• This record comes from PubMed

Photodynamic effect of TPP encapsulated in polystyrene nanoparticles toward multi-resistant pathogenic bacterial strains: AFM evaluation

. 2021 Mar 24 ; 11 (1) : 6786. [epub] 20210324

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 33762617
PubMed Central PMC7990921
DOI 10.1038/s41598-021-85828-9
PII: 10.1038/s41598-021-85828-9
Knihovny.cz E-resources

Photodynamic inactivation (PDI) is a promising approach for the efficient killing of pathogenic microbes. In this study, the photodynamic effect of sulfonated polystyrene nanoparticles with encapsulated hydrophobic 5,10,15,20-tetraphenylporphyrin (TPP-NP) photosensitizers on Gram-positive (including multi-resistant) and Gram-negative bacterial strains was investigated. The cell viability was determined by the colony forming unit method. The results showed no dark cytotoxicity but high phototoxicity within the tested conditions. Gram-positive bacteria were more sensitive to TPP-NPs than Gram-negative bacteria. Atomic force microscopy was used to detect changes in the morphological properties of bacteria before and after the PDI treatment.

See more in PubMed

Farkas J. Physical Methods of Food Preservation. In: Doyle M, Beuchat L, editors. Food Microbiology: Fundamentals and Frontiers. 3. Washington: ASM Press; 2007. pp. 685–712.

Dobrynin D, Fridman G, Friedman G, Fridman A. Physical and biological mechanisms of direct plasma interaction with living tissue. New J. Phys. 2009;11:115020. doi: 10.1088/1367-2630/11/11/115020. DOI

Dillow AK, Dehghani F, Hrkach JS, Foster NR, Langer R. Bacterial inactivation by using near- and supercritical carbon dioxide. PNAS. 1999;96(18):10344–10348. doi: 10.1073/pnas.96.18.10344. PubMed DOI PMC

Ye M, Sun M, Huang D, Zhang Z, Zhang H, Zhang S, et al. A review of bacteriophage therapy for pathogenic bacteria inactivation inthe soil environment. Environ. Int. 2019;129:488–496. doi: 10.1016/j.envint.2019.05.062. PubMed DOI

Mohanty S, Mishra S, Jena P, Jacob B, Sarkar B, Sonawane A. An investigation on the antibacterial, cytotoxic and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomed. Nanotechnol. 2012;8:916–924. doi: 10.1016/j.nano.2011.11.007. PubMed DOI

Salomoni, R., Léo, P., Rodrigues, M. Antibacterial activity of silver nanoparticles (AgNPs) in Staphylococcus aureus and cytotoxicity effect in mammalian cells. the battle against microbial pathogens: Basic science, technological advances and educational programs. 851–857, (Formatex 2015).

Benov L. Photodynamic therapy: Current status and future directions. Med. Princ. Pract. 2015;24:14–28. doi: 10.1159/000362416. PubMed DOI PMC

Dai T, Huang YY, Hamblin MR. Photodynamic therapy for localized infections—state of the art. Photodiagn. Photodyn. 2009;6(3–4):170–188. doi: 10.1016/j.pdpdt.2009.10.008. PubMed DOI PMC

Wainwright M. Photodynamic antimicrobial chemotherapy (PACT) J. Antimicrob Chemoth. 1998;42:3–28. doi: 10.1093/jac/42.1.13. PubMed DOI

Hamblin M. Antimicrobial photodynamic inactivation: A bright new technique to kill resistant microbes. Curr. Opin. Microbiol. 2016;33:67–73. doi: 10.1016/j.mib.2016.06.008. PubMed DOI PMC

George S, Hamblin MR, Kishen A. Uptake pathways of anionic and cationic hotosensitizers into bacteria. Photochem Photobiol Sci. 2009;8(6):788–795. doi: 10.1039/b809624d. PubMed DOI PMC

Fotinos N, Convert M, Piffaretti JC, Gurny R, Lange N. Effects on gram-negative and gram-positive bacteria mediated by 5-aminolevulinic acid and 5-aminolevulinic acid derivatives. Antimicrob Agents Chemother. 2008;52(4):1366–1373. doi: 10.1128/AAC.01372-07. PubMed DOI PMC

Ghorbani J, Rahban D, Aghamiri S, Teymouri A, Bahador A. Photosensitizers in antibacterial photodynamic therapy: An overview. Laser Ther. 2018;27(4):293–302. doi: 10.5978/islsm.27_18-RA-01. PubMed DOI PMC

Amos-Tautua BM, Songca SP, Oluwafemi OS. Application of porphyrins in antibacterial photodynamic therapy. Molecules. 2019;24(13):2456. doi: 10.3390/molecules24132456. PubMed DOI PMC

