Phylogeny and evolution of Müllerian mimicry in aposematic Dilophotes: evidence for advergence and size-constraints in evolution of mimetic sexual dimorphism
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29487341
PubMed Central
PMC5829258
DOI
10.1038/s41598-018-22155-6
PII: 10.1038/s41598-018-22155-6
Knihovny.cz E-zdroje
- MeSH
- biodiverzita MeSH
- biologická evoluce * MeSH
- brouci klasifikace fyziologie MeSH
- fylogeneze * MeSH
- fylogeografie MeSH
- mimikry * MeSH
- pohlavní dimorfismus * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Multiple patterns and intraspecific polymorphism should not persist in mutualistic Müllerian systems due to purifying and frequency-dependent selection, but they are commonly identified in nature. We analysed molecular phylogeny and reconstructed dispersal history of 58 species of Dilophotes (Coleoptera: Lycidae) in Asia. Dilophotes colonized the Great Sundas and Malay Peninsula where they joined extensive mimetic communities of net-winged beetles. We identified the brightly bi-coloured males and females which adverged on five occasions to different autochthonous models. This is the first described case of Müllerian sexual dimorphism based on sex-specific body size. We propose that the constraint, i.e. the conservative sexual size dimorphism, forced the unprofitable prey to such complex adaptation in a multi-pattern environment. Although mimetic sexual dimorphism has frequently evolved in Dilophotes, a single pattern has been maintained by both sexes in multiple closely related, sympatrically occurring species. Some patterns may be suboptimal because they are rare, crudely resemble co-mimics, or are newly evolved, but they persist in Müllerian communities for a long time. We assume that failure to closely resemble the most common model can increase the diversity of large Müllerian communities and produce mimetic dimorphism.
Zobrazit více v PubMed
Müller F. Ituna and Thyridia: a remarkable case of mimicry in butterflies. Proc. Entomol. Soc. Lond. 1879;1879:xx–xxiv.
Mallet J, Joron M. Evolution of diversity in warning colour and mimicry: polymorphisms, shifting balance and speciation. Ann. Rev. Ecol. Syst. 1999;30:201–233. doi: 10.1146/annurev.ecolsys.30.1.201. DOI
Sherratt TN. The evolution of Müllerian mimicry. Naturwissenschaften. 2008;95:681–695. doi: 10.1007/s00114-008-0403-y. PubMed DOI PMC
Chouteau M, Arias M, Joron M. Warning signals are under positive frequency-dependent selection in nature. Proc. Nat. Acad. Sci. USA. 2016;113:2164–2169. doi: 10.1073/pnas.1519216113. PubMed DOI PMC
Rojas B, Endler JA. Sexual dimorphism and intra-populational colour pattern variation in the aposematic frog Dendrobates tinctorius. Evol. Ecol. 2013;27:739–753. doi: 10.1007/s10682-013-9640-4. DOI
Sherratt TN. The evolution of imperfect mimicry. Behav. Ecol. 2002;13:821–826. doi: 10.1093/beheco/13.6.821. DOI
Penney HD, Hassall C, Skevington JH, Abbott KR, Sherratt TN. A comparative analysis of the evolution of imperfect mimicry. Nature. 2012;483:461–464. doi: 10.1038/nature10961. PubMed DOI
Kikuchi DW, Pfennig DW. Imperfect mimicry and the limits of natural selection. Quart. Rev. Biol. 2013;88:297–315. doi: 10.1086/673758. PubMed DOI
Mallet, J. Speciation, raciation, and color pattern evolution in Heliconius butterflies: evidence from hybrid zones in Hybrid Zones and the Evolutionary Process (ed. Harrison, R. G.) 226–260 (Oxford University Press, 1993).
Brown KS, Benson WW. Adaptive polymorphism associated with multiple Müllerian mimicry in Heliconius numata (Lepid.: Nymph.) Biotropica. 1974;6:205–228. doi: 10.2307/2989666. DOI
Bocek M, Bocak L. Species limits in polymorphic mimetic Eniclases net-winged beetles from New Guinean mountains (Coleoptera: Lycidae) ZooKeys. 2016;593:15–35. doi: 10.3897/zookeys.593.7728. PubMed DOI PMC
Kusy, D., Sklenarova, K. & Bocak, L. The effectiveness of DNA-based delimitation in Synchonnus net-winged beetles (Coleoptera: Lycidae) assessed, and description of 11 new species, Austral Entomology, early view, 10.1111/aen.12266 (2017)
Kalousova, R. & Bocak, L. Species delimitation of colour polymorphic Cladophorus (Coleoptera: Lycidae) from New Guinea. Zootaxa, in press, (2017).
