Toxicity of atrazine and the products of its homogeneous photocatalytic degradation on the aquatic organisms Lemna minor and Daphnia magna

. 2019 Sep ; 26 (26) : 27259-27267. [epub] 20190718

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31321724

Grantová podpora
PROFISH CZ.02.1.01/0.0/0.0/16_019/0000869 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 31321724
DOI 10.1007/s11356-019-05710-0
PII: 10.1007/s11356-019-05710-0
Knihovny.cz E-zdroje

Usage of atrazine, a widely used herbicide, is now banned in many countries. Although forbidden to use, significant concentration of this herbicide is still present in the environment. The study focused not only on the toxicity of atrazine itself but also on products of homogeneous photocatalytic degradation. Such degradation was very fast in given conditions (sufficient amount of Fe(III) in the reaction system)-more than 95% of the initial amount of atrazine was eliminated after 30 min of irradiation. The toxicity of atrazine and its photodegradation products were examined on the aquatic plant Lemna minor and microcrustacean Daphnia magna in both acute and chronic tests. While the growth inhibition assay of atrazine for Lemna minor revealed EC50 value of 128.4 μg dm-3, the herbicide did not affect Daphnia in the acute toxicity assay. A degradation product, desethyl-atrazine, has been demonstrated to have a pronounced negative effect on the plant growth. Both atrazine and desethyl-atrazine affect negatively the number of juveniles and number of clutches of Daphnia magna in the chronic toxicity assay. Photocatalytic degradation lowers the negative effect of atrazine in Daphnia magna while photodegradation products still negatively affect Lemna growth.

Zobrazit více v PubMed

Battaglin WA, Rice KC, Focazio MJ, Salmons S, Barry RX (2009) The occurrence of glyphosate, atrazine, and other pesticides in vernal pools and adjacent streams in Washington, DC, Maryland, Iowa, and Wyoming, 2005-2006. Environ Monit Assess 155:281–307 DOI

Bogaerts P, Bohatier J, Bonnemoy F (2001) Use of the ciliated protozoan Tetrahymena pyriformis for the assessment of toxicity and quantitative structure – activity relationships of xenobiotics: Comparison with the Microtox test. Ecotoxicol Environ Saf 49:293–301 DOI

Canle LM, Fernández MI, Santaballa JA (2005) Developments in the mechanism of photodegradation of triazine-based pesticides. J Phys Org Chem 18:148–155 DOI

De Laat J, Gallard H, Ancelin S, Legube B (1999) Comparative study of the oxidation of atrazine and acetone by H DOI

Du Y, Su Y, Lei L, Zhang X (2009) Role of oxygen in the degradation of atrazine by UV/Fe(III) process. J Photochem Photobiol A 208:7–12 DOI

Easlon HM, Bloom AJ (2014) Easy Leaf Area: automated digital image analysis for rapid and accurate measurement of leaf area. Appl Plant Sci 2:apps.1400033 DOI

Evgenidou E, Fytianos K (2002) Photodegradation of triazine herbicides in aqueous solutions and natural waters. J Agric Food Chem 50:6423–6427 DOI

Fairchild JF, Ruessler DS, Haverland PS, Carlson AR (1997) Comparative sensitivity of Selenastrum capricornutum and Lemna minor to sixteen herbicides. Arch Environ Contam Toxicol 32:353–357 DOI

Farré MJ, Franch MI, Malato S, Ayllón JA, Peral J, Doménech X (2005) Degradation of some biorecalcitrant pesticides by homogeneous and heterogeneous photocatalytic ozonation. Chemosphere 58:1127–1133 DOI

Fenoll J, Hellín P, Martínez CM, Flores P, Navarro S (2012) Semiconductor-sensitized photodegradation of s-triazine and chloroacetanilide herbicides in leaching water using TiO DOI

Guillén Garcés RA, Hansen AM, Van Afferden M (2007) Mineralization of atrazine in agricultural soil: inhibition by nitrogen. Environ Toxicol Chem 26:844–850 DOI

Horáková M, Klementová S, Kříž P, Balakrishna SK, Spatenka P, Golovko O, Hájkova P, Exnar P (2014) The synergistic effect of advanced oxidation processes to eliminate resistant chemical compounds. Surf Coat Technol 241:154–158 DOI

Kassinos D, Varnava N, Michael C, Piera P (2009) Homogeneous oxidation of aqueous solutions of atrazine and fenitrothion through dark and photo-Fenton reactions. Chemosphere 74:866–872 DOI

Klementová S (2011) A critical view of the photoinitiated degradation of herbicides. In: Hasaneen MNAE-G (ed) Herbicides - properties, synthesis and control of weeds. Intech, Rijeka, pp 297–314

Klementová S, Hamsová K (2000) Catalysis and sensitization in photochemical degradation of triazines. Res J Chem Environ 4:7–12

Klementová S, Keltnerová L (2015) Triazine herbicides in the environment. In: Price A, Kelton J, Sarunaite L (eds) Herbicides, physiology of action, and safety. TechOpen ISBN 978-953-51-2217-3

Klementová S, Zlámal M (2013) Photochemical degradation of triazine herbicides – comparison of homogeneous and heterogeneous photocatalysis. Photochem Photobiol Sci 12:660–663 DOI

Klementová S, Rabova-Tousova Z, Blaha L, Kahoun D, Simek P, Keltnerova L, Zlamal M (2015) Photodegradation of atrazine on TiO2–Products toxicity assessment. Open J Appl Sci 5:14–21 DOI

