Phylogeny and evolution of Müllerian mimicry in aposematic Dilophotes: evidence for advergence and size-constraints in evolution of mimetic sexual dimorphism

. 2018 Feb 27 ; 8 (1) : 3744. [epub] 20180227

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29487341
Odkazy

PubMed 29487341
PubMed Central PMC5829258
DOI 10.1038/s41598-018-22155-6
PII: 10.1038/s41598-018-22155-6
Knihovny.cz E-zdroje

Multiple patterns and intraspecific polymorphism should not persist in mutualistic Müllerian systems due to purifying and frequency-dependent selection, but they are commonly identified in nature. We analysed molecular phylogeny and reconstructed dispersal history of 58 species of Dilophotes (Coleoptera: Lycidae) in Asia. Dilophotes colonized the Great Sundas and Malay Peninsula where they joined extensive mimetic communities of net-winged beetles. We identified the brightly bi-coloured males and females which adverged on five occasions to different autochthonous models. This is the first described case of Müllerian sexual dimorphism based on sex-specific body size. We propose that the constraint, i.e. the conservative sexual size dimorphism, forced the unprofitable prey to such complex adaptation in a multi-pattern environment. Although mimetic sexual dimorphism has frequently evolved in Dilophotes, a single pattern has been maintained by both sexes in multiple closely related, sympatrically occurring species. Some patterns may be suboptimal because they are rare, crudely resemble co-mimics, or are newly evolved, but they persist in Müllerian communities for a long time. We assume that failure to closely resemble the most common model can increase the diversity of large Müllerian communities and produce mimetic dimorphism.

Zobrazit více v PubMed

Müller F. Ituna and Thyridia: a remarkable case of mimicry in butterflies. Proc. Entomol. Soc. Lond. 1879;1879:xx–xxiv.

Mallet J, Joron M. Evolution of diversity in warning colour and mimicry: polymorphisms, shifting balance and speciation. Ann. Rev. Ecol. Syst. 1999;30:201–233. doi: 10.1146/annurev.ecolsys.30.1.201. DOI

Sherratt TN. The evolution of Müllerian mimicry. Naturwissenschaften. 2008;95:681–695. doi: 10.1007/s00114-008-0403-y. PubMed DOI PMC

Chouteau M, Arias M, Joron M. Warning signals are under positive frequency-dependent selection in nature. Proc. Nat. Acad. Sci. USA. 2016;113:2164–2169. doi: 10.1073/pnas.1519216113. PubMed DOI PMC

Rojas B, Endler JA. Sexual dimorphism and intra-populational colour pattern variation in the aposematic frog Dendrobates tinctorius. Evol. Ecol. 2013;27:739–753. doi: 10.1007/s10682-013-9640-4. DOI

Sherratt TN. The evolution of imperfect mimicry. Behav. Ecol. 2002;13:821–826. doi: 10.1093/beheco/13.6.821. DOI

Penney HD, Hassall C, Skevington JH, Abbott KR, Sherratt TN. A comparative analysis of the evolution of imperfect mimicry. Nature. 2012;483:461–464. doi: 10.1038/nature10961. PubMed DOI

Kikuchi DW, Pfennig DW. Imperfect mimicry and the limits of natural selection. Quart. Rev. Biol. 2013;88:297–315. doi: 10.1086/673758. PubMed DOI

Mallet, J. Speciation, raciation, and color pattern evolution in Heliconius butterflies: evidence from hybrid zones in Hybrid Zones and the Evolutionary Process (ed. Harrison, R. G.) 226–260 (Oxford University Press, 1993).

Brown KS, Benson WW. Adaptive polymorphism associated with multiple Müllerian mimicry in Heliconius numata (Lepid.: Nymph.) Biotropica. 1974;6:205–228. doi: 10.2307/2989666. DOI

Bocek M, Bocak L. Species limits in polymorphic mimetic Eniclases net-winged beetles from New Guinean mountains (Coleoptera: Lycidae) ZooKeys. 2016;593:15–35. doi: 10.3897/zookeys.593.7728. PubMed DOI PMC

Kusy, D., Sklenarova, K. & Bocak, L. The effectiveness of DNA-based delimitation in Synchonnus net-winged beetles (Coleoptera: Lycidae) assessed, and description of 11 new species, Austral Entomology, early view, 10.1111/aen.12266 (2017)

Kalousova, R. & Bocak, L. Species delimitation of colour polymorphic Cladophorus (Coleoptera: Lycidae) from New Guinea. Zootaxa, in press, (2017).

