Phylogeny and evolution of Müllerian mimicry in aposematic Dilophotes: evidence for advergence and size-constraints in evolution of mimetic sexual dimorphism
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29487341
PubMed Central
PMC5829258
DOI
10.1038/s41598-018-22155-6
PII: 10.1038/s41598-018-22155-6
Knihovny.cz E-zdroje
- MeSH
- biodiverzita MeSH
- biologická evoluce * MeSH
- brouci klasifikace fyziologie MeSH
- charakteristické znaky pohlaví * MeSH
- fylogeneze * MeSH
- fylogeografie MeSH
- mimikry * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Multiple patterns and intraspecific polymorphism should not persist in mutualistic Müllerian systems due to purifying and frequency-dependent selection, but they are commonly identified in nature. We analysed molecular phylogeny and reconstructed dispersal history of 58 species of Dilophotes (Coleoptera: Lycidae) in Asia. Dilophotes colonized the Great Sundas and Malay Peninsula where they joined extensive mimetic communities of net-winged beetles. We identified the brightly bi-coloured males and females which adverged on five occasions to different autochthonous models. This is the first described case of Müllerian sexual dimorphism based on sex-specific body size. We propose that the constraint, i.e. the conservative sexual size dimorphism, forced the unprofitable prey to such complex adaptation in a multi-pattern environment. Although mimetic sexual dimorphism has frequently evolved in Dilophotes, a single pattern has been maintained by both sexes in multiple closely related, sympatrically occurring species. Some patterns may be suboptimal because they are rare, crudely resemble co-mimics, or are newly evolved, but they persist in Müllerian communities for a long time. We assume that failure to closely resemble the most common model can increase the diversity of large Müllerian communities and produce mimetic dimorphism.
Zobrazit více v PubMed
Müller F. Ituna and Thyridia: a remarkable case of mimicry in butterflies. Proc. Entomol. Soc. Lond. 1879;1879:xx–xxiv.
Mallet J, Joron M. Evolution of diversity in warning colour and mimicry: polymorphisms, shifting balance and speciation. Ann. Rev. Ecol. Syst. 1999;30:201–233. doi: 10.1146/annurev.ecolsys.30.1.201. DOI
Sherratt TN. The evolution of Müllerian mimicry. Naturwissenschaften. 2008;95:681–695. doi: 10.1007/s00114-008-0403-y. PubMed DOI PMC
Chouteau M, Arias M, Joron M. Warning signals are under positive frequency-dependent selection in nature. Proc. Nat. Acad. Sci. USA. 2016;113:2164–2169. doi: 10.1073/pnas.1519216113. PubMed DOI PMC
Rojas B, Endler JA. Sexual dimorphism and intra-populational colour pattern variation in the aposematic frog Dendrobates tinctorius. Evol. Ecol. 2013;27:739–753. doi: 10.1007/s10682-013-9640-4. DOI
Sherratt TN. The evolution of imperfect mimicry. Behav. Ecol. 2002;13:821–826. doi: 10.1093/beheco/13.6.821. DOI
Penney HD, Hassall C, Skevington JH, Abbott KR, Sherratt TN. A comparative analysis of the evolution of imperfect mimicry. Nature. 2012;483:461–464. doi: 10.1038/nature10961. PubMed DOI
Kikuchi DW, Pfennig DW. Imperfect mimicry and the limits of natural selection. Quart. Rev. Biol. 2013;88:297–315. doi: 10.1086/673758. PubMed DOI
Mallet, J. Speciation, raciation, and color pattern evolution in
Brown KS, Benson WW. Adaptive polymorphism associated with multiple Müllerian mimicry in Heliconius numata (Lepid.: Nymph.) Biotropica. 1974;6:205–228. doi: 10.2307/2989666. DOI
