Conspicuousness, phylogenetic structure, and origins of Müllerian mimicry in 4000 lycid beetles from all zoogeographic regions
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33727670
PubMed Central
PMC7971032
DOI
10.1038/s41598-021-85567-x
PII: 10.1038/s41598-021-85567-x
Knihovny.cz E-zdroje
- MeSH
- Bayesova věta MeSH
- biodiverzita * MeSH
- biologická evoluce MeSH
- brouci anatomie a histologie klasifikace fyziologie MeSH
- fenotyp MeSH
- fylogeneze * MeSH
- fylogeografie * MeSH
- hustota populace MeSH
- kvantitativní znak dědičný MeSH
- mimikry * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Biologists have reported on the chemical defences and the phenetic similarity of net-winged beetles (Coleoptera: Lycidae) and their co-mimics. Nevertheless, our knowledge has remained fragmental, and the evolution of mimetic patterns has not been studied in the phylogenetic context. We illustrate the general appearance of ~ 600 lycid species and ~ 200 co-mimics and their distribution. Further, we assemble the phylogeny using the transcriptomic backbone and ~ 570 species. Using phylogenetic information, we closely scrutinise the relationships among aposematically coloured species, the worldwide diversity, and the distribution of aposematic patterns. The emitted visual signals differ in conspicuousness. The uniform coloured dorsum is ancestral and was followed by the evolution of bicoloured forms. The mottled patterns, i.e. fasciate, striate, punctate, and reticulate, originated later in the course of evolution. The highest number of sympatrically occurring patterns was recovered in New Guinea and the Andean mountain ecosystems (the areas of the highest abundance), and in continental South East Asia (an area of moderate abundance but high in phylogenetic diversity). Consequently, a large number of co-existing aposematic patterns in a single region and/or locality is the rule, in contrast with the theoretical prediction, and predators do not face a simple model-like choice but cope with complex mimetic communities. Lycids display an ancestral aposematic signal even though they sympatrically occur with differently coloured unprofitable relatives. We show that the highly conspicuous patterns evolve within communities predominantly formed by less conspicuous Müllerian mimics and, and often only a single species displays a novel pattern. Our work is a forerunner to the detailed research into the aposematic signalling of net-winged beetles.
Zobrazit více v PubMed
Müller F. Ituna and Thyridia: A remarkable case of mimicry in butterflies. Proc. Entomol. Soc. Lond. 1879;1879:20–24.
Mallet J, Joron M. Evolution of diversity in warning color and mimicry: Polymorphisms, shifting balance, and speciation. Ann. Rev. Ecol. Evol. Syst. 1999;30:201–233. doi: 10.1146/annurev.ecolsys.30.1.201. DOI
Sherratt TN. The evolution of Müllerian mimicry. Naturwissenschaften. 2008;95:681–695. doi: 10.1007/s00114-008-0403-y. PubMed DOI PMC
Beatty CD, Beirinckx K, Sherratt TN. The evolution of Müllerian mimicry in multispecies communities. Nature. 2004;431:63–67. doi: 10.1038/nature02818. PubMed DOI
Mallet L, Barton NH. Strong natural selection in a warning colour hybrid zone. Evolution. 1989;43:421–431. doi: 10.1111/j.1558-5646.1989.tb04237.x. PubMed DOI
