Species limits in polymorphic mimetic Eniclases net-winged beetles from New Guinean mountains (Coleoptera, Lycidae)
Status PubMed-not-MEDLINE Language English Country Bulgaria Media electronic-ecollection
Document type Journal Article
PubMed
27408550
PubMed Central
PMC4926628
DOI
10.3897/zookeys.593.7728
Knihovny.cz E-resources
- Keywords
- Aposematism, Coleoptera, bPTP model, cox1 mtDNA, genetic distance, morphology, new species, species delimitation,
- Publication type
- Journal Article MeSH
Species delimitation was compared in a group of closely related lineages of aposematically colored Eniclases (Coleoptera, Lycidae) using morphology, genetic distances, and Bayesian implementation of the Poisson Tree Processes model. A high diversity of net-winged beetles was found in previously unsampled regions of New Guinea and ten new species are described: Eniclases bicolor sp. n., Eniclases bokondinensis sp. n., Eniclases brancuccii sp. n., Eniclases elelimensis sp. n., Eniclases infuscatus sp. n., Eniclases niger sp. n., Eniclases pseudoapertus sp. n., Eniclases pseudoluteolus sp. n., Eniclases tikapurensis sp. n., and Eniclases variabilis sp. n. Different levels of genetic and morphological diversification were identified in various sister-species pairs. As a result, both morphological and molecular analyses are used to delimit species. Sister-species with uncorrected pairwise genetic divergence as low as 0.45% were morphologically distinct not only in color pattern, but also in the relative size of eyes. Conversely, differences in color pattern regardless of their magnitude did not necessarily indicate genetic distance and intraspecific mimicry polymorphism was common. Additionally, genetic divergence without morphological differentiation was detected in one sister-species pair. Low dispersal propensity, diverse mimicry patterns, and mimetic polymorphism resulted in complex diversification of Eniclases and uncertain species delimitation in recently diversified lineages.
See more in PubMed
Baselga A, Gomez-Rodriguez C, Novoa F, Vogler AP. (2013) Rare failures of DNA barcodes to separate morphologically distinct species in a biodiversity survey of Iberian leaf beetles. PLoS ONE 8(9): . doi: 10.1371/journal.pone.0074854 PubMed DOI PMC
Bocak L. (2002) Generic revision and phylogenetic analysis of the Metriorrhynchinae (Coleoptera, Lycidae). European Journal of Entomology 99: 315–351. doi: 10.14411/eje.2002.043 DOI
Bocak L, Bocakova M. (1991) Revision of the genus Eniclases Waterhouse, 1879 (Coleoptera, Lycidae, Metriorrhynchinae). Mitteilungen der Münchener Entomologischen Gesellschaft 81: 203–226.
Bocak L, Bocakova M. (2008) Phylogeny and classification of the family Lycidae (Insecta, Coleoptera). Annales Zoologici 58: 695–720. doi: 10.3161/000345408x396639 DOI
Bocak L, Yagi T. (2010) Evolution of mimicry patterns in Metriorrhynchus (Coleoptera, Lycidae): The history of dispersal and speciation in Southeast Asia. Evolution 64: 39–52. doi: 10.1111/j.1558-5646.2009.00812.x PubMed DOI
Brower AVZ. (1994) Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial-DNA evolution. Proceedings of the National Academy of Sciences of the United States of America 91: 6491–6495. doi: 10.1073/pnas.91.14.6491 PubMed DOI PMC
Calder A. (1998) Zoological Catalogue of Australia – Coleoptera: Elateroidea. CSIRO Publishing, Melbourne.
