Biological Evaluation of Photodynamic Effect Mediated by Nanoparticles with Embedded Porphyrin Photosensitizer
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000868
the European Regional Development Fund
NU21-09-00357
Ministry of Health of the Czech Republic
PubMed
35408948
PubMed Central
PMC8998438
DOI
10.3390/ijms23073588
PII: ijms23073588
Knihovny.cz E-zdroje
- Klíčová slova
- cancer, nanoparticles, photodynamic effect,
- MeSH
- buňky NIH 3T3 MeSH
- fotochemoterapie * metody MeSH
- fotosenzibilizující látky farmakologie terapeutické užití MeSH
- lidé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nanočástice * MeSH
- porfyriny * metabolismus farmakologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- tkáňová distribuce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fotosenzibilizující látky MeSH
- porfyriny * MeSH
- reaktivní formy kyslíku MeSH
Clinically approved photodynamic therapy (PDT) is a minimally invasive treatment procedure that uses three key components: photosensitization, a light source, and tissue oxygen. However, the photodynamic effect is limited by both the photophysical properties of photosensitizers as well as their low selectivity, leading to damage to adjacent normal tissue and/or inadequate biodistribution. Nanoparticles (NPs) represent a new option for PDT that can overcome most of the limitations of conventional photosensitizers and can also promote photosensitizer accumulation in target cells through enhanced permeation and retention effects. In this in vitro study, the photodynamic effect of TPP photosensitizers embedded in polystyrene nanoparticles was observed on the non-tumor NIH3T3 cell line and HeLa and G361 tumor cell lines. The efficacy was evaluated by viability assay, while reactive oxygen species production, changes in membrane mitochondrial potential, and morphological changes before and after treatment were imaged by atomic force microscopy. The tested nanoparticles with embedded TPP were found to become cytotoxic only after activation by blue light (414 nm) due to the production of reactive oxygen species. The photodynamic effect observed in this evaluation was significantly higher in both tumor lines than the effect observed in the non-tumor line, and the resulting phototoxicity depended on the concentration of photosensitizer and irradiation time.
Zobrazit více v PubMed
Ackroyd R., Kelty C., Brown N., Reed M. The History of Photodetection and Photodynamic Therapy. Photochem. Photobiol. 2001;74:656–669. doi: 10.1562/0031-8655(2001)074<0656:THOPAP>2.0.CO;2. PubMed DOI
Triesscheijn M., Baas P., Schellens J.H.M., Stewart F.A. Photodynamic Therapy in Oncology. Oncologist. 2006;11:1034–1044. doi: 10.1634/theoncologist.11-9-1034. PubMed DOI
Zhao B., He Y.-Y. Recent advances in the prevention and treatment of skin cancer using photodynamic therapy. Expert Rev. Anticancer Therm. 2010;10:1797–1809. doi: 10.1586/era.10.154. PubMed DOI PMC
Dougherty T.J., Gomer C.J., Henderson B.W., Jori G., Kessel D., Korbelik M., Moan J., Peng Q. Photodynamic Therapy. J. Natl. Cancer Inst. 1998;90:889–905. doi: 10.1093/jnci/90.12.889. PubMed DOI PMC
Olivo M., Bhuvaneswari R., Lucky S.S., Dendukuri N., Thong P.S.-P. Targeted Therapy of Cancer Using Photodynamic Therapy in Combination with Multi-faceted Anti-Tumor Modalities. Pharmaceuticals. 2010;3:1507–1529. doi: 10.3390/ph3051507. PubMed DOI PMC
Debele T.A., Peng S., Tsai H.-C. Drug Carrier for Photodynamic Cancer Therapy. Int. J. Mol. Sci. 2015;16:22094–22136. doi: 10.3390/ijms160922094. PubMed DOI PMC
Abrahamse H., Hamblin M.R. New photosensitizers for photodynamic therapy. Biochem. J. 2016;473:347–364. doi: 10.1042/BJ20150942. PubMed DOI PMC