Chouteau M, Arias M, Joron M. Warning signals are under positive frequency-dependent selection in nature. Proc. Natl. Acad. Sci. USA. 2016;113:2164–2169. doi: 10.1073/pnas.1519216113. PubMed DOI PMC
Wilson JS, Williams KA, Forister ML, von Dohlen CD, Pitts JP. Repeated evolution in overlapping mimicry rings among North American velvet ants. Nat. Commun. 2012;3:1272. doi: 10.1038/ncomms2275. PubMed DOI
Wilson JS, et al. North American velvet ants form one of the world's largest known Mullerian mimicry complexes. Curr. Biol. 2015;25:R704–R706. doi: 10.1016/j.cub.2015.06.053. PubMed DOI
Bocek M, Kusy D, Motyka M, Bocak L. Persistence of multiple patterns and intraspecific polymorphism in multi-species Müllerian communities of net-winged beetles. Front. Zool. 2019;16:38. doi: 10.1186/s12983-019-0335-8. PubMed DOI PMC
Anzaldo SS, Wilson JS, Franz NM. Phenotypic analysis of aposematic conoderine weevils (Coleoptera: Curculionidae: Conoderinae) supports the existence of three large mimicry complexes. Biol. J. Linn. Soc. 2020;129:728–739. doi: 10.1093/biolinnean/blz205. DOI
Masek M, et al. Molecular phylogeny, diversity and zoogeography of net-winged beetles (Coleoptera: Lycidae) Insects. 2018;9:154. doi: 10.3390/insects9040154. PubMed DOI PMC
Kusy D, Motyka M, Bocek M, Vogler AP, Bocak L. Genome sequences identify three families of Coleoptera as morphologically derived click beetles (Elateridae) Sci. Rep. 2018;8:17084. doi: 10.1038/s41598-018-35328-0. PubMed DOI PMC
Linsley EG, Eisner T, Klots AB. Mimetic assemblages of sibling species of lycid beetles. Evolution. 1961;15:15–29. doi: 10.1111/j.1558-5646.1961.tb03126.x. DOI
Eisner T, Kafatos FC, Linsley EG. Lycid predation by mimetic adult Cerambycidae (Coleoptera) Evolution. 1962;16:316–324. doi: 10.1111/j.1558-5646.1962.tb03223.x. DOI
Dettner K. Chemosystematics and evolution of beetle chemical defenses. Ann. Rev. Entomol. 1987;32:17–48. doi: 10.1146/annurev.en.32.010187.000313. DOI
Malohlava V, Bocak L. Evidence of extreme habitat stability in a Southeast Asian biodiversity hotspot based on the evolutionary analysis of neotenic net-winged beetles. Mol. Ecol. 2010;19:4800–4811. doi: 10.1111/j.1365-294X.2010.04850.x. PubMed DOI
Kazantsev SV, Telnov D. A mimetic assemblage of net-winged beetles (Coleoptera: Lycidae) from West Papua. In: Telnov D, Barclay MVL, Pauwels OSG, editors. Biodiversity, Biogeography and Nature Conservation in Wallacea and New Guinea. The Entomological Society of Latvia; 2017. pp. 363–370.
Sklenarova K, Chesters D, Bocak L. Phylogeography of poorly dispersing net-winged beetles: A role of drifting India in the origin of Afrotropical and Oriental fauna. PLoS One. 2013;8:e67957. doi: 10.1371/journal.pone.0067957. PubMed DOI PMC
Li Y, Gunter N, Pang H, Bocak L. DNA-based species delimitation separates highly divergent populations within morphologically coherent clades of poorly dispersing beetles. Zool. J. Linn. Soc. 2015;175:59–72. doi: 10.1111/zoj.12262. DOI
Masek M, Palata V, Bray TC, Bocak L. Molecular phylogeny reveals high diversity and geographic structure in Asian neotenic net-winged beetles Platerodrilus (Coleoptera: Lycidae) PLoS One. 2015;10:e0123855. doi: 10.1371/journal.pone.0123855. PubMed DOI PMC