Bocek M, Bocak L. Species limits in polymorphic mimetic Eniclases net-winged beetles from New Guinean mountains (Coleoptera: Lycidae) ZooKeys. 2016;593:15–35. doi: 10.3897/zookeys.593.7728. PubMed DOI PMC
Kusy, D., Sklenarova, K. & Bocak, L. The effectiveness of DNA-based delimitation in
Kalousova, R. & Bocak, L. Species delimitation of colour polymorphic
Edmunds M. Why there are good and poor mimics? Biol. J. Linn. Soc. 2000;70:459–466. doi: 10.1111/j.1095-8312.2000.tb01234.x. DOI
Richards-Zawacki CL, Yeager J, Bart HPS. No evidence for differential survival or predation between sympatric color morphs of an aposematic poison frog. Evol. Ecol. 2013;27:783–795. doi: 10.1007/s10682-013-9636-0. DOI
Chouteau M, Angers B. Wright’s shifting balance theory and the diversification of aposematic signals. PLoS One. 2012;7(3):e34028. doi: 10.1371/journal.pone.0034028. PubMed DOI PMC
Aubier TG, Sherratt TN. Diversity in Müllerian mimicry: the optimal predator sampling strategy explains both local and regional polymorphism in prey. Evolution. 2015;69:2831–2845. doi: 10.1111/evo.12790. PubMed DOI
Willmott KR, Mallet J. Correlations between adult mimicry and larval host plants in ithomiine butterflies. Proc. R. Soc. Lond. B (Suppl.) 2004;271:S266–S269. doi: 10.1098/rsbl.2004.0184. PubMed DOI PMC
Gompert Z, Willmott KR, Elias M. Heterogeneity in predator micro-habitat use and the maintenance of Müllerian mimetic diversity. J. Theor. Biol. 2011;281:39–46. doi: 10.1016/j.jtbi.2011.04.024. PubMed DOI
Willmott KR, Willmott JCR, Elias M, Jiggins CD. Maintaining mimicry diversity: optimal warning colour patterns differ among microhabitats in Amazonian clearwing butterflies. Proc. R. Soc. B. 2017;284:20170744. doi: 10.1098/rspb.2017.0744. PubMed DOI PMC
Holen ØH, Johnstone RA. The evolution of mimicry under constraints. Am. Nat. 2004;164:598–613. doi: 10.1086/424972. PubMed DOI
Speed MP, Ruxton GD. Imperfect Batesian mimicry and the conspicuousness costs of mimetic resemblance. Am. Nat. 2004;176:E1–E14. doi: 10.1086/652990. PubMed DOI
Brower LP, Brower JVZ. Parallelism, convergence, divergence, and the new concept of advergence in the evolution of mimicry. Trans. Conn. Acad. Arts Sci. 1972;44:59–67.
Bocak L, Yagi T. Evolution of mimicry patterns in Metriorrhynchus (Coleoptera: Lycidae): The history of dispersal and speciation in Southeast Asia. Evolution. 2010;64:39–52. doi: 10.1111/j.1558-5646.2009.00812.x. PubMed DOI
Mallet J. Causes and consequences of a lack of coevolution in Müllerian mimicry. Evol. Ecol. 1999;13:777–806. doi: 10.1023/A:1011060330515. DOI
Rowe C, Lindström L, Lyytinen A. The importance of pattern similarity between Müllerian mimics in predator avoidance learning. Proc. R. Soc. Lond. B. 2004;271:407–413. doi: 10.1098/rspb.2003.2615. PubMed DOI PMC
Kazemi B, Gamberale-Stille G, Tullberg BS, Leimar O. Stimulus salience as an explanation for imperfect mimicry. Curr. Biol. 2014;24:965–969. doi: 10.1016/j.cub.2014.02.061. PubMed DOI
Jiggins CD, Mallarino R, Willmott KR, Bermingham E. The phylogenetic pattern of speciation and wing pattern change in Neotropical Ithomia butterflies (Lepidoptera: Nymphalidae) Evolution. 2006;60:1454–1466. doi: 10.1111/j.0014-3820.2006.tb01224.x. PubMed DOI
Wilson JS, Williams KA, Forister ML, von Dohlen CD, Pitts JP. Repeated evolution in overlapping mimicry rings among North American velvet ants. Nat. Commun. 2012;3:1272. doi: 10.1038/ncomms2275. PubMed DOI