Edmunds M. Why there are good and poor mimics? Biol. J. Linn. Soc. 2000;70:459–466. doi: 10.1111/j.1095-8312.2000.tb01234.x. DOI

Richards-Zawacki CL, Yeager J, Bart HPS. No evidence for differential survival or predation between sympatric color morphs of an aposematic poison frog. Evol. Ecol. 2013;27:783–795. doi: 10.1007/s10682-013-9636-0. DOI

Chouteau M, Angers B. Wright’s shifting balance theory and the diversification of aposematic signals. PLoS One. 2012;7(3):e34028. doi: 10.1371/journal.pone.0034028. PubMed DOI PMC

Aubier TG, Sherratt TN. Diversity in Müllerian mimicry: the optimal predator sampling strategy explains both local and regional polymorphism in prey. Evolution. 2015;69:2831–2845. doi: 10.1111/evo.12790. PubMed DOI

Willmott KR, Mallet J. Correlations between adult mimicry and larval host plants in ithomiine butterflies. Proc. R. Soc. Lond. B (Suppl.) 2004;271:S266–S269. doi: 10.1098/rsbl.2004.0184. PubMed DOI PMC

Gompert Z, Willmott KR, Elias M. Heterogeneity in predator micro-habitat use and the maintenance of Müllerian mimetic diversity. J. Theor. Biol. 2011;281:39–46. doi: 10.1016/j.jtbi.2011.04.024. PubMed DOI

Willmott KR, Willmott JCR, Elias M, Jiggins CD. Maintaining mimicry diversity: optimal warning colour patterns differ among microhabitats in Amazonian clearwing butterflies. Proc. R. Soc. B. 2017;284:20170744. doi: 10.1098/rspb.2017.0744. PubMed DOI PMC

Holen ØH, Johnstone RA. The evolution of mimicry under constraints. Am. Nat. 2004;164:598–613. doi: 10.1086/424972. PubMed DOI

Speed MP, Ruxton GD. Imperfect Batesian mimicry and the conspicuousness costs of mimetic resemblance. Am. Nat. 2004;176:E1–E14. doi: 10.1086/652990. PubMed DOI

Brower LP, Brower JVZ. Parallelism, convergence, divergence, and the new concept of advergence in the evolution of mimicry. Trans. Conn. Acad. Arts Sci. 1972;44:59–67.

Bocak L, Yagi T. Evolution of mimicry patterns in Metriorrhynchus (Coleoptera: Lycidae): The history of dispersal and speciation in Southeast Asia. Evolution. 2010;64:39–52. doi: 10.1111/j.1558-5646.2009.00812.x. PubMed DOI

Mallet J. Causes and consequences of a lack of coevolution in Müllerian mimicry. Evol. Ecol. 1999;13:777–806. doi: 10.1023/A:1011060330515. DOI

Rowe C, Lindström L, Lyytinen A. The importance of pattern similarity between Müllerian mimics in predator avoidance learning. Proc. R. Soc. Lond. B. 2004;271:407–413. doi: 10.1098/rspb.2003.2615. PubMed DOI PMC

Kazemi B, Gamberale-Stille G, Tullberg BS, Leimar O. Stimulus salience as an explanation for imperfect mimicry. Curr. Biol. 2014;24:965–969. doi: 10.1016/j.cub.2014.02.061. PubMed DOI

Jiggins CD, Mallarino R, Willmott KR, Bermingham E. The phylogenetic pattern of speciation and wing pattern change in Neotropical Ithomia butterflies (Lepidoptera: Nymphalidae) Evolution. 2006;60:1454–1466. doi: 10.1111/j.0014-3820.2006.tb01224.x. PubMed DOI

Wilson JS, Williams KA, Forister ML, von Dohlen CD, Pitts JP. Repeated evolution in overlapping mimicry rings among North American velvet ants. Nat. Commun. 2012;3:1272. doi: 10.1038/ncomms2275. PubMed DOI

Bocak L, Bocakova M, Hunt T, Vogler AP. Multiple ancient origins of neoteny in Lycidae (Coleoptera): consequences for ecology and macroevolution. Proc. R. Soc. B-Biol. Sci. 2008;275:2015–2023. doi: 10.1098/rspb.2008.0476. PubMed DOI PMC

Bocak L, Bocakova M. Phylogeny and classification of the family Lycidae (Insecta: Coleoptera) Ann. Zool. 2008;58:695–720. doi: 10.3161/000345408X396639. DOI

Eisner T, et al. Defensive chemistry of lycid beetles and of mimetic cerambycid beetles that feed on them. Chemoecology. 2008;18:109–119. doi: 10.1007/s00049-007-0398-4. PubMed DOI PMC

Sklenarova K, Chesters D, Bocak L. Phylogeography of poorly dispersing net-winged beetles: A role of drifting India in the origin of Afrotropical and Oriental fauna. Plos One. 2013;8(6):e67957. doi: 10.1371/journal.pone.0067957. PubMed DOI PMC