Bocakova M, Bocak L, Gimmel ML, Motyka M, Vogler AP. Aposematism and mimicry in soft-bodied beetles of the superfamily Cleroidea (Insecta) Zool. Scr. 2016;45:9–21. doi: 10.1111/zsc.12132. DOI
Moore BP, Brown WV. Identification of warning odour components, bitter principles and antifeedants in an aposematic beetle: Metriorrhynchus rhipidius (Coleoptera: Lycidae) Ins. Biochem. 1981;1:493–499. doi: 10.1016/0020-1790(81)90016-0. DOI
Eisner T, et al. Defensive chemistry of lycid beetles and of mimetic cerambycid beetles that feed on them. Chemoecology. 2008;18:109–119. doi: 10.1007/s00049-007-0398-4. PubMed DOI PMC
Kusy D, Motyka M, Bocek M, Masek M, Bocak L. Phylogenomic analysis resolves the relationships among net-winged beetles (Coleoptera: Lycidae) and reveals the parallel evolution of morphological traits. Syst. Entomol. 2019;44:911–925. doi: 10.1111/syen.12363. DOI
Blum MS, Sannasi A. Reflex bleeding in the lampyrid Photinus pyralis: Defensive function. J. Insect Physiol. 1974;20:451–460. doi: 10.1016/0022-1910(74)90153-X. DOI
Xinhua F, Ohba N, Meyer-Rochow VB, Yuyong W, Chaoliang L. Reflex-bleeding in the firefly Pyrocoelia pectoralis (Coleoptera: Lampyridae): Morphological basis and possible function. Coleopt. Bull. 2006;60:207–215. doi: 10.1649/892.1. DOI
Meinwald J, Meinwald YC, Calmers AM, Eisner T. Dihydromatricaria acid: Acetylenic acid secreted by soldier beetle. Science. 1968;160:890–892. doi: 10.1126/science.160.3830.890. PubMed DOI
Moore BP, Brown WV. Precoccinelline and related alcaloids in the Australian soldier beetle, Chauliognathus pulchellus (Coleoptera: Cantharidae) Ins. Biochem. 1978;8:393–395. doi: 10.1016/0020-1790(78)90027-6. DOI
Poinar GO, Jr, Marshall CJ, Buckley R. One hundred million years of chemical warfare by insects. J. Chem. Ecol. 2007;33:1663–1669. doi: 10.1007/s10886-007-9343-9. PubMed DOI
Rowe C, Guilford T. The evolution of multimodal warning displays. Evol. Ecol. 1999;13:655–671. doi: 10.1023/A:1011021630244. DOI
Young DK, Fischer RL. The pupation of Calopteron terminale (Say) (Coleoptera: Lycidae) Coleopt. Bull. 1972;26:17–18.
Bocak L, Matsuda K. Review of the immature stages of the family Lycidae (Insecta: Coleoptera) J. Nat. Hist. 2003;37:1463–1507. doi: 10.1080/00222930210125362. DOI
Hall DW, Branham MA. Aggregation of Calopteron discrepans (Coleoptera: Lycidae) larvae prior to pupation. Flor. Entomol. 2008;91:124–125. doi: 10.1653/0015-4040(2008)091[0124:AOCDCL]2.0.CO;2. DOI
Gamberale G, Tullberg BS. Aposematism and gregariousness: The combined effect of group size and coloration on signal repellence. Proc. R. Soc. Lond. B Biol. Sci. 1998;265:889–894. doi: 10.1098/rspb.1998.0374. DOI
Svadová K, Exnerová A, Štys P. Gregariousness as a defence strategy of moderately defended prey: Experiments with Pyrrhocoris apterus and avian predators. Behaviour. 2014;151:1617–1640. doi: 10.1163/1568539X-00003208. DOI
Mitchell RF, et al. Evidence that cerambycid beetles mimic vespid wasps in odor as well as appearance. J. Chem. Ecol. 2017;43:75–83. doi: 10.1007/s10886-016-0800-1. PubMed DOI PMC
Speed MP. Warning signals, receiver psychology and predator memory. Anim. Behav. 2000;60:269–278. doi: 10.1006/anbe.2000.1430. PubMed DOI
Speed MP. Can receiver psychology explain the evolution of aposematism? Anim. Behav. 2001;61:205–216. doi: 10.1006/anbe.2000.1558. PubMed DOI
