacterial activity of silver nanoparticles (AgNPs) in Staphylococcus aureus and cytotoxicity effect in mammalian cells. the battle against microbial pathogens: Basic science, technological advances and educational programs. 851–857, (Formatex 2015).
Benov L. Photodynamic therapy: Current status and future directions. Med. Princ. Pract. 2015;24:14–28. doi: 10.1159/000362416. PubMed DOI PMC
Dai T, Huang YY, Hamblin MR. Photodynamic therapy for localized infections—state of the art. Photodiagn. Photodyn. 2009;6(3–4):170–188. doi: 10.1016/j.pdpdt.2009.10.008. PubMed DOI PMC
Wainwright M. Photodynamic antimicrobial chemotherapy (PACT) J. Antimicrob Chemoth. 1998;42:3–28. doi: 10.1093/jac/42.1.13. PubMed DOI
Hamblin M. Antimicrobial photodynamic inactivation: A bright new technique to kill resistant microbes. Curr. Opin. Microbiol. 2016;33:67–73. doi: 10.1016/j.mib.2016.06.008. PubMed DOI PMC
George S, Hamblin MR, Kishen A. Uptake pathways of anionic and cationic hotosensitizers into bacteria. Photochem Photobiol Sci. 2009;8(6):788–795. doi: 10.1039/b809624d. PubMed DOI PMC
Fotinos N, Convert M, Piffaretti JC, Gurny R, Lange N. Effects on gram-negative and gram-positive bacteria mediated by 5-aminolevulinic acid and 5-aminolevulinic acid derivatives. Antimicrob Agents Chemother. 2008;52(4):1366–1373. doi: 10.1128/AAC.01372-07. PubMed DOI PMC
Ghorbani J, Rahban D, Aghamiri S, Teymouri A, Bahador A. Photosensitizers in antibacterial photodynamic therapy: An overview. Laser Ther. 2018;27(4):293–302. doi: 10.5978/islsm.27_18-RA-01. PubMed DOI PMC
Amos-Tautua BM, Songca SP, Oluwafemi OS. Application of porphyrins in antibacterial photodynamic therapy. Molecules. 2019;24(13):2456. doi: 10.3390/molecules24132456. PubMed DOI PMC
Procházková K, Zelinger Z, Lang K, Kubát P. Meso-tetratolylporphyrins substituted by pyridinium groups: Aggregation, photophysical properties and complexation with DNA. J. Phys. Org. Chem. 2004;17:890–897. doi: 10.1002/poc.783. DOI
Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther. 2008;83:761–769. doi: 10.1038/sj.clpt.6100400. PubMed DOI
Kubát P, Henke P, Berzédiová V, Štěpánek M, Lang K, Mosinger J. Nanoparticles with embedded porphyrin photosensitizers for photooxidation reactions and continuous oxygen sensing. ACS Appl. Mater. Interfaces. 2017;9:36229–36238. doi: 10.1021/acsami.7b12009. PubMed DOI
Kubát P, Henke P, Raya RK, Štěpánek M, Mosinger J. Polystyrene and poly(ethylene glycol)-b-poly(ε-caprolactone) nanoparticles with porphyrins: Structure, size, and photooxidation properties. Langmuir. 2020;36:302–310. doi: 10.1021/acs.langmuir.9b03468. PubMed DOI
Usacheva MN, Teichert MC, Biel MA. Comparison of the methylene blue and toluidine blue photobactericidal efficacy against Gram positive and Gram negative microorganisms. Laser Surg Med. 2001;29:165–173. doi: 10.1002/lsm.1105. PubMed DOI
Usacheva MN, Teichert MC, Biel MA. The role of the methylene blue and toluidine blue monomers and dimers in the photoinactivation of bacteria. J. Photoch. Photobiol B. 2003;71:87–98. doi: 10.1016/j.jphotobiol.2003.06.002. PubMed DOI