Masek M, Palata V, Bray TC, Bocak L. Molecular phylogeny reveals high diversity and geographic structure in Asian neotenic net-winged beetles Platerodrilus (Coleoptera: Lycidae) PlosOne. 2015;10(4):e0123855. doi: 10.1371/journal.pone.0123855. PubMed DOI PMC

Li Y, Gunter N, Pang H, Bocak L. DNA-based species delimitation separates highly divergent populations within morphologically coherent clades of poorly dispersing beetles. Zool. J. Linn. Soc. 2015;175:59–72. doi: 10.1111/zoj.12262. DOI

Guilford T. How do ‘warning colours’ work? Conspicuousness may reduce recognition errors in experienced predators. Anim. Behav. 1986;34:286–288. doi: 10.1016/0003-3472(86)90034-5. DOI

Gamberale-Stille G. Benefit by contrast: an experiment with live aposematic prey. Behav. Ecol. 2001;12:768–772. doi: 10.1093/beheco/12.6.768. DOI

Rojas B, Rautiala P, Mappes J. Differential detectability of polymorphic warning signal under varying light environment. Behav. Proc. 2014;109:164–172. doi: 10.1016/j.beproc.2014.08.014. PubMed DOI

Shamim G, Ranjan SK, Pandey DM, Ramani R. Biochemistry and biosynthesis of insect pigments. Eur. J. Entomol. 2014;111:149–164.

Endler JA, Théry M. Interacting effects of lek placement, display behavior, ambient light, and color patterns in three neotropical forest-dwelling birds. Am. Nat. 1996;148:421–452. doi: 10.1086/285934. DOI

Lindsted C, Lindstroem L, Mappes J. Hairiness and warning colours as components of antipredator defence: additive or interactive benefits? Anim. Behav. 2008;75:1703–1713. doi: 10.1016/j.anbehav.2007.10.024. DOI

Lindstroem L, Alatalo RV, Mappes J, Riipi M, Vertainen L. Can aposematic signals evolve by gradual change? Nature. 1999;397:249–251. doi: 10.1038/16692. DOI

Riipi M, Alatalo RV, Lindstroem L, Mappes J. Multiple benefits of gregariousness cover detectability costs in aposematic aggregations. Nature. 2001;413:512–514. doi: 10.1038/35097061. PubMed DOI

Arenas LM, Troscianko J, Stevens M. Color contrast and stability as key elements for effective warning signals. Front. Ecol. Evol. 2014;2:1–12. doi: 10.3389/fevo.2014.00025. DOI

Roper TJ, Redston S. Conspicuousness of distasteful prey affects the strength and durability of one-trial avoidance learning. Anim. Behav. 1987;35:739–747. doi: 10.1016/S0003-3472(87)80110-0. DOI

Marples NM, Roper TJ. Effects of novel colour and smell on the response of naive chicks towards food and water. Anim. Behav. 1969;51:1417–1424. doi: 10.1006/anbe.1996.0145. DOI

Aronsson M, Gamberale-Stille G. Evidence of signaling benefits to contrasting internal color boundaries in warning coloration. Behav. Ecol. 2013;24:349–354. doi: 10.1093/beheco/ars170. DOI

Aronsson M, Gamberale-Stille G. Importance of internal pattern contrast and contrast against the background in aposematic signals. Behav. Ecol. 2009;20:1356–1362. doi: 10.1093/beheco/arp141. DOI

Arenas LM, Walter D, Stevens M. Signal honesty and predation risk among a closely related group of aposematic species. Sci. Rep. 2015;5:11021. doi: 10.1038/srep11021. PubMed DOI PMC

Harper GR, Jr, Pfennig DW. Selection overrides gene flow to break down maladaptive mimicry. Nature. 2008;451:1103–1106. doi: 10.1038/nature06532. PubMed DOI

Mallet L, Barton NH. 1989. Strong natural selection in a warning colour hybrid zone. Evolution. 1989;43:421–431. doi: 10.1111/j.1558-5646.1989.tb04237.x. PubMed DOI

Ruxton GD, Franks DW, Balogh ACV, Leimar O. Evolutionary implications of the form of predator generalization for aposematic signal and mimicry in prey. Evolution. 2008;62:2913–2921. doi: 10.1111/j.1558-5646.2008.00485.x. PubMed DOI

Kato K, Yamada H, Shibata E. Role of female adult size in reproductive fitness of Semanotus japonicus (Coleoptera: Cerambycidae) Appl. Entomol. Zool. 2000;35:327–331. doi: 10.1303/aez.2000.327. DOI

Beaty C, Beirinckx K, Sherratt TN. The evolution of Müllerian mimicry in multispecies communities. Nature. 2004;431:63–66. doi: 10.1038/nature02818. PubMed DOI

Marples NM, Kelly DJ. Neophobia and dietary conservatism: two distinct processes. Evol. Evol. 1999;13:641–653. doi: 10.1023/A:1011077731153. DOI

Alatalo RV, Mappes J. Tracking the evolution of warning signals. Nature. 1996;382:708–710. doi: 10.1038/382708a0. DOI

Thompson JN, Schwind C, Guimarães PR, Jr, Friberg M. Diversi cation through multitrait evolution in a coevolving interaction. Proc. Natl Acad. Sci. USA. 2013;110:11487–11492. doi: 10.1073/pnas.1307451110. PubMed DOI PMC

Thompson, J. N. The Geographic Mosaic of Coevolution (Univ. Chicago Press, 2005).