Darriba D, Taboada GL, Doallo R, Posada D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9(8): 772. doi: 10.1038/nmeth.2109 PubMed DOI PMC
DeSalle R, Egan MG, Siddall M. (2005) The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philosophical Transactions of the Royal Society B-Biological Sciences 360: 1905–1916. doi: 10.1098/rstb.2005.1722 PubMed DOI PMC
Drummond AJ, Suchard MA, Xie D, Rambaut A. (2012) Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 1969–1973. doi: 10.1093/molbev/mss075 PubMed DOI PMC
Goldberg CS, Tank DC, Uribe-Convers S, Bosworth WR, Marx HE, Waits LP. (2012) Species designation of the Bruneau Dune tiger beetle (Cicindela waynei) is supported by phylogenetic analysis of mitochondrial DNA sequence data. Conservation Genetics 13: 373–380. doi: 10.1007/s10592-011-0295-9 DOI
Hebert PDN, Ratnasingham S, Dewaard JR. (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society B-Biological Sciences 270: S96–S99. doi: 10.1098/rsbl.2003.00 PubMed DOI PMC
Hill KC, Hall R. (2002) Mesozoic-Cainozoic evolution of Australia’s New Guinea margin in a West Pacific context. In: Hillis R, Müller RD. (Eds) Defining Australia: The Australian Plate as Part of the Planet Earth. Geological Society of America Special Paper/Geological Society of Australia Special Paper 372: 265–290. doi: 10.1130/0-8137-2372-8.265 DOI
Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R. (2007) Dendroscope: An interactive viewer for large phylogenetic trees. BMC Bioinformatics 8: . doi: 10.1186/1471-2105-8-460 PubMed DOI PMC
Jorger KM, Schrodl M. (2013) How to describe a cryptic species? Practical challenges of molecular taxonomy. Frontiers in Zoology 10: . doi: 10.1186/1742-9994-10-59 PubMed DOI PMC
Kleine R. (1926) Coleoptera – Lycidae. Nova Guinea 15: 91–195.
Li Y, Gunter N, Hong P, Bocak L. (2015) DNA-based species delimitation separates highly divergent populations within morphologically coherent clades of poorly dispersing beetles. Zoological Journal of the Linnean Society 175: 59–72. doi: 10.1111/zoj.12262 DOI
Meier R, Shiyang K, Vaidya G, Ng PKL. (2006) DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Systematic Biology 55: 715–728. doi: 10.1080/10635150600969864 PubMed DOI
Meyer CP, Paulay G. (2005) DNA barcoding: Error rates based on comprehensive sampling. PLoS Biology 3: 2229–2238. doi: 10.1371/journal.pbio.0030422 PubMed DOI PMC
Rambaut A, Suchard M, Drummond AJ. (2013) Tracer version 1.6. http://tree.bio.ed.ac.uk/software/tracer [10 Nov., 2014]
Papadopoulou A, Anastasiou I, Vogler AP. (2010) Revisiting the Insect Mitochondrial Molecular Clock: The Mid-Aegean Trench Calibration. Molecular Biology and Evolution 27: 1659–1672. doi: 10.1093/molbev/msq051 PubMed DOI
Pic M. (1921) Contribution à l’étude des Lycides. L’Echange 406: 9–12.
Riedel A, Sagata K, Surbakti S, Tanzler R, Balke M. (2013) One hundred and one new species of Trigonopterus weevils from New Guinea. ZooKeys 280: 1–150. doi: 10.3897/zookeys.280.3906 PubMed DOI PMC
Sklenarova K, Chesters D, Bocak L. (2013) Phylogeography of poorly dispersing net-winged beetles: a role of drifting India in the origin of Afrotropical and Oriental fauna. PLoS ONE 8(6): . doi: 10.1371/journal.pone.0067957 PubMed DOI PMC
Sklenarova K, Kubecek V, Bocak L. (2014) Subtribal classification of Metriorrhynchini (Insecta, Coleoptera, Lycidae): an integrative approach using molecular phylogeny and morphology of adults and larvae. Arthropod Systematics & Phylogeny 72: 37–54.
Stamatakis A. (2006) RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690. doi: 10.1093/bioinformatics/btl446 PubMed DOI
Stamatakis A, Hoover P, Rougemont J. (2008) A Rapid Bootstrap Algorithm for the RAxML Web Servers. Systematic Biology 57: 758–771. doi: 10.1080/10635150802429642 PubMed DOI
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30: 2725–2729. doi: 10.1093/molbev/mst197 PubMed DOI PMC
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25: 4876–4882. doi: 10.1093/nar/25.24.4876 PubMed DOI PMC
Toussaint EFA, Hall R, Monaghan MT, Sagata K, Ibalim S, Shaverdo HV, Vogler AP, Pons J, Balke M. (2014) The towering orogeny of New Guinea as a trigger for arthropod megadiversity. Nature Communications 5: . doi: 10.1038/ncomms5001 PubMed DOI
Waterhouse CO. (1879) Illustration of the Typical Specimens of Coleoptera in the Collection of the British Museum. Part I.-Lycidae. British Museum, London.
Zhang JJ, Kapli P, Pavlidis P, Stamatakis A. (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29: 2869–2876. doi: 10.1093/bioinformatics/btt499 PubMed DOI PMC