Schär-Zammaretti P, Ubbink J. The cell wall of lactic acid bacteria: Surface constituents and macromolecular conformations. Biophys. J. 2003;85:4076–4092. doi: 10.1016/S0006-3495(03)74820-6. PubMed DOI PMC
Dörr T, Moynihan PJ, Mayer C. Editorial: Bacterial cell wall structure and dynamics. Front. Microbiol. 2019;10:2051. doi: 10.3389/fmicb.2019.02051. PubMed DOI PMC
Vollmer W, Blanot D, De Pedro MA. Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 2008;32:149–167. doi: 10.1111/j.1574-6976.2007.00094.x. PubMed DOI
Salmon-Divon M, Nitzan Y, Malik Z. Mechanistic aspects of Escherichia coli photodynamic inactivation by cationic tetra-meso (N-methylpyridyl) porphine. Photochem. Photobiol. Sci. 2004;3:423–429. doi: 10.1039/b315627n. PubMed DOI
Ubbink J, Schär-Zammaretti P. Probing bacterial interactions: Integrated approaches combining atomic force microscopy electron microscopy and biophysical techniques. Micron. 2005;36:293–320. doi: 10.1016/j.micron.2004.11.005. PubMed DOI
Sahu K, Bansal H, Mukherjee Ch, Sharma M, Gupta PK. Atomic force microscopic study on morphological alterations induced by photodynamic action of Toluidine Blue O in Staphylococcus aureus and Escherichia coli. J. Photoch. Photobiol. B. 2009;96:9–16. doi: 10.1016/j.jphotobiol.2009.03.008. PubMed DOI
da Silva A, Teschke O. Dynamics of the antimicrobial peptide PGLa action on Escherichia coli monitored by atomic force microscopy. World J. Microbiol. Biotechnol. 2005;21:1103–1110. doi: 10.1007/s11274-005-0077-y. DOI
Bolshakova AV, Kiselyova OI, Filonov AS, Frolova OY, Lyubchenko YL, Yaminsky IV. Comparative study of bacteria with an atomic force microscopy operating in different modes. Ultramicroscopy. 2001;86:121–128. doi: 10.1016/S0304-3991(00)00075-9. PubMed DOI
Sullivan CJ, Morrell JL, Allisona DP, Doktycz MJ. Mounting of Escherichia coli spheroplasts for AFM imaging. Ultramicroscopy. 2005;105:96–102. doi: 10.1016/j.ultramic.2005.06.023. PubMed DOI
Dolanský J, Henke P, Malá Z, Žárská L, Kubát P, Mosinger J. Antibacterial nitric oxide- and singlet oxygen-releasing polystyrene nanoparticles responsive to light and temperature triggers. Nanoscale. 2018;10:2639–2648. doi: 10.1039/C7NR08822A. PubMed DOI
Henke P, Kirakci K, Kubát P, Fraiberk M, Forstová J, Mosinger J. Antibacterial, antiviral and oxygen-sensing nanoparticles prepared from electrospun materials. ACS Appl. Mater. Interfaces. 2016;8:25127–25136. doi: 10.1021/acsami.6b08234. PubMed DOI
Tomecka, M., Bajgar, R., Kolarova, H.: Light source of uniform energy density to induce photodynamic phenomena in vitro cells. Czech patent CZ 302829 B6, (2011). https://patents.google.com/patent/CZ302829B6
Robichon D, Girard JC, Cenatiempo Y, Cavellier JF. Atomic force microscopy of dried or living bacteria. C. R. Acad. Sci. Ser. III Sci. Vie. 1999;322:687–693. doi: 10.1016/S0764-4469(99)80108-5. PubMed DOI
Lee ChH, Su LH, Tang YF, Liu JW. Treatment of ESBL-producing Klebsiella pneumoniae bacteraemia with carbapenems or flomoxef: A retrospective study and laboratory analysis of the isolates. J. Antimicrob. Chemoth. 2006;58:1074–1077. doi: 10.1093/jac/dkl381. PubMed DOI
Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: A major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev. 2017;41:252–275. doi: 10.1093/femsre/fux013. PubMed DOI