Procházková K, Zelinger Z, Lang K, Kubát P. Meso-tetratolylporphyrins substituted by pyridinium groups: Aggregation, photophysical properties and complexation with DNA. J. Phys. Org. Chem. 2004;17:890–897. doi: 10.1002/poc.783. DOI

Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther. 2008;83:761–769. doi: 10.1038/sj.clpt.6100400. PubMed DOI

Kubát P, Henke P, Berzédiová V, Štěpánek M, Lang K, Mosinger J. Nanoparticles with embedded porphyrin photosensitizers for photooxidation reactions and continuous oxygen sensing. ACS Appl. Mater. Interfaces. 2017;9:36229–36238. doi: 10.1021/acsami.7b12009. PubMed DOI

Kubát P, Henke P, Raya RK, Štěpánek M, Mosinger J. Polystyrene and poly(ethylene glycol)-b-poly(ε-caprolactone) nanoparticles with porphyrins: Structure, size, and photooxidation properties. Langmuir. 2020;36:302–310. doi: 10.1021/acs.langmuir.9b03468. PubMed DOI

Usacheva MN, Teichert MC, Biel MA. Comparison of the methylene blue and toluidine blue photobactericidal efficacy against Gram positive and Gram negative microorganisms. Laser Surg Med. 2001;29:165–173. doi: 10.1002/lsm.1105. PubMed DOI

Usacheva MN, Teichert MC, Biel MA. The role of the methylene blue and toluidine blue monomers and dimers in the photoinactivation of bacteria. J. Photoch. Photobiol B. 2003;71:87–98. doi: 10.1016/j.jphotobiol.2003.06.002. PubMed DOI

Schär-Zammaretti P, Ubbink J. The cell wall of lactic acid bacteria: Surface constituents and macromolecular conformations. Biophys. J. 2003;85:4076–4092. doi: 10.1016/S0006-3495(03)74820-6. PubMed DOI PMC

Dörr T, Moynihan PJ, Mayer C. Editorial: Bacterial cell wall structure and dynamics. Front. Microbiol. 2019;10:2051. doi: 10.3389/fmicb.2019.02051. PubMed DOI PMC

Vollmer W, Blanot D, De Pedro MA. Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 2008;32:149–167. doi: 10.1111/j.1574-6976.2007.00094.x. PubMed DOI

Salmon-Divon M, Nitzan Y, Malik Z. Mechanistic aspects of Escherichia coli photodynamic inactivation by cationic tetra-meso (N-methylpyridyl) porphine. Photochem. Photobiol. Sci. 2004;3:423–429. doi: 10.1039/b315627n. PubMed DOI

Ubbink J, Schär-Zammaretti P. Probing bacterial interactions: Integrated approaches combining atomic force microscopy electron microscopy and biophysical techniques. Micron. 2005;36:293–320. doi: 10.1016/j.micron.2004.11.005. PubMed DOI

Sahu K, Bansal H, Mukherjee Ch, Sharma M, Gupta PK. Atomic force microscopic study on morphological alterations induced by photodynamic action of Toluidine Blue O in Staphylococcus aureus and Escherichia coli. J. Photoch. Photobiol. B. 2009;96:9–16. doi: 10.1016/j.jphotobiol.2009.03.008. PubMed DOI

da Silva A, Teschke O. Dynamics of the antimicrobial peptide PGLa action on Escherichia coli monitored by atomic force microscopy. World J. Microbiol. Biotechnol. 2005;21:1103–1110. doi: 10.1007/s11274-005-0077-y. DOI

Bolshakova AV, Kiselyova OI, Filonov AS, Frolova OY, Lyubchenko YL, Yaminsky IV. Comparative study of bacteria with an atomic force microscopy operating in different modes. Ultramicroscopy. 2001;86:121–128. doi: 10.1016/S0304-3991(00)00075-9. PubMed DOI

Sullivan CJ, Morrell JL, Allisona DP, Doktycz MJ. Mounting of Escherichia coli spheroplasts for AFM imaging. Ultramicroscopy. 2005;105:96–102. doi: 10.1016/j.ultramic.2005.06.023. PubMed DOI

Dolanský J, Henke P, Malá Z, Žárská L, Kubát P, Mosinger J. Antibacterial nitric oxide- and singlet oxygen-releasing polystyrene nanoparticles responsive to light and temperature triggers. Nanoscale. 2018;10:2639–2648. doi: 10.1039/C7NR08822A. PubMed DOI

Henke P, Kirakci K, Kubát P, Fraiberk M, Forstová J, Mosinger J. Antibacterial, antiviral and oxygen-sensing nanoparticles prepared from electrospun materials. ACS Appl. Mater. Interfaces. 2016;8:25127–25136. doi: 10.1021/acsami.6b08234. PubMed DOI