Bocak L, Bocakova M, Hunt T, Vogler AP. Multiple ancient origins of neoteny in Lycidae (Coleoptera): consequences for ecology and macroevolution. Proc. R. Soc. B-Biol. Sci. 2008;275:2015–2023. doi: 10.1098/rspb.2008.0476. PubMed DOI PMC
Bocak L, Bocakova M. Phylogeny and classification of the family Lycidae (Insecta: Coleoptera) Ann. Zool. 2008;58:695–720. doi: 10.3161/000345408X396639. DOI
Eisner T, et al. Defensive chemistry of lycid beetles and of mimetic cerambycid beetles that feed on them. Chemoecology. 2008;18:109–119. doi: 10.1007/s00049-007-0398-4. PubMed DOI PMC
Sklenarova K, Chesters D, Bocak L. Phylogeography of poorly dispersing net-winged beetles: A role of drifting India in the origin of Afrotropical and Oriental fauna. Plos One. 2013;8(6):e67957. doi: 10.1371/journal.pone.0067957. PubMed DOI PMC
Masek M, Palata V, Bray TC, Bocak L. Molecular phylogeny reveals high diversity and geographic structure in Asian neotenic net-winged beetles Platerodrilus (Coleoptera: Lycidae) PlosOne. 2015;10(4):e0123855. doi: 10.1371/journal.pone.0123855. PubMed DOI PMC
Li Y, Gunter N, Pang H, Bocak L. DNA-based species delimitation separates highly divergent populations within morphologically coherent clades of poorly dispersing beetles. Zool. J. Linn. Soc. 2015;175:59–72. doi: 10.1111/zoj.12262. DOI
Guilford T. How do ‘warning colours’ work? Conspicuousness may reduce recognition errors in experienced predators. Anim. Behav. 1986;34:286–288. doi: 10.1016/0003-3472(86)90034-5. DOI
Gamberale-Stille G. Benefit by contrast: an experiment with live aposematic prey. Behav. Ecol. 2001;12:768–772. doi: 10.1093/beheco/12.6.768. DOI
Rojas B, Rautiala P, Mappes J. Differential detectability of polymorphic warning signal under varying light environment. Behav. Proc. 2014;109:164–172. doi: 10.1016/j.beproc.2014.08.014. PubMed DOI
Shamim G, Ranjan SK, Pandey DM, Ramani R. Biochemistry and biosynthesis of insect pigments. Eur. J. Entomol. 2014;111:149–164.
Endler JA, Théry M. Interacting effects of lek placement, display behavior, ambient light, and color patterns in three neotropical forest-dwelling birds. Am. Nat. 1996;148:421–452. doi: 10.1086/285934. DOI
Lindsted C, Lindstroem L, Mappes J. Hairiness and warning colours as components of antipredator defence: additive or interactive benefits? Anim. Behav. 2008;75:1703–1713. doi: 10.1016/j.anbehav.2007.10.024. DOI
Lindstroem L, Alatalo RV, Mappes J, Riipi M, Vertainen L. Can aposematic signals evolve by gradual change? Nature. 1999;397:249–251. doi: 10.1038/16692. DOI
Riipi M, Alatalo RV, Lindstroem L, Mappes J. Multiple benefits of gregariousness cover detectability costs in aposematic aggregations. Nature. 2001;413:512–514. doi: 10.1038/35097061. PubMed DOI
Arenas LM, Troscianko J, Stevens M. Color contrast and stability as key elements for effective warning signals. Front. Ecol. Evol. 2014;2:1–12. doi: 10.3389/fevo.2014.00025. DOI
Roper TJ, Redston S. Conspicuousness of distasteful prey affects the strength and durability of one-trial avoidance learning. Anim. Behav. 1987;35:739–747. doi: 10.1016/S0003-3472(87)80110-0. DOI
Marples NM, Roper TJ. Effects of novel colour and smell on the response of naive chicks towards food and water. Anim. Behav. 1969;51:1417–1424. doi: 10.1006/anbe.1996.0145. DOI
Aronsson M, Gamberale-Stille G. Evidence of signaling benefits to contrasting internal color boundaries in warning coloration. Behav. Ecol. 2013;24:349–354. doi: 10.1093/beheco/ars170. DOI