Skelhorn J, Holmes GG, Hossie TJ, Sherratt TN. Multicomponent deceptive signals reduce the speed at which predators learn that prey are profitable. Behav. Ecol. 2016;27:141–147. doi: 10.1093/beheco/arv135. DOI
Motyka M, Kampova L, Bocak L. Phylogeny and evolution of Müllerian mimicry in aposematic Dilophotes: Evidence for advergence and size-constraints in evolution of mimetic sexual dimorphism. Sci. Rep. 2018;8:3744. doi: 10.1038/s41598-018-22155-6. PubMed DOI PMC
Motyka M, Bocek M, Kusy D, Bocak L. Interactions in multi-pattern Mullerian communities support origins of new patterns, false structures, imperfect resemblance and mimetic sexual dimorphism. Sci. Rep. 2020;10:11193. doi: 10.1038/s41598-020-68027-w. PubMed DOI PMC
Bocak L, Yagi T. Evolution of mimicry patterns in Metriorrhynchus (Coleoptera: Lycidae): The history of dispersal and speciation in southeast Asia. Evolution. 2010;64:39–52. doi: 10.1111/j.1558-5646.2009.00812.x. PubMed DOI
Bray TC, Bocak L. Slowly dispersing neotenic beetles can speciate on a penny coin and generate space-limited diversity in the tropical mountains. Sci. Rep. 2016;6:33579. doi: 10.1038/srep33579. PubMed DOI PMC
Jiruskova A, Motyka M, Bocek M, Bocak L. The Malacca Strait separates distinct faunas of poorly-flying Cautires net-winged beetles. PeerJ. 2019;7:e6511. doi: 10.7717/peerj.6511. PubMed DOI PMC
Endler JA. Variation in the appearance of guppy color patterns to guppies and their predators under different visual conditions. Vis. Res. 1991;31:587–608. doi: 10.1016/0042-6989(91)90109-I. PubMed DOI
Arenas LM, Troscianko J, Stevens M. Color contrast and stability as key elements for effective warning signals. Front. Ecol. Evol. 2014;2:1–12. doi: 10.3389/fevo.2014.00025. DOI
Mallet J, Gilbert LE. Why are there so many mimicry rings—correlations between habitats, behavior and mimicry in Heliconius butterflies. Biol. J. Linn. Soc. 1995;55:159–180.
CSIRO . The Insects of Australia. Melbourne University Press; 1991.
Lingafelter SW. Hispaniolan Hemilophini (Coleoptera, Cerambycidae, Lamiinae) ZooKeys. 2013;258:53–83. doi: 10.3897/zookeys.258.4391. PubMed DOI PMC
Perger R, Santos-Silva A. A new lycid-like species of Iarucanga Martins & Galileo, 1991 (Coleoptera, Cerambycidae, Lamiinae, Hemilophini) from the Bolivian Andes. J. Nat. Hist. 2018;52:2487–2495. doi: 10.1080/00222933.2018.1540727. DOI
Perger R, Santos-Silva A. Addition to the known long-horned beetle fauna of the Bolivian Andes: A new lycid-like species of Mimolaia Bates, 1885 (Coleoptera, Cerambycidae, Lamiinae, Caliini) Zootaxa. 2019;4550:295–300. doi: 10.11646/zootaxa.4550.2.10. PubMed DOI
Eisner T, et al. Antifeedant action of z-dihydromatricaria acid from soldier beetles (Chauliognathus spp.) J. Chem. Ecol. 1981;7:1149–1158. doi: 10.1007/BF00987634. PubMed DOI
Brown WV, Lacey MJ, Moore BP. Dihydromatricariate-based triglycerides, glyceride ethers, and waxes in the Australian soldier beetle, Chauliognathus lugubris (Coleoptera: Cantharidae) J. Chem. Ecol. 1988;14:411–423. doi: 10.1007/BF01013893. PubMed DOI
Machado V, Araujo AM, Serrano J, Galián J. Phylogenetic relationships and the evolution of mimicry in the Chauliognathus yellow-black species complex (Coleoptera: Cantharidae) inferred from mitochondrial COI sequences. Gen. Mol. Biol. 2004;27:55–60. doi: 10.1590/S1415-47572004000100010. DOI