Mathews M.S., Angell-Petersen E., Bs R.S., Sun C.-H., Vo V., Hirschberg H., Madsen S.J. The effects of ultra low fluence rate single and repetitive photodynamic therapy on glioma spheroids. Lasers Surg. Med. 2009;41:578–584. doi: 10.1002/lsm.20808. PubMed DOI PMC
Prasad P.N. Polymer science and technology for new generation photonics and biophotonics. Curr. Opin. Solid State Mater. Sci. 2004;8:11–19. doi: 10.1016/j.cossms.2004.01.011. DOI
Jain K.K. Nanomedicine: Application of Nanobiotechnology in Medical Practice. Med. Princ. Pract. 2008;17:89–101. doi: 10.1159/000112961. PubMed DOI
Roduner E. Size matters: Why nanomaterials are different. Chem. Soc. Rev. 2006;35:583–592. doi: 10.1039/b502142c. PubMed DOI
Monge-Fuentes V., Muehlmann L.A., De Azevedo R.B. Perspectives on the application of nanotechnology in photodynamic therapy for the treatment of melanoma. Nano Rev. 2014;5:24381. doi: 10.3402/nano.v5.24381. PubMed DOI PMC
Davis M.E., Chen Z.G., Shin D.M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nanosci. Technol. 2009;7:239–250. doi: 10.1038/nrd2614. PubMed DOI
Konan-Kouakou Y., Boch R., Gurny R., Allémann E. In vitro and in vivo activities of verteporfin-loaded nanoparticles. J. Control. Release. 2005;103:83–91. doi: 10.1016/j.jconrel.2004.11.023. PubMed DOI
Master A., Livingston M., Gupta A.S. Photodynamic nanomedicine in the treatment of solid tumors: Perspectives and challenges. J. Control. Release. 2013;168:88–102. doi: 10.1016/j.jconrel.2013.02.020. PubMed DOI PMC
Allison R.R., Mota H.C., Bagnato V.S., Sibata C.H. Bio-nanotechnology and photodynamic therapy—State of the art review. Photodiagn. Photodyn. Ther. 2008;5:19–28. doi: 10.1016/j.pdpdt.2008.02.001. PubMed DOI
Lismont M., Dreesen L., Wuttke S. Metal-Organic Framework Nanoparticles in Photodynamic Therapy: Current Status and Perspectives. Adv. Funct. Mater. 2017;27:1606314. doi: 10.1002/adfm.201606314. DOI
Nakamura Y., Mochida A., Choyke P.L., Kobayashi H. Nanodrug Delivery: Is the Enhanced Permeability and Retention Effect Sufficient for Curing Cancer? Bioconjug. Chem. 2016;27:2225–2238. doi: 10.1021/acs.bioconjchem.6b00437. PubMed DOI PMC
Hossen S., Hossain M.K., Basher M.K., Mia M.N.H., Rahman M.T., Uddin M.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J. Adv. Res. 2019;15:1–18. doi: 10.1016/j.jare.2018.06.005. PubMed DOI PMC
Heldin C.-H., Rubin K., Pietras K., Östman A. High interstitial fluid pressure—An obstacle in cancer therapy. Nat. Rev. Cancer. 2004;4:806–813. doi: 10.1038/nrc1456. PubMed DOI
Panyam J., Zhou W., Prabha S., Sahoo S.K., Labhasetwar V. Rapid endo-lysosomal escape of poly(DL-lactide-coglycolide) nanoparticles: Implications for drug and gene delivery. FASEB J. 2002;16:1217–1226. doi: 10.1096/fj.02-0088com. PubMed DOI
Olivier V., Riviere C., Hindié M., Duval J.-L., Bomila-Koradjim G., Nagel M.-D. Uptake of polystyrene beads bearing functional groups by macrophages and fibroblasts. Colloids Surf. B Biointerfaces. 2004;33:23–31. doi: 10.1016/j.colsurfb.2003.08.008. DOI
Yacobi N.R., DeMaio L., Xie J., Hamm-Alvarez S., Borok Z., Kim K.-J., Crandall E.D. Polystyrene nanoparticle trafficking across alveolar epithelium. Nanomed. Nanotechnol. Biol. Med. 2008;4:139–145. doi: 10.1016/j.nano.2008.02.002. PubMed DOI
Prietl B., Meindl C., Roblegg E., Pieber T.R., Lanzer G., Fröhlich E. Nano-sized and micro-sized polystyrene particles affect phagocyte function. Cell Biol. Toxicol. 2014;30:1–16. doi: 10.1007/s10565-013-9265-y. PubMed DOI PMC
Lunova M., Prokhorov A., Jirsa M., Hof M., Olżyńska A., Jurkiewicz P., Kubinova S., Lunov O., Dejneka A. Nanoparticle core stability and surface functionalization drive the mTOR signaling pathway in hepatocellular cell lines. Sci. Rep. 2017;7:16049. doi: 10.1038/s41598-017-16447-6. PubMed DOI PMC