Aronsson M, Gamberale-Stille G. Importance of internal pattern contrast and contrast against the background in aposematic signals. Behav. Ecol. 2009;20:1356–1362. doi: 10.1093/beheco/arp141. DOI
Arenas LM, Walter D, Stevens M. Signal honesty and predation risk among a closely related group of aposematic species. Sci. Rep. 2015;5:11021. doi: 10.1038/srep11021. PubMed DOI PMC
Harper GR, Jr, Pfennig DW. Selection overrides gene flow to break down maladaptive mimicry. Nature. 2008;451:1103–1106. doi: 10.1038/nature06532. PubMed DOI
Mallet L, Barton NH. 1989. Strong natural selection in a warning colour hybrid zone. Evolution. 1989;43:421–431. doi: 10.1111/j.1558-5646.1989.tb04237.x. PubMed DOI
Ruxton GD, Franks DW, Balogh ACV, Leimar O. Evolutionary implications of the form of predator generalization for aposematic signal and mimicry in prey. Evolution. 2008;62:2913–2921. doi: 10.1111/j.1558-5646.2008.00485.x. PubMed DOI
Kato K, Yamada H, Shibata E. Role of female adult size in reproductive fitness of Semanotus japonicus (Coleoptera: Cerambycidae) Appl. Entomol. Zool. 2000;35:327–331. doi: 10.1303/aez.2000.327. DOI
Beaty C, Beirinckx K, Sherratt TN. The evolution of Müllerian mimicry in multispecies communities. Nature. 2004;431:63–66. doi: 10.1038/nature02818. PubMed DOI
Marples NM, Kelly DJ. Neophobia and dietary conservatism: two distinct processes. Evol. Evol. 1999;13:641–653. doi: 10.1023/A:1011077731153. DOI
Alatalo RV, Mappes J. Tracking the evolution of warning signals. Nature. 1996;382:708–710. doi: 10.1038/382708a0. DOI
Thompson JN, Schwind C, Guimarães PR, Jr, Friberg M. Diversi cation through multitrait evolution in a coevolving interaction. Proc. Natl Acad. Sci. USA. 2013;110:11487–11492. doi: 10.1073/pnas.1307451110. PubMed DOI PMC
Thompson, J. N.
Borer M, Van Noort T, Rahier M, Naisbit RE. Positive frequency-dependent selection on warning color in alpine leaf beetles. Evolution. 2010;64:3629–3633. doi: 10.1111/j.1558-5646.2010.01137.x. PubMed DOI
Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucl. Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC
Stamatakis A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–2690. doi: 10.1093/bioinformatics/btl446. PubMed DOI
Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML web servers. Syst. Biol. 2008;57:758–771. doi: 10.1080/10635150802429642. PubMed DOI
Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nature Meth. 2012;9:772. doi: 10.1038/nmeth.2109. PubMed DOI PMC
Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogeny. Bioinformatics. 2001;17:754–755. doi: 10.1093/bioinformatics/17.8.754. PubMed DOI
Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer 1.6. Available from http://beast.bio.ed.ac.uk/Tracer (2014).
Ezard, T., Fujisawa, T. & Barraclough, T. Splits:
Drummond. AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012;29:1969–1973. doi: 10.1093/molbev/mss075. PubMed DOI PMC
Brower AVZ. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial-DNA evolution. Proc. Natl Acad. Sci. USA. 1994;91:6491–6495. doi: 10.1073/pnas.91.14.6491. PubMed DOI PMC
Pons J, Ribera I, Bertranpetit J, Balke M. Nucleotide substitution rates for the full set of mitochondrial protein-coding genes in Coleoptera. Mol. Phyl. Evol. 2010;56:796–807. doi: 10.1016/j.ympev.2010.02.007. PubMed DOI
Papadopoulou A, Anastasiou I, Vogler AP. Revisiting the insect mitochondrial molecular clock: The mid-Aegean trench calibration. Mol. Biol. Evol. 2010;27:1659–1672. doi: 10.1093/molbev/msq051. PubMed DOI