Land Stewardship Project & Pesticide Action Network North America: The Syngenta Corporation & Atrazine (2010) The Cost to the Land, People & Democracy. A report [online]. Available from: http://www.panna.org/sites/default/files/AtrazineReportBig2010.pdf . Accessed: [2017-08-08]

Lapertot M, Ebrahimi S, Oller I, Maldonado MI, Gernjak W, Malato S, Pulgarín C (2008) Evaluating Microtox© as a tool for biodegradability assessment of partially treated solutions of pesticides using Fe3+ and TiO DOI

Loos R, Gawlik BM, Locoro G, Rimaviciute E, Contini S, Bidoglio G (2009) EU-wide survey of polar organic persistent pollutants in European river waters. Environ Pollut 157:561–568 DOI

Mercurio P, Mueller JF, Eaglesham G, O’Brien J, Flores F, Negri AP (2016) Degradation of herbicides in the tropical marine environment: Influence of light and sediment. PLoS One 11:e0165890 DOI

Minero C, Pramauro E, Pelizzetti E (1992) Photosensitized transformations of atrazine under simulated sunlight in aqueous humid acid solution. Chemosphere 24:1597–1606 DOI

Na T, Fang Z, Zhanqi G, Ming Z, Cheng S (2006) The status of pesticide residues in the drinking water sources in Meiliangwan Bay, Taihu Lake of China. Environ Monit Assess 123:351–370 DOI

OECD Guidelines for the Testing of Chemicals, Guideline 202 (2004) Daphnia sp. Acute Immobilisation Test. Available from: http://www.oecd-ilibrary.org/environment/test-no-202-daphnia-sp-acute-immobilisation-test_9789264069947-en . Accessed: [2017-10-15]

OECD Guidelines for the Testing of Chemicals, Guideline 221 (2002) Lemna sp. Growth Inhibition Test. Available from: http://www.oecd-ilibrary.org/environment/test-no-221-lemna-sp-growth-inhabition-test_9789264016194-en;jsessionid=34s3quagr3op3.x-oecd-live-03 . Accessed: [2017-10-15]

Palma P, Palma VL, Fernandes RM, Soares AMVM, Barbosa IR (2008) Acute toxicity of atrazine, endosulfan sulphate and chlorpyrifos to Vibrio fischeri, Thamnocephalus platyurus and Daphnia magna, relative to their concentrations in surface waters from the Alentejo Region of Portugal. Bull Environ Contam Toxicol 81:485–489 DOI

Palma P, Palma VL, Matos C, Fernandes RM, Bohn A, Soares AMVM, Barbosa IR (2009) Effect of atrazine and endosulfan sulphate on the ecdysteroid system of Daphnia magna. Chemosphere 74:676–681 DOI

Qin C, Yang S, Sun C, Zhan M, Wang R, Cai H, Zhou J (2010) Investigation of the effects of humic acid on H DOI

Radosevich M, Traina SJ, Hao Y-L, Tuovinen OH (1995) Degradation and mineralization of atrazine by a soil bacterial isolate. Appl Environ Microbiol 61:297–302

Robinson S, Jebakumar S, Kumar A, Santhi VS (2013) Atrazine biodegradation efficiency, metabolite detection and trzD gene expression by enrichment bacterial cultures from agricultural soil. J Zhejiang Univ Sci B 14:1162–1172 DOI

Saas JB, Colangelo A (2006) European Union bans atrazine, while the United States negotiates continued use. Int J Occup Environ Health 12:260–267 DOI

Scribner EA, Thurman EM, Goolsby DA, Battaglin WA (2005) Summary of significant results from studies of triazine herbicides and their degradation products in surface water, ground water, and precipitation in the Midwestern United States during the 1990s: Scientific Investigations Report 2005-5094. Reston, Virginia: U.S. Geological Survey, 1–27

Silva MP, Batista AP, Borrely SI, Silva VH, Teixeira AC (2014) Photolysis of atrazine in aqueous solution: role of process variables and reactive oxygen species. Environ Sci Pollut Res Int 21:12135–12142 DOI

Tchounwou PB, Wilson B, Ishaque A, Ransome R, Huang MJ, Leszczynski J (2000) Toxicity assessment of atrazine and related triazine compounds in the Microtox assay, and computational modelling for their structure-activity relationship. Int J Mol Sci 1:63–74 DOI

TIBCO Software Inc (2017). Statistica (data analysis software system), version 13. http://statistica.io

Tixier C, Sancelme M, Aït-Aïssa S, Widehem P, Bonnemoy F, Cuer A, Trufaut N, Veschambre H (2002) Biotransformation of phenylurea herbicides by a soil bacterial strain, Arthrobacter sp. N 2: structure, ecotoxicity and fate of diuron metabolite with soil fungi. Chemosphere 46:519–526 DOI

Torstenson L (2001) Use of herbicides on railway tracks in Sweden. Pest Outlook 12:16–21 DOI

US Environmental Protection Agency ECOTOX User Guide (2014) ECOTOXicology Database System. Version 4.0. Available from http://cfpub.epa.gov/ecotox . Accessed: [2017-12-03]

Vargas MH (2000) ED50plus v1.0. Available from: http://www.sciencegateway.org/protocols/cellbio/drug/data . Accessed: [2017-11-26]

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...