Long SM, et al. Firefly flashing and jumping spider predation. Anim. Behav. 2012;83:81–86. doi: 10.1016/j.anbehav.2011.10.008. DOI
Eisner T, Goetz MA, Hill DE, Smedley SR, Meinwald J. Firefly 'femmes fatales' acquire defensive steroids (lucibufagins) from their firefly prey. Proc. Natl. Acad. Sci USA. 1997;94:9723–9728. doi: 10.1073/pnas.94.18.9723. PubMed DOI PMC
Exnerová A, et al. Importance of color in the reaction of passerine predators to aposematic prey: Experiments with mutants of Pyrrhocoris apterus (Heteroptera) Biol. J. Linn. Soc. 2006;88:143–153. doi: 10.1111/j.1095-8312.2006.00611.x. DOI
Wuster W, et al. Do aposematism and Batesian mimicry require bright colours? A test, using European viper markings. Proc. R. Soc. B Biol. Sci. 2004;271:2495–2499. doi: 10.1098/rspb.2004.2894. PubMed DOI PMC
Speed MP, Ruxton GD. How bright and how nasty: Explaining diversity in warning signal strength. Evolution. 2007;61:623–635. doi: 10.1111/j.1558-5646.2007.00054.x. PubMed DOI
Aronsson M, Gamberale-Stille G. Importance of internal pattern contrast and contrast against the background in aposematic signals. Behav. Ecol. 2009;20:1356–1362. doi: 10.1093/beheco/arp141. DOI
Endler JA, Mappes J. The current and future state of animal coloration research. Philos. Trans. R. Soc. B Biol. Sci. 2017;372:20160352. doi: 10.1098/rstb.2016.0352. PubMed DOI PMC
Edmunds M. Why are there good and poor mimics? Biol. J. Linn. Soc. 2000;70:459–466. doi: 10.1111/j.1095-8312.2000.tb01234.x. DOI
Speed MP, Ruxton GD. Imperfect Batesian mimicry and the conspicuousness costs of mimetic resemblance. Am. Nat. 2010;176:E1–E14. doi: 10.1086/652990. PubMed DOI
Penney HD, Hassall C, Skevington JH, Abbott KR, Sherratt TN. A comparative analysis of the evolution of imperfect mimicry. Nature. 2012;483:461–464. doi: 10.1038/nature10961. PubMed DOI
Kikuchi DW, Pfennig DW. Imperfect mimicry and the limits of natural selection. Q. Rev. Biol. 2013;88:297–315. doi: 10.1086/673758. PubMed DOI
Briolat ES, et al. Diversity in warning coloration: Selective paradox or the norm? Biol. Rev. 2019;94:388–414. doi: 10.1111/brv.12460. PubMed DOI PMC
Robertson AR. The CIE 1976 color-difference formulae. Color Res. Appl. 1976;2:7–11. doi: 10.1002/j.1520-6378.1977.tb00104.x. DOI
Bocak L, Bocakova M, Hunt T, Vogler AP. Multiple ancient origins of neoteny in Lycidae (Coleoptera): Consequences for ecology and macroevolution. Proc. R. Soc. B Biol. Sci. 2008;275:2015–2023. doi: 10.1098/rspb.2008.0476. PubMed DOI PMC
Bocak L, Kundrata R, Andújar-Fernández C, Vogler AP. The discovery of Iberobaeniidae (Coleoptera: Elateroidea): A new family of beetles from Spain, with immatures detected by environmental DNA sequencing. Proc. R. Soc. B Biol. Sci. 2016;283:20152350. doi: 10.1098/rspb.2015.2350. PubMed DOI PMC
Bininda-Emonds ORP. transAlign: Using amino acids to facilitate the multiple alignment of protein coding DNA sequences. BMC Bioinform. 2005;6:156. doi: 10.1186/1471-2105-6-156. PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Kück P, Longo GC. FASconCAT-G: Extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Front. Zool. 2014;11:81. doi: 10.1186/s12983-014-0081-x. PubMed DOI PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018;35:518–522. doi: 10.1093/molbev/msx281. PubMed DOI PMC