Edmunds M. Why there are good and poor mimics? Biol. J. Linn. Soc. 2000;70:459–466. doi: 10.1111/j.1095-8312.2000.tb01234.x. DOI
Richards-Zawacki CL, Yeager J, Bart HPS. No evidence for differential survival or predation between sympatric color morphs of an aposematic poison frog. Evol. Ecol. 2013;27:783–795. doi: 10.1007/s10682-013-9636-0. DOI
Chouteau M, Angers B. Wright’s shifting balance theory and the diversification of aposematic signals. PLoS One. 2012;7(3):e34028. doi: 10.1371/journal.pone.0034028. PubMed DOI PMC
Aubier TG, Sherratt TN. Diversity in Müllerian mimicry: the optimal predator sampling strategy explains both local and regional polymorphism in prey. Evolution. 2015;69:2831–2845. doi: 10.1111/evo.12790. PubMed DOI
Willmott KR, Mallet J. Correlations between adult mimicry and larval host plants in ithomiine butterflies. Proc. R. Soc. Lond. B (Suppl.) 2004;271:S266–S269. doi: 10.1098/rsbl.2004.0184. PubMed DOI PMC
Gompert Z, Willmott KR, Elias M. Heterogeneity in predator micro-habitat use and the maintenance of Müllerian mimetic diversity. J. Theor. Biol. 2011;281:39–46. doi: 10.1016/j.jtbi.2011.04.024. PubMed DOI
Willmott KR, Willmott JCR, Elias M, Jiggins CD. Maintaining mimicry diversity: optimal warning colour patterns differ among microhabitats in Amazonian clearwing butterflies. Proc. R. Soc. B. 2017;284:20170744. doi: 10.1098/rspb.2017.0744. PubMed DOI PMC
Holen ØH, Johnstone RA. The evolution of mimicry under constraints. Am. Nat. 2004;164:598–613. doi: 10.1086/424972. PubMed DOI
Speed MP, Ruxton GD. Imperfect Batesian mimicry and the conspicuousness costs of mimetic resemblance. Am. Nat. 2004;176:E1–E14. doi: 10.1086/652990. PubMed DOI
Brower LP, Brower JVZ. Parallelism, convergence, divergence, and the new concept of advergence in the evolution of mimicry. Trans. Conn. Acad. Arts Sci. 1972;44:59–67.
Bocak L, Yagi T. Evolution of mimicry patterns in Metriorrhynchus (Coleoptera: Lycidae): The history of dispersal and speciation in Southeast Asia. Evolution. 2010;64:39–52. doi: 10.1111/j.1558-5646.2009.00812.x. PubMed DOI
Mallet J. Causes and consequences of a lack of coevolution in Müllerian mimicry. Evol. Ecol. 1999;13:777–806. doi: 10.1023/A:1011060330515. DOI
Rowe C, Lindström L, Lyytinen A. The importance of pattern similarity between Müllerian mimics in predator avoidance learning. Proc. R. Soc. Lond. B. 2004;271:407–413. doi: 10.1098/rspb.2003.2615. PubMed DOI PMC
Kazemi B, Gamberale-Stille G, Tullberg BS, Leimar O. Stimulus salience as an explanation for imperfect mimicry. Curr. Biol. 2014;24:965–969. doi: 10.1016/j.cub.2014.02.061. PubMed DOI
Jiggins CD, Mallarino R, Willmott KR, Bermingham E. The phylogenetic pattern of speciation and wing pattern change in Neotropical Ithomia butterflies (Lepidoptera: Nymphalidae) Evolution. 2006;60:1454–1466. doi: 10.1111/j.0014-3820.2006.tb01224.x. PubMed DOI
Wilson JS, Williams KA, Forister ML, von Dohlen CD, Pitts JP. Repeated evolution in overlapping mimicry rings among North American velvet ants. Nat. Commun. 2012;3:1272. doi: 10.1038/ncomms2275. PubMed DOI
Bocak L, Bocakova M, Hunt T, Vogler AP. Multiple ancient origins of neoteny in Lycidae (Coleoptera): consequences for ecology and macroevolution. Proc. R. Soc. B-Biol. Sci. 2008;275:2015–2023. doi: 10.1098/rspb.2008.0476. PubMed DOI PMC
Bocak L, Bocakova M. Phylogeny and classification of the family Lycidae (Insecta: Coleoptera) Ann. Zool. 2008;58:695–720. doi: 10.3161/000345408X396639. DOI