Preuß A, Zeugner L, Hackbarth S, Faustino M, Neves M, Cavaleiro J, Roeder B. Photoinactivation of Escherichia coli (SURE2) without intracellular uptake of the photosensitizer. J. Appl. Microbiol. 2013;114:36–43. doi: 10.1111/jam.12018. PubMed DOI
Nie X, Wu S, Mensah A, Lu K, Wei Q. Carbon quantum dots embedded electrospun nanofibers for efficient antibacterial photodynamic inactivation. Mater. Sci. Eng. C. 2020;108:110377. doi: 10.1016/j.msec.2019.110377. PubMed DOI
Henke P, Kozak H, Artemenko A, Kubát P, Forstová J, Mosinger J. Superhydrophilic polystyrene nanofiber materials generating O2(1Δg): Postprocessing surface modifications toward efficient antibacterial effect. ACS Appl. Mater. Interfaces. 2014;6:13007–13014. doi: 10.1021/am502917w. PubMed DOI
Jin H, Huag X, Chen Y, Zhao H, Ye H, Huang F, Xing X, Cai J. Photoinactivation effects of hematoporphyrin monomethyl ether on Gram-positive and -negative bacteria detected by atomic force microscopy. Appl. Microbial. Cell Physiol. 2010;88:761–770. PubMed
Slavin YN, Asnis J, Häfeli UO, Bach H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 2017;15:65. doi: 10.1186/s12951-017-0308-z. PubMed DOI PMC
Karakoti AS, Hench LL, Seal S. The potential toxicity of nanomaterials—the role of surfaces. JOM. 2006;58:77–82. doi: 10.1007/s11837-006-0147-0. DOI
Ramalingam B, Parandhaman T, Das SK. Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of Gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl. Mater. Interfaces. 2016;8:4963–76. doi: 10.1021/acsami.6b00161. PubMed DOI
Mai-Prochnow A, Clauson M, Hong J, Murphy AB. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Sci. Rep. 2016;6:38610. doi: 10.1038/srep38610. PubMed DOI PMC
Baron, S. Medical microbiology. Galveston, Tex: University of Texas Medical Branch at Galveston (1996). PubMed
Hamblin MR, Hasan T. Photodynamic therapy: A new antimicrobial approach to infectious disease. Photochem. Photobiol. Science. 2004;3:436–450. doi: 10.1039/b311900a. PubMed DOI PMC
Dahl TA, Midden WR, Hartman PE. Comparison of killing of Gram-negative and Gram-positive bacteria by pure singlet oxygent. J. Bacteriol. 1989;171:2188–2194. doi: 10.1128/JB.171.4.2188-2194.1989. PubMed DOI PMC
Hamblin MR, O’Donnell DA, Murthy N, Rajagopalan K, Michaud N, Sherwood ME, Hasan T. Polycationic photosensitizer conjugates: Effects of chain length and Gram classification on the photodynamic inactivation of bacteria. J. Antimicrob. Chemother. 2002;49:941–951. doi: 10.1093/jac/dkf053. PubMed DOI
Ban S, Caruso E, Bucca L. Antibacterial activity of tetraarylporphyrin photosensitizers: An in vitro study on Gram negative and Gram positive bacteria. J. Photochem. Photobiol. B. 2006;85:28–38. doi: 10.1016/j.jphotobiol.2006.04.003. PubMed DOI
Katsui N, Tsuchido T, Hiramatsu R, Fujikawa S, Takano M, Shibasaki I. Heatinduced blebbing vesiculation of the outer membrane of Escherichia coli. J. Bacteriol. 1982;151:1523–1531. doi: 10.1128/JB.151.3.1523-1531.1982. PubMed DOI PMC
Pillet F, Formosa-Dague C, Baaziz H, Dague E, Rols MP. Cell wall as a target for bacteria inactivation by pulsed electric fields. Sci. Rep. 2016;6:19778. doi: 10.1038/srep19778. PubMed DOI PMC