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012;29:1969–1973. doi: 10.1093/molbev/mss075. PubMed DOI PMC
Brower AVZ. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial-DNA evolution. Proc. Natl. Acad. Sci. USA. 1994;91:6491–6495. doi: 10.1073/pnas.91.14.6491. PubMed DOI PMC
Papadopoulou A, Anastasiou I, Vogler AP. Revisiting the insect mitochondrial molecular clock: The Mid-Aegean trench calibration. Mol. Biol. Evol. 2010;27:1659–1672. doi: 10.1093/molbev/msq051. PubMed DOI
Bocak L, Li Y, Ellenberger S. The discovery of Burmolycus compactus gen. et sp. Nov. from the mid-Cretaceous of Myanmar provides the evidence for early diversification of net-winged beetles (Coleoptera, Lycidae) Cret. Res. 2019;99:149–155. doi: 10.1016/j.cretres.2019.02.018. DOI
Molino-Olmedo F, Ferreira VS, Branham MA, Ivie MA. The description of Prototrichalus gen. nov. and three new species from Burmese amber supports a mid-Cretaceous origin of the Metriorrhynchini (Coleoptera, Lycidae) Cret. Res. 2020;111:104452. doi: 10.1016/j.cretres.2020.104452. DOI
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018;67:901–904. doi: 10.1093/sysbio/syy032. PubMed DOI PMC
Borges R, Machado JP, Gomes C, Rocha AP, Antunes A. Measuring phylogenetic signal between categorical traits and phylogenies. Bioinformatics. 2019;35:1862–1869. doi: 10.1093/bioinformatics/bty800. PubMed DOI
Paradis E, Schliep K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–528. doi: 10.1093/bioinformatics/bty633. PubMed DOI
Kusy D, Sklenarova K, Bocak L. The effectiveness of DNA-based delimitation in Synchonnus net-winged beetles (Coleoptera: Lycidae) assessed, and description of 11 new species. Austral. Entomol. 2018;57:25–39. doi: 10.1111/aen.12266. DOI
Kusy D, et al. Sexually dimorphic characters and shared aposematic patterns mislead the morphology-based classification of the Lycini (Coleoptera: Lycidae) Zool. J. Linn. Soc. 2021 doi: 10.1093/zoolinnean/zlaa055. DOI
Endler JA. Frequency-dependent predation, crypsis and aposematic coloration. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1988;319:505–523. doi: 10.1098/rstb.1988.0062. PubMed DOI
Guilford T. The evolution of conspicuous coloration. Am. Nat. 1988;131:S7–S21. doi: 10.1086/284764. DOI
Gamberalle-Stille G. Benefit by contrast: An experiment with live aposematic prey. Behav. Ecol. 2001;12:768–772. doi: 10.1093/beheco/12.6.768. DOI
Aronsson M, Gamberale-Stille G. Evidence of signaling benefits to contrasting internal color boundaries in warning coloration. Behav. Ecol. 2013;24:349–354. doi: 10.1093/beheco/ars170. DOI
Prudic KL, Skemp AK, Papaj DR. Aposematic coloration, luminance contrast, and the benefits of conspicuousness. Behav. Ecol. 2007;18:41–46. doi: 10.1093/beheco/arl046. DOI
van Hateren JH, Ruttiger L, Sun H, Lee BB. Processing of natural temporal stimuli by macaque retinal ganglion cells. J. Neurosci. 2002;22:9945–9960. doi: 10.1523/JNEUROSCI.22-22-09945.2002. PubMed DOI PMC
Bowdish TI, Bultman TL. Visual cues used by mantids in learning aversion to aposematically colored prey. Am. Midl. Nat. 1993;129:215–222. doi: 10.2307/2426501. DOI