Eisner T, et al. Defensive chemistry of lycid beetles and of mimetic cerambycid beetles that feed on them. Chemoecology. 2008;18:109–119. doi: 10.1007/s00049-007-0398-4. PubMed DOI PMC
Sklenarova K, Chesters D, Bocak L. Phylogeography of poorly dispersing net-winged beetles: A role of drifting India in the origin of Afrotropical and Oriental fauna. Plos One. 2013;8(6):e67957. doi: 10.1371/journal.pone.0067957. PubMed DOI PMC
Masek M, Palata V, Bray TC, Bocak L. Molecular phylogeny reveals high diversity and geographic structure in Asian neotenic net-winged beetles Platerodrilus (Coleoptera: Lycidae) PlosOne. 2015;10(4):e0123855. doi: 10.1371/journal.pone.0123855. PubMed DOI PMC
Li Y, Gunter N, Pang H, Bocak L. DNA-based species delimitation separates highly divergent populations within morphologically coherent clades of poorly dispersing beetles. Zool. J. Linn. Soc. 2015;175:59–72. doi: 10.1111/zoj.12262. DOI
Guilford T. How do ‘warning colours’ work? Conspicuousness may reduce recognition errors in experienced predators. Anim. Behav. 1986;34:286–288. doi: 10.1016/0003-3472(86)90034-5. DOI
Gamberale-Stille G. Benefit by contrast: an experiment with live aposematic prey. Behav. Ecol. 2001;12:768–772. doi: 10.1093/beheco/12.6.768. DOI
Rojas B, Rautiala P, Mappes J. Differential detectability of polymorphic warning signal under varying light environment. Behav. Proc. 2014;109:164–172. doi: 10.1016/j.beproc.2014.08.014. PubMed DOI
Shamim G, Ranjan SK, Pandey DM, Ramani R. Biochemistry and biosynthesis of insect pigments. Eur. J. Entomol. 2014;111:149–164.
Endler JA, Théry M. Interacting effects of lek placement, display behavior, ambient light, and color patterns in three neotropical forest-dwelling birds. Am. Nat. 1996;148:421–452. doi: 10.1086/285934. DOI
Lindsted C, Lindstroem L, Mappes J. Hairiness and warning colours as components of antipredator defence: additive or interactive benefits? Anim. Behav. 2008;75:1703–1713. doi: 10.1016/j.anbehav.2007.10.024. DOI
Lindstroem L, Alatalo RV, Mappes J, Riipi M, Vertainen L. Can aposematic signals evolve by gradual change? Nature. 1999;397:249–251. doi: 10.1038/16692. DOI
Riipi M, Alatalo RV, Lindstroem L, Mappes J. Multiple benefits of gregariousness cover detectability costs in aposematic aggregations. Nature. 2001;413:512–514. doi: 10.1038/35097061. PubMed DOI
Arenas LM, Troscianko J, Stevens M. Color contrast and stability as key elements for effective warning signals. Front. Ecol. Evol. 2014;2:1–12. doi: 10.3389/fevo.2014.00025. DOI
Roper TJ, Redston S. Conspicuousness of distasteful prey affects the strength and durability of one-trial avoidance learning. Anim. Behav. 1987;35:739–747. doi: 10.1016/S0003-3472(87)80110-0. DOI
Marples NM, Roper TJ. Effects of novel colour and smell on the response of naive chicks towards food and water. Anim. Behav. 1969;51:1417–1424. doi: 10.1006/anbe.1996.0145. DOI
Aronsson M, Gamberale-Stille G. Evidence of signaling benefits to contrasting internal color boundaries in warning coloration. Behav. Ecol. 2013;24:349–354. doi: 10.1093/beheco/ars170. DOI
Aronsson M, Gamberale-Stille G. Importance of internal pattern contrast and contrast against the background in aposematic signals. Behav. Ecol. 2009;20:1356–1362. doi: 10.1093/beheco/arp141. DOI
Arenas LM, Walter D, Stevens M. Signal honesty and predation risk among a closely related group of aposematic species. Sci. Rep. 2015;5:11021. doi: 10.1038/srep11021. PubMed DOI PMC
