Biological Evaluation of Photodynamic Effect Mediated by Nanoparticles with Embedded Porphyrin Photosensitizer

. 2022 Mar 25 ; 23 (7) : . [epub] 20220325

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35408948

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000868 the European Regional Development Fund
NU21-09-00357 Ministry of Health of the Czech Republic

Clinically approved photodynamic therapy (PDT) is a minimally invasive treatment procedure that uses three key components: photosensitization, a light source, and tissue oxygen. However, the photodynamic effect is limited by both the photophysical properties of photosensitizers as well as their low selectivity, leading to damage to adjacent normal tissue and/or inadequate biodistribution. Nanoparticles (NPs) represent a new option for PDT that can overcome most of the limitations of conventional photosensitizers and can also promote photosensitizer accumulation in target cells through enhanced permeation and retention effects. In this in vitro study, the photodynamic effect of TPP photosensitizers embedded in polystyrene nanoparticles was observed on the non-tumor NIH3T3 cell line and HeLa and G361 tumor cell lines. The efficacy was evaluated by viability assay, while reactive oxygen species production, changes in membrane mitochondrial potential, and morphological changes before and after treatment were imaged by atomic force microscopy. The tested nanoparticles with embedded TPP were found to become cytotoxic only after activation by blue light (414 nm) due to the production of reactive oxygen species. The photodynamic effect observed in this evaluation was significantly higher in both tumor lines than the effect observed in the non-tumor line, and the resulting phototoxicity depended on the concentration of photosensitizer and irradiation time.

Zobrazit více v PubMed

Ackroyd R., Kelty C., Brown N., Reed M. The History of Photodetection and Photodynamic Therapy. Photochem. Photobiol. 2001;74:656–669. doi: 10.1562/0031-8655(2001)074<0656:THOPAP>2.0.CO;2. PubMed DOI

Triesscheijn M., Baas P., Schellens J.H.M., Stewart F.A. Photodynamic Therapy in Oncology. Oncologist. 2006;11:1034–1044. doi: 10.1634/theoncologist.11-9-1034. PubMed DOI

Zhao B., He Y.-Y. Recent advances in the prevention and treatment of skin cancer using photodynamic therapy. Expert Rev. Anticancer Therm. 2010;10:1797–1809. doi: 10.1586/era.10.154. PubMed DOI PMC

Dougherty T.J., Gomer C.J., Henderson B.W., Jori G., Kessel D., Korbelik M., Moan J., Peng Q. Photodynamic Therapy. J. Natl. Cancer Inst. 1998;90:889–905. doi: 10.1093/jnci/90.12.889. PubMed DOI PMC

Olivo M., Bhuvaneswari R., Lucky S.S., Dendukuri N., Thong P.S.-P. Targeted Therapy of Cancer Using Photodynamic Therapy in Combination with Multi-faceted Anti-Tumor Modalities. Pharmaceuticals. 2010;3:1507–1529. doi: 10.3390/ph3051507. PubMed DOI PMC

Debele T.A., Peng S., Tsai H.-C. Drug Carrier for Photodynamic Cancer Therapy. Int. J. Mol. Sci. 2015;16:22094–22136. doi: 10.3390/ijms160922094. PubMed DOI PMC

Abrahamse H., Hamblin M.R. New photosensitizers for photodynamic therapy. Biochem. J. 2016;473:347–364. doi: 10.1042/BJ20150942. PubMed DOI PMC

Mathews M.S., Angell-Petersen E., Bs R.S., Sun C.-H., Vo V., Hirschberg H., Madsen S.J. The effects of ultra low fluence rate single and repetitive photodynamic therapy on glioma spheroids. Lasers Surg. Med. 2009;41:578–584. doi: 10.1002/lsm.20808. PubMed DOI PMC

Prasad P.N. Polymer science and technology for new generation photonics and biophotonics. Curr. Opin. Solid State Mater. Sci. 2004;8:11–19. doi: 10.1016/j.cossms.2004.01.011. DOI

Jain K.K. Nanomedicine: Application of Nanobiotechnology in Medical Practice. Med. Princ. Pract. 2008;17:89–101. doi: 10.1159/000112961. PubMed DOI

Roduner E. Size matters: Why nanomaterials are different. Chem. Soc. Rev. 2006;35:583–592. doi: 10.1039/b502142c. PubMed DOI

Monge-Fuentes V., Muehlmann L.A., De Azevedo R.B. Perspectives on the application of nanotechnology in photodynamic therapy for the treatment of melanoma. Nano Rev. 2014;5:24381. doi: 10.3402/nano.v5.24381. PubMed DOI PMC