Borer M, Van Noort T, Rahier M, Naisbit RE. Positive frequency-dependent selection on warning color in alpine leaf beetles. Evolution. 2010;64:3629–3633. doi: 10.1111/j.1558-5646.2010.01137.x. PubMed DOI

Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucl. Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC

Stamatakis A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–2690. doi: 10.1093/bioinformatics/btl446. PubMed DOI

Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML web servers. Syst. Biol. 2008;57:758–771. doi: 10.1080/10635150802429642. PubMed DOI

Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nature Meth. 2012;9:772. doi: 10.1038/nmeth.2109. PubMed DOI PMC

Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogeny. Bioinformatics. 2001;17:754–755. doi: 10.1093/bioinformatics/17.8.754. PubMed DOI

Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer 1.6. Available from http://beast.bio.ed.ac.uk/Tracer (2014).

Ezard, T., Fujisawa, T. & Barraclough, T. Splits: SPecies’ LImits by Threshold Statistics. R package version 1.0-11/r29. Available from http://R-Forge.R-project.org/projects/splits (2009).

Drummond. AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012;29:1969–1973. doi: 10.1093/molbev/mss075. PubMed DOI PMC

Brower AVZ. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial-DNA evolution. Proc. Natl Acad. Sci. USA. 1994;91:6491–6495. doi: 10.1073/pnas.91.14.6491. PubMed DOI PMC

Pons J, Ribera I, Bertranpetit J, Balke M. Nucleotide substitution rates for the full set of mitochondrial protein-coding genes in Coleoptera. Mol. Phyl. Evol. 2010;56:796–807. doi: 10.1016/j.ympev.2010.02.007. PubMed DOI

Papadopoulou A, Anastasiou I, Vogler AP. Revisiting the insect mitochondrial molecular clock: The mid-Aegean trench calibration. Mol. Biol. Evol. 2010;27:1659–1672. doi: 10.1093/molbev/msq051. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Eocene aposematic patterns persist in modern European Lycidae beetles despite the absence of co-mimics

. 2023 Mar 17 ; 26 (3) : 106217. [epub] 20230220

Analysis of the Holarctic Dictyoptera aurora Complex (Coleoptera, Lycidae) Reveals Hidden Diversity and Geographic Structure in Müllerian Mimicry Ring

. 2022 Sep 07 ; 13 (9) : . [epub] 20220907

Phylogenomic and mitogenomic data can accelerate inventorying of tropical beetles during the current biodiversity crisis

. 2021 Dec 20 ; 10 () : . [epub] 20211220

Conspicuousness, phylogenetic structure, and origins of Müllerian mimicry in 4000 lycid beetles from all zoogeographic regions

. 2021 Mar 16 ; 11 (1) : 5961. [epub] 20210316

Biodiversity Inventory and Distribution of Metriorrhynchina Net-Winged Beetles (Coleoptera: Lycidae), with the Identification of Generic Ranges

. 2020 Oct 16 ; 11 (10) : . [epub] 20201016

Interactions in multi-pattern Müllerian communities support origins of new patterns, false structures, imperfect resemblance and mimetic sexual dimorphism

. 2020 Jul 08 ; 10 (1) : 11193. [epub] 20200708

Persistence of multiple patterns and intraspecific polymorphism in multi-species Müllerian communities of net-winged beetles

. 2019 ; 16 () : 38. [epub] 20191017

Genomic and Mitochondrial Data Identify Different Species Boundaries in Aposematically Polymorphic Eniclases Net-Winged Beetles (Coleoptera: Lycidae)

. 2019 Sep 11 ; 10 (9) : . [epub] 20190911

The Malacca Strait separates distinct faunas of poorly-flying Cautires net-winged beetles

. 2019 ; 7 () : e6511. [epub] 20190305

Genome sequences identify three families of Coleoptera as morphologically derived click beetles (Elateridae)

. 2018 Nov 20 ; 8 (1) : 17084. [epub] 20181120

Molecular Phylogeny, Diversity and Zoogeography of Net-Winged Beetles (Coleoptera: Lycidae)

. 2018 Nov 01 ; 9 (4) : . [epub] 20181101

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...