Lindström L, Alatalo RV, Lyytinen A, Mappes J. Strong antiapostatic selection against novel rare aposematic prey. Proc. Natl. Acad. Sci. USA. 2001;98:9181–9184. doi: 10.1073/pnas.161071598. PubMed DOI PMC
Briscoe AD, Chittka L. The evolution of color vision in insects. Annu. Rev. Entomol. 2001;46:471–510. doi: 10.1146/annurev.ento.46.1.471. PubMed DOI
Fabricant SA, Herberstein ME. Hidden in plain orange: Aposematic coloration is cryptic to a colorblind insect predator. Behav. Ecol. 2015;26:38–44. doi: 10.1093/beheco/aru157. DOI
Nielsen ME, Mappes J. Out in the open: Behavior’s effect on predation risk and thermoregulation by aposematic caterpillars. Behav. Ecol. 2020;31:1031–1039. doi: 10.1093/beheco/araa048. PubMed DOI PMC
Nokelainen O, Valkonen J, Lindstedt C, Mappes J. Changes in predator community structure shifts the efficacy of two warning signals in Arctiid moths. J. Anim. Ecol. 2013;83:598–605. doi: 10.1111/1365-2656.12169. PubMed DOI
Guilford T. How do “warning colours” work? conspicuousness may reduce recognition errors in experienced predators. Anim. Behav. 1986;34:286–288. doi: 10.1016/0003-3472(86)90034-5. DOI
Lovell PG, et al. Stability of the color-opponent signals under changes of illuminant in natural scenes. J. Opt. Soc. Am. A Opt. Imaging Sci. Vis. 2005;22:2060–2071. doi: 10.1364/JOSAA.22.002060. PubMed DOI
Rojas B, Rautiala P, Mappes J. Differential detectability of polymorphic warning signal under varying light environment. Behav. Proc. 2014;109:164–172. doi: 10.1016/j.beproc.2014.08.014. PubMed DOI
Fennell JG, Talas L, Baddeley RJ, Cuthill IC, Scott-Samuel NE. Optimizing colour for camouflage and visibility using deep learning: The effects of the environment and the observer's visual system. J. R. Soc. Interf. 2019;16:20190183. doi: 10.1098/rsif.2019.0183. PubMed DOI PMC
Marples NM, Roper TJ, Harper DGC. Responses of wild birds to novel prey: Evidence of dietary conservatism. Oikos. 1998;83:161–165. doi: 10.2307/3546557. DOI
Siddiqi A, Cronin TW, Loew ER, Vorobyev M, Summers K. Interspecific and intraspecific views of color signals in the strawberry poison frog Dendrobates pumilio. J. Exp. Biol. 2004;207:2471–2485. doi: 10.1242/jeb.01047. PubMed DOI
Endler JA, Mielke PW. Comparing entire colour patterns as birds see them. Biol. J. Linn. Soc. 2005;86:405–431. doi: 10.1111/j.1095-8312.2005.00540.x. DOI
Bocak L, Bocakova M. Revision of the supergeneric classification of the family Lycidae (Coleoptera) Pol. Pism. Entomol. 1990;59:623–676.
Bocak L, Bocakova M. Phylogeny and classification of the family Lycidae (Insecta: Coleoptera) Ann. Zool. 2008;58:695–720. doi: 10.3161/000345408X396639. DOI
Kazantsev SV. Morphology of Lycidae with some considerations on evolution of the Coleoptera. Elytron. 2005;17:49–226.
Bocakova M. Phylogeny and classification of the tribe Calopterini (Coleoptera, Lycidae) Inst. Syst. Evol. 2005;35:437–447. doi: 10.1163/187631204788912472. DOI
Eisner T, et al. Chemical basis of courtship in a beetle (Neopyrochroa flabellata): Cantharidin as precopulatory "enticing" agent. Proc. Natl. Acad. Sci. USA. 1996;93:6494–6498. doi: 10.1073/pnas.93.13.6494. PubMed DOI PMC
Bocak L, Bocakova M. Revision of the genus Dexoris C. O. Waterhouse (Coleoptera, Lycidae) Acta Entomol. Bohemoslov. 1988;85:194–204.