Mala Z., Zarska L., Malina L., Langova K., Vecerova R., Kolar M., Henke P., Mosinger J., Kolarova H. Photodynamic efect of TPP encapsulated in polystyrene nanoparticles toward multi resistant pathogenic bacterial strains: AFM evaluation. Sci. Rep. 2021;11:6786. doi: 10.1038/s41598-021-85828-9. PubMed DOI PMC
Sledge G., Miller K. Exploiting the hallmarks of cancer: The future conquest of breast cancer. Eur. J. Cancer. 2003;39:1668–1675. doi: 10.1016/S0959-8049(03)00273-9. PubMed DOI
Zhou Y., Liang X., Dai Z. Porphyrin-loaded nanoparticles for cancer theranostics. Nanoscale. 2016;8:12394–12405. doi: 10.1039/C5NR07849K. PubMed DOI
Şueki F., Ruhi M.K., Gülsoy M. The effect of curcumin in antitumor photodynamic therapy: In vitro experiments with Caco-2 and PC-3 cancer lines. Photodiagn. Photodyn. Ther. 2019;27:95–99. doi: 10.1016/j.pdpdt.2019.05.012. PubMed DOI
Hanakova A., Bogdanová K., Tománková K., Binder S., Bajgar R., Langova K., Kolář M., Mosinger J., Kolarova H. Study of photodynamic effects on NIH 3T3 cell line and bacteria. Biomed. Pap. 2014;158:201–207. doi: 10.5507/bp.2012.057. PubMed DOI
Žárská L., Malá Z., Langová K., Malina L., Binder S., Bajgar R., Kolářová H. The effect of two porphyrine photosensitizers TMPyP and ZnTPPS4 for application in photodynamic therapy of cancer cells in vitro. Photodiagn. Photodyn. Ther. 2021;34:102224. doi: 10.1016/j.pdpdt.2021.102224. PubMed DOI
Gille J.J., Wotelboer H.M., Joenje H. Effect of normobaric hyperoxia on antioxidant defenses of hela and CHO cells. Free Radic. Biol. Med. 1988;4:85–91. doi: 10.1016/0891-5849(88)90068-8. PubMed DOI
Porta C., Moroni M., Guallini P., Torri C., Marzatico F. Antioxidant enzymatic system and free radicals pathway in two different human cancer cell lines. Anticancer Res. 1996;16:2741–2747. PubMed
Chang M.-C., Chan C.-P., Wang Y.-J., Lee P.-H., Chen L.-I., Tsai Y.-L., Lin B.-R., Wang Y.-L., Jeng J.-H. Induction of necrosis and apoptosis to KB cancer cells by sanguinarine is associated with reactive oxygen species production and mitochondrial membrane depolarization. Toxicol. Appl. Pharmacol. 2007;218:143–151. doi: 10.1016/j.taap.2006.10.025. PubMed DOI
Kim R., Emi M., Tanabe K., Murakami S., Uchida Y., Arihiro K. Regulation and interplay of apoptotic and non-apoptotic cell death. J. Pathol. 2006;208:319–326. doi: 10.1002/path.1885. PubMed DOI
Baugh S.D.P., Yang Z., Leung D.K., Wilson D.M., Breslow R. Cyclodextrin Dimers as Cleavable Carriers of Photodynamic Sensitizers. J. Am. Chem. Soc. 2001;123:12488–12494. doi: 10.1021/ja011709o. PubMed DOI
Sun F., Hamagawa E., Tsutsui C., Sakaguchi N., Kakuta Y., Tokumaru S., Kojo S. Evaluation of oxidative stress during apoptosis and necrosis caused by d-galactosamine in rat liver. Biochem. Pharmacol. 2003;65:101–107. doi: 10.1016/S0006-2952(02)01420-X. PubMed DOI
Kubát P., Henke P., Raya R.K., Stepanek M., Mosinger J. Polystyrene and Poly(ethylene glycol)-b-Poly(ε-caprolactone) Nanoparticles with Porphyrins: Structure, Size, and Photooxidation Properties. Langmuir. 2019;36:302–310. doi: 10.1021/acs.langmuir.9b03468. PubMed DOI
Kubát P., Henke P., Berzediová V., Štěpánek M., Lang K., Mosinger J. Nanoparticles with Embedded Porphyrin Photosensitizers for Photooxidation Reactions and Continuous Oxygen Sensing. ACS Appl. Mater. Interfaces. 2017;9:36229–36238. doi: 10.1021/acsami.7b12009. PubMed DOI
Dolanský J., Henke P., Malá Z., Žárská L., Kubát P., Mosinger J. Antibacterial nitric oxide- and singlet oxygen-releasing polystyrene nanoparticles responsive to light and temperature triggers. Nanoscale. 2018;10:2639–2648. doi: 10.1039/C7NR08822A. PubMed DOI
Henke P., Kirakci K., Kubát P., Fraiberk M., Forstová J., Mosinger J. Antibacterial, Antiviral, and Oxygen-Sensing Nanoparticles Prepared from Electrospun Materials. ACS Appl. Mater. Interfaces. 2016;8:25127–25136. doi: 10.1021/acsami.6b08234. PubMed DOI