Harper GR, Jr, Pfennig DW. Selection overrides gene flow to break down maladaptive mimicry. Nature. 2008;451:1103–1106. doi: 10.1038/nature06532. PubMed DOI
Mallet L, Barton NH. 1989. Strong natural selection in a warning colour hybrid zone. Evolution. 1989;43:421–431. doi: 10.1111/j.1558-5646.1989.tb04237.x. PubMed DOI
Ruxton GD, Franks DW, Balogh ACV, Leimar O. Evolutionary implications of the form of predator generalization for aposematic signal and mimicry in prey. Evolution. 2008;62:2913–2921. doi: 10.1111/j.1558-5646.2008.00485.x. PubMed DOI
Kato K, Yamada H, Shibata E. Role of female adult size in reproductive fitness of Semanotus japonicus (Coleoptera: Cerambycidae) Appl. Entomol. Zool. 2000;35:327–331. doi: 10.1303/aez.2000.327. DOI
Beaty C, Beirinckx K, Sherratt TN. The evolution of Müllerian mimicry in multispecies communities. Nature. 2004;431:63–66. doi: 10.1038/nature02818. PubMed DOI
Marples NM, Kelly DJ. Neophobia and dietary conservatism: two distinct processes. Evol. Evol. 1999;13:641–653. doi: 10.1023/A:1011077731153. DOI
Alatalo RV, Mappes J. Tracking the evolution of warning signals. Nature. 1996;382:708–710. doi: 10.1038/382708a0. DOI
Thompson JN, Schwind C, Guimarães PR, Jr, Friberg M. Diversi cation through multitrait evolution in a coevolving interaction. Proc. Natl Acad. Sci. USA. 2013;110:11487–11492. doi: 10.1073/pnas.1307451110. PubMed DOI PMC
Thompson, J. N. The Geographic Mosaic of Coevolution (Univ. Chicago Press, 2005).
Borer M, Van Noort T, Rahier M, Naisbit RE. Positive frequency-dependent selection on warning color in alpine leaf beetles. Evolution. 2010;64:3629–3633. doi: 10.1111/j.1558-5646.2010.01137.x. PubMed DOI
Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucl. Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC
Stamatakis A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–2690. doi: 10.1093/bioinformatics/btl446. PubMed DOI
Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML web servers. Syst. Biol. 2008;57:758–771. doi: 10.1080/10635150802429642. PubMed DOI
Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nature Meth. 2012;9:772. doi: 10.1038/nmeth.2109. PubMed DOI PMC
Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogeny. Bioinformatics. 2001;17:754–755. doi: 10.1093/bioinformatics/17.8.754. PubMed DOI
Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer 1.6. Available from http://beast.bio.ed.ac.uk/Tracer (2014).
Ezard, T., Fujisawa, T. & Barraclough, T. Splits: SPecies’ LImits by Threshold Statistics. R package version 1.0-11/r29. Available from http://R-Forge.R-project.org/projects/splits (2009).
Drummond. AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012;29:1969–1973. doi: 10.1093/molbev/mss075. PubMed DOI PMC
Brower AVZ. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial-DNA evolution. Proc. Natl Acad. Sci. USA. 1994;91:6491–6495. doi: 10.1073/pnas.91.14.6491. PubMed DOI PMC
Pons J, Ribera I, Bertranpetit J, Balke M. Nucleotide substitution rates for the full set of mitochondrial protein-coding genes in Coleoptera. Mol. Phyl. Evol. 2010;56:796–807. doi: 10.1016/j.ympev.2010.02.007. PubMed DOI
Papadopoulou A, Anastasiou I, Vogler AP. Revisiting the insect mitochondrial molecular clock: The mid-Aegean trench calibration. Mol. Biol. Evol. 2010;27:1659–1672. doi: 10.1093/molbev/msq051. PubMed DOI