Davis M.E., Chen Z.G., Shin D.M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nanosci. Technol. 2009;7:239–250. doi: 10.1038/nrd2614. PubMed DOI

Konan-Kouakou Y., Boch R., Gurny R., Allémann E. In vitro and in vivo activities of verteporfin-loaded nanoparticles. J. Control. Release. 2005;103:83–91. doi: 10.1016/j.jconrel.2004.11.023. PubMed DOI

Master A., Livingston M., Gupta A.S. Photodynamic nanomedicine in the treatment of solid tumors: Perspectives and challenges. J. Control. Release. 2013;168:88–102. doi: 10.1016/j.jconrel.2013.02.020. PubMed DOI PMC

Allison R.R., Mota H.C., Bagnato V.S., Sibata C.H. Bio-nanotechnology and photodynamic therapy—State of the art review. Photodiagn. Photodyn. Ther. 2008;5:19–28. doi: 10.1016/j.pdpdt.2008.02.001. PubMed DOI

Lismont M., Dreesen L., Wuttke S. Metal-Organic Framework Nanoparticles in Photodynamic Therapy: Current Status and Perspectives. Adv. Funct. Mater. 2017;27:1606314. doi: 10.1002/adfm.201606314. DOI

Nakamura Y., Mochida A., Choyke P.L., Kobayashi H. Nanodrug Delivery: Is the Enhanced Permeability and Retention Effect Sufficient for Curing Cancer? Bioconjug. Chem. 2016;27:2225–2238. doi: 10.1021/acs.bioconjchem.6b00437. PubMed DOI PMC

Hossen S., Hossain M.K., Basher M.K., Mia M.N.H., Rahman M.T., Uddin M.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J. Adv. Res. 2019;15:1–18. doi: 10.1016/j.jare.2018.06.005. PubMed DOI PMC

Heldin C.-H., Rubin K., Pietras K., Östman A. High interstitial fluid pressure—An obstacle in cancer therapy. Nat. Rev. Cancer. 2004;4:806–813. doi: 10.1038/nrc1456. PubMed DOI

Panyam J., Zhou W., Prabha S., Sahoo S.K., Labhasetwar V. Rapid endo-lysosomal escape of poly(DL-lactide-coglycolide) nanoparticles: Implications for drug and gene delivery. FASEB J. 2002;16:1217–1226. doi: 10.1096/fj.02-0088com. PubMed DOI

Olivier V., Riviere C., Hindié M., Duval J.-L., Bomila-Koradjim G., Nagel M.-D. Uptake of polystyrene beads bearing functional groups by macrophages and fibroblasts. Colloids Surf. B Biointerfaces. 2004;33:23–31. doi: 10.1016/j.colsurfb.2003.08.008. DOI

Yacobi N.R., DeMaio L., Xie J., Hamm-Alvarez S., Borok Z., Kim K.-J., Crandall E.D. Polystyrene nanoparticle trafficking across alveolar epithelium. Nanomed. Nanotechnol. Biol. Med. 2008;4:139–145. doi: 10.1016/j.nano.2008.02.002. PubMed DOI

Prietl B., Meindl C., Roblegg E., Pieber T.R., Lanzer G., Fröhlich E. Nano-sized and micro-sized polystyrene particles affect phagocyte function. Cell Biol. Toxicol. 2014;30:1–16. doi: 10.1007/s10565-013-9265-y. PubMed DOI PMC

Lunova M., Prokhorov A., Jirsa M., Hof M., Olżyńska A., Jurkiewicz P., Kubinova S., Lunov O., Dejneka A. Nanoparticle core stability and surface functionalization drive the mTOR signaling pathway in hepatocellular cell lines. Sci. Rep. 2017;7:16049. doi: 10.1038/s41598-017-16447-6. PubMed DOI PMC

Mala Z., Zarska L., Malina L., Langova K., Vecerova R., Kolar M., Henke P., Mosinger J., Kolarova H. Photodynamic efect of TPP encapsulated in polystyrene nanoparticles toward multi resistant pathogenic bacterial strains: AFM evaluation. Sci. Rep. 2021;11:6786. doi: 10.1038/s41598-021-85828-9. PubMed DOI PMC

Sledge G., Miller K. Exploiting the hallmarks of cancer: The future conquest of breast cancer. Eur. J. Cancer. 2003;39:1668–1675. doi: 10.1016/S0959-8049(03)00273-9. PubMed DOI