Tomecka, M., Bajgar, R., Kolarova, H.: Light source of uniform energy density to induce photodynamic phenomena in vitro cells. Czech patent CZ 302829 B6, (2011). https://patents.google.com/patent/CZ302829B6

Robichon D, Girard JC, Cenatiempo Y, Cavellier JF. Atomic force microscopy of dried or living bacteria. C. R. Acad. Sci. Ser. III Sci. Vie. 1999;322:687–693. doi: 10.1016/S0764-4469(99)80108-5. PubMed DOI

Lee ChH, Su LH, Tang YF, Liu JW. Treatment of ESBL-producing Klebsiella pneumoniae bacteraemia with carbapenems or flomoxef: A retrospective study and laboratory analysis of the isolates. J. Antimicrob. Chemoth. 2006;58:1074–1077. doi: 10.1093/jac/dkl381. PubMed DOI

Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: A major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev. 2017;41:252–275. doi: 10.1093/femsre/fux013. PubMed DOI

Preuß A, Zeugner L, Hackbarth S, Faustino M, Neves M, Cavaleiro J, Roeder B. Photoinactivation of Escherichia coli (SURE2) without intracellular uptake of the photosensitizer. J. Appl. Microbiol. 2013;114:36–43. doi: 10.1111/jam.12018. PubMed DOI

Nie X, Wu S, Mensah A, Lu K, Wei Q. Carbon quantum dots embedded electrospun nanofibers for efficient antibacterial photodynamic inactivation. Mater. Sci. Eng. C. 2020;108:110377. doi: 10.1016/j.msec.2019.110377. PubMed DOI

Henke P, Kozak H, Artemenko A, Kubát P, Forstová J, Mosinger J. Superhydrophilic polystyrene nanofiber materials generating O2(1Δg): Postprocessing surface modifications toward efficient antibacterial effect. ACS Appl. Mater. Interfaces. 2014;6:13007–13014. doi: 10.1021/am502917w. PubMed DOI

Jin H, Huag X, Chen Y, Zhao H, Ye H, Huang F, Xing X, Cai J. Photoinactivation effects of hematoporphyrin monomethyl ether on Gram-positive and -negative bacteria detected by atomic force microscopy. Appl. Microbial. Cell Physiol. 2010;88:761–770. PubMed

Slavin YN, Asnis J, Häfeli UO, Bach H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 2017;15:65. doi: 10.1186/s12951-017-0308-z. PubMed DOI PMC

Karakoti AS, Hench LL, Seal S. The potential toxicity of nanomaterials—the role of surfaces. JOM. 2006;58:77–82. doi: 10.1007/s11837-006-0147-0. DOI

Ramalingam B, Parandhaman T, Das SK. Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of Gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl. Mater. Interfaces. 2016;8:4963–76. doi: 10.1021/acsami.6b00161. PubMed DOI

Mai-Prochnow A, Clauson M, Hong J, Murphy AB. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Sci. Rep. 2016;6:38610. doi: 10.1038/srep38610. PubMed DOI PMC

Baron, S. Medical microbiology. Galveston, Tex: University of Texas Medical Branch at Galveston (1996). PubMed

Hamblin MR, Hasan T. Photodynamic therapy: A new antimicrobial approach to infectious disease. Photochem. Photobiol. Science. 2004;3:436–450. doi: 10.1039/b311900a. PubMed DOI PMC

Dahl TA, Midden WR, Hartman PE. Comparison of killing of Gram-negative and Gram-positive bacteria by pure singlet oxygent. J. Bacteriol. 1989;171:2188–2194. doi: 10.1128/JB.171.4.2188-2194.1989. PubMed DOI PMC

Hamblin MR, O’Donnell DA, Murthy N, Rajagopalan K, Michaud N, Sherwood ME, Hasan T. Polycationic photosensitizer conjugates: Effects of chain length and Gram classification on the photodynamic inactivation of bacteria. J. Antimicrob. Chemother. 2002;49:941–951. doi: 10.1093/jac/dkf053. PubMed DOI

Ban S, Caruso E, Bucca L. Antibacterial activity of tetraarylporphyrin photosensitizers: An in vitro study on Gram negative and Gram positive bacteria. J. Photochem. Photobiol. B. 2006;85:28–38. doi: 10.1016/j.jphotobiol.2006.04.003. PubMed DOI

Katsui N, Tsuchido T, Hiramatsu R, Fujikawa S, Takano M, Shibasaki I. Heatinduced blebbing vesiculation of the outer membrane of Escherichia coli. J. Bacteriol. 1982;151:1523–1531. doi: 10.1128/JB.151.3.1523-1531.1982. PubMed DOI PMC

Pillet F, Formosa-Dague C, Baaziz H, Dague E, Rols MP. Cell wall as a target for bacteria inactivation by pulsed electric fields. Sci. Rep. 2016;6:19778. doi: 10.1038/srep19778. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...