Bocak L, Grebennikov VV, Masek M. A new species of Dexoris (Coleoptera: Lycidae) and parallel evolution of brachyptery in the soft-bodied elateroid beetles. Zootaxa. 2013;3721:495–500. doi: 10.11646/zootaxa.3721.5.5. PubMed DOI
True JR. Insect melanism: The molecules matter. Trend. Ecol. Evol. 2003;18:640–647. doi: 10.1016/j.tree.2003.09.006. DOI
Shamim G, Ranjan SK, Pandey DM, Ramani R. Biochemistry and biosynthesis of insect pigments. Eur. J. Entomol. 2014;111:149–164. doi: 10.14411/eje.2014.021. DOI
Sillén-Tullberg B. Evolution of gregariousness in aposematic butterfly larvae: A phylogenetic analysis. Evolution. 1988;42:293–305. doi: 10.1111/j.1558-5646.1988.tb04133.x. PubMed DOI
Gagliardo A, Guilford T. Why do warning-coloured prey live gregariously? Proc. R. Soc. Lond. B Biol. Sci. 1993;251:69–74. doi: 10.1098/rspb.1993.0010. DOI
Alatalo RV, Mappes J. Tracking the evolution of warning signals. Nature. 1996;382:708–710. doi: 10.1038/382708a0. DOI
Yachi S, Higashi M. The evolution of warning signals. Nature. 1998;394:882–884. doi: 10.1038/29751. DOI
Lindström L, Alatalo RV, Mappes J, Riipi M, Vertainen L. Can aposematic signals evolve by gradual change? Nature. 1999;397:249–251. doi: 10.1038/16692. DOI
Guilford T, Nicol C, Rotschild M, Moore BP. The biological roles of pyrazines: Evidence for a warning odour function. Biol. J. Linn. Soc. 1987;31:113–128. doi: 10.1111/j.1095-8312.1987.tb01984.x. DOI
Arenas LM, Walter D, Stevens M. Signal honesty and predation risk among a closely related group of aposematic species. Sci. Rep. 2015;5:11021. doi: 10.1038/srep11021. PubMed DOI PMC
Hämäläinen L, Mappes J, Rowland HM, Teichmann M, Thorogood R. Social learning within and across predator species reduces attacks on novel aposematic prey. J. Anim. Ecol. 2020;89:1153–1164. doi: 10.1111/1365-2656.13180. PubMed DOI PMC
Landova E, Hotova Svadova K, Fuchs R, Stys P, Exnerova A. The effect of social learning on avoidance of aposematic prey in juvenile great tits (Parus major) Anim. Cogn. 2017;20:855–866. doi: 10.1007/s10071-017-1106-6. PubMed DOI
Leimar O, Tuomi J. Synergistic selection and graded traits. Evol. Ecol. 1998;12:59–71. doi: 10.1023/A:1006507023520. DOI
Gompert Z, Willmott KR, Elias M. Heterogeneity in predator micro-habitat use and the maintenance of Müllerian mimetic diversity. J. Theor. Biol. 2011;281:39–46. doi: 10.1016/j.jtbi.2011.04.024. PubMed DOI
Willmott KR, Willmott JCR, Elias M, Jiggins CD. Maintaining mimicry diversity: Optimal warning colour patterns differ among microhabitats in Amazonian clearwing butterflies. Proc. R. Soc. B Biol. Sci. 2017;284:20170744. doi: 10.1098/rspb.2017.0744. PubMed DOI PMC
Van Belleghem SM, Roman PAA, Gutierrez HC, Counterman BA, Papa R. Perfect mimicry between Heliconius butterflies is constrained by genetics and development. Proc. R. Soc. B Biol. Sci. 2020;287:20201267. doi: 10.1098/rspb.2020.1267. PubMed DOI PMC
Bocek M, Bocak L. Species limits in polymorphic mimetic Eniclases net-winged beetles from New Guinean mountains (Coleoptera, Lycidae) Zookeys. 2016;593:15–35. doi: 10.3897/zookeys.593.7728. PubMed DOI PMC
Do Nascimento EA, Bocakova M. A revision of the Neotropical genus Eurrhacus (Coleoptera: Lycidae) Ann. Zool. 2017;67:689–697. doi: 10.3161/00034541ANZ2017.67.4.006. DOI