Zhou Y., Liang X., Dai Z. Porphyrin-loaded nanoparticles for cancer theranostics. Nanoscale. 2016;8:12394–12405. doi: 10.1039/C5NR07849K. PubMed DOI

Şueki F., Ruhi M.K., Gülsoy M. The effect of curcumin in antitumor photodynamic therapy: In vitro experiments with Caco-2 and PC-3 cancer lines. Photodiagn. Photodyn. Ther. 2019;27:95–99. doi: 10.1016/j.pdpdt.2019.05.012. PubMed DOI

Hanakova A., Bogdanová K., Tománková K., Binder S., Bajgar R., Langova K., Kolář M., Mosinger J., Kolarova H. Study of photodynamic effects on NIH 3T3 cell line and bacteria. Biomed. Pap. 2014;158:201–207. doi: 10.5507/bp.2012.057. PubMed DOI

Žárská L., Malá Z., Langová K., Malina L., Binder S., Bajgar R., Kolářová H. The effect of two porphyrine photosensitizers TMPyP and ZnTPPS4 for application in photodynamic therapy of cancer cells in vitro. Photodiagn. Photodyn. Ther. 2021;34:102224. doi: 10.1016/j.pdpdt.2021.102224. PubMed DOI

Gille J.J., Wotelboer H.M., Joenje H. Effect of normobaric hyperoxia on antioxidant defenses of hela and CHO cells. Free Radic. Biol. Med. 1988;4:85–91. doi: 10.1016/0891-5849(88)90068-8. PubMed DOI

Porta C., Moroni M., Guallini P., Torri C., Marzatico F. Antioxidant enzymatic system and free radicals pathway in two different human cancer cell lines. Anticancer Res. 1996;16:2741–2747. PubMed

Chang M.-C., Chan C.-P., Wang Y.-J., Lee P.-H., Chen L.-I., Tsai Y.-L., Lin B.-R., Wang Y.-L., Jeng J.-H. Induction of necrosis and apoptosis to KB cancer cells by sanguinarine is associated with reactive oxygen species production and mitochondrial membrane depolarization. Toxicol. Appl. Pharmacol. 2007;218:143–151. doi: 10.1016/j.taap.2006.10.025. PubMed DOI

Kim R., Emi M., Tanabe K., Murakami S., Uchida Y., Arihiro K. Regulation and interplay of apoptotic and non-apoptotic cell death. J. Pathol. 2006;208:319–326. doi: 10.1002/path.1885. PubMed DOI

Baugh S.D.P., Yang Z., Leung D.K., Wilson D.M., Breslow R. Cyclodextrin Dimers as Cleavable Carriers of Photodynamic Sensitizers. J. Am. Chem. Soc. 2001;123:12488–12494. doi: 10.1021/ja011709o. PubMed DOI

Sun F., Hamagawa E., Tsutsui C., Sakaguchi N., Kakuta Y., Tokumaru S., Kojo S. Evaluation of oxidative stress during apoptosis and necrosis caused by d-galactosamine in rat liver. Biochem. Pharmacol. 2003;65:101–107. doi: 10.1016/S0006-2952(02)01420-X. PubMed DOI

Kubát P., Henke P., Raya R.K., Stepanek M., Mosinger J. Polystyrene and Poly(ethylene glycol)-b-Poly(ε-caprolactone) Nanoparticles with Porphyrins: Structure, Size, and Photooxidation Properties. Langmuir. 2019;36:302–310. doi: 10.1021/acs.langmuir.9b03468. PubMed DOI

Kubát P., Henke P., Berzediová V., Štěpánek M., Lang K., Mosinger J. Nanoparticles with Embedded Porphyrin Photosensitizers for Photooxidation Reactions and Continuous Oxygen Sensing. ACS Appl. Mater. Interfaces. 2017;9:36229–36238. doi: 10.1021/acsami.7b12009. PubMed DOI

Dolanský J., Henke P., Malá Z., Žárská L., Kubát P., Mosinger J. Antibacterial nitric oxide- and singlet oxygen-releasing polystyrene nanoparticles responsive to light and temperature triggers. Nanoscale. 2018;10:2639–2648. doi: 10.1039/C7NR08822A. PubMed DOI

Henke P., Kirakci K., Kubát P., Fraiberk M., Forstová J., Mosinger J. Antibacterial, Antiviral, and Oxygen-Sensing Nanoparticles Prepared from Electrospun Materials. ACS Appl. Mater. Interfaces. 2016;8:25127–25136. doi: 10.1021/acsami.6b08234. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...