Persistence of multiple patterns and intraspecific polymorphism in multi-species Müllerian communities of net-winged beetles
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
PubMed
31636689
PubMed Central
PMC6798367
DOI
10.1186/s12983-019-0335-8
PII: 335
Knihovny.cz E-resources
- Keywords
- Lycidae, Müllerian mimicry, New Guinea, NextRAD, Phylogeny, mtDNA,
- Publication type
- Journal Article MeSH
BACKGROUND: In contrast to traditional models of purifying selection and a single aposematic signal in Müllerian complexes, some communities of unprofitable prey contain members with multiple aposematic patterns. Processes responsible for diversity in aposematic signaling are poorly understood and large multi-species communities are seldom considered. RESULTS: We analyzed the phylogeny and aposematic patterns of closely related Eniclases net-winged beetles in New Guinea using mtDNA and nextRAD data. We suggest three clades of closely related and incompletely reproductively isolated lineages, detail the extent of polymorphism among Eniclases, and categorize their low-contrast aposematic patterns. The warning signal of Eniclases consists of body shape and color, with ambiguous color perception under some circumstances, i.e., when resting on the undersides of leaves. Field observations suggest that perception of the aposematic signal is affected by beetle behavior and environmental conditions. Local communities containing Eniclases consisted of 7-85 metriorrhynchine species assigned to 3-10 colour patterns. CONCLUSION: As a result, we suggest that under certain light conditions the aposematic colour signal is less apparent than the body shape in net-winged beetle communities. We document variable environmental factors in our study area and highly diverse multi-species communities of other net-winged beetles. Which implies dynamically changing community structure in space and time. Variable environmental conditions and diverse community composition are suggested to be favorable for the persistence of multiple aposematic patterns, imperfect mimics, and intraspecific polymorphism. Further research should identify the relative effect of these factors on purifying selection and the alleles which are responsible for phenotypic differences.
See more in PubMed
Mallet J, Barton NH. Strong natural selection in a warning colour hybrid zone. Evolution. 1989;43:421–431. doi: 10.1111/j.1558-5646.1989.tb04237.x. PubMed DOI
Sherratt TN. The evolution of Müllerian mimicry. Naturwissenschaften. 2008;95:681–695. doi: 10.1007/s00114-008-0403-y. PubMed DOI PMC
Kikuchi DW, Pfennig DW. Imperfect mimicry and the limits of natural selection. Q Rev Biol. 2013;88:297–315. doi: 10.1086/673758. PubMed DOI
Mallet J, Joron M. Evolution of diversity in warning color and mimicry: polymorphisms, shifting balance and speciation. Ann Rev Ecol Syst. 1999;30:201–233. doi: 10.1146/annurev.ecolsys.30.1.201. DOI
Mappes J, Marples N, Endler JA. The complex business of survival by aposematism. Trends Ecol Evol. 2005;20:598–603. doi: 10.1016/j.tree.2005.07.011. PubMed DOI
Chouteau M, Arias M, Joron M. Warning signals are under positive frequency-dependent selection in nature. Proc Natl Acad Sci U S A. 2016;113:2164–2169. doi: 10.1073/pnas.1519216113. PubMed DOI PMC
Edmunds M. Why there are good and poor mimics? Biol J Linn Soc. 2000;70:459–466. doi: 10.1111/j.1095-8312.2000.tb01234.x. DOI
Penney HD, Hassall C, Skevington JH, Abbott KR, Sherratt TN. A comparative analysis of the evolution of imperfect mimicry. Nature. 2012;483:461–464. doi: 10.1038/nature10961. PubMed DOI
Speed MP, Ruxton GD. Imperfect Batesian mimicry and the conspicuousness costs of mimetic resemblance. Amer Nat. 2004;176:E1–E14. doi: 10.1086/652990. PubMed DOI
Briolat ES, Burdfield-Steel ER, Paul SC, Ronka KH, Seymoure BM, Stankowich T, Stuckert AMM. Diversity in warning coloration: selective paradox or the norm? Biol Rev. 2019;94:388–414. doi: 10.1111/brv.12460. PubMed DOI PMC
Beatty CD, Beirinckx K, Sherratt TN. The evolution of Müllerian mimicry in multispecies communities. Nature. 2004;431:63–67. doi: 10.1038/nature02818. PubMed DOI
Skelhorn J, Holmes GG, Hossie TJ, Sherratt TN. Multicomponent deceptive signals reduce the speed at which predators learn that prey are profitable. Behav Ecol. 2016;27:141–147. doi: 10.1093/beheco/arv135. DOI
Speed MP. Müllerian mimicry and the psychology of predation. Anim Behav. 1993;45:571–580. doi: 10.1006/anbe.1993.1067. DOI
Sherratt TN, Peet-Paré CA. The perfection of mimicry: an information approach. Phil Trans R Soc – Biol Sci. 2017;372:20160340. doi: 10.1098/rstb.2016.0340. PubMed DOI PMC
Arenas LM, Troscianko J, Stevens M. Color contrast and stability as key elements for effective warning signals. Front Ecol Evol. 2014;2:25. doi: 10.3389/fevo.2014.00025. DOI
Motyka M, Kampova L, Bocak L. Phylogeny and evolution of Müllerian mimicry in aposematic Dilophotes: evidence for advergence and size-constraints in evolution of mimetic sexual dimorphism. Sci Rep. 2018;8:3744. doi: 10.1038/s41598-018-22155-6. PubMed DOI PMC
Jiruskova A, Motyka M, Bocek M, Bocak L. The Malacca Strait separates distinct faunas of poorly-flying Cautires net-winged beetles. PeerJ. 2019;7:e6511. doi: 10.7717/peerj.6511. PubMed DOI PMC
Linsley EG, Eisner T, Klots AB. Mimetic assemblages of sibling species of lycid beetles. Evolution. 1961;15:15–29. doi: 10.2307/2405840. DOI
Moore BP, Brown WV. Identification of warning odor components, bitter principles and antifeedants in an aposematic beetle - Metriorrhynchus rhipidius (Coleoptera: Lycidae) Ins Biochem. 1981;11:493–499. doi: 10.1016/0020-1790(81)90016-0. DOI
Eisner T, Schroeder FC, Snyder N, Grant JB, Aneshansley DJ, Utterback D, et al. Defensive chemistry of lycid beetles and of mimetic cerambycid beetles that feed on them. Chemoecology. 2008;18:109–119. doi: 10.1007/s00049-007-0398-4. PubMed DOI PMC
Sklenarova K, Kubecek V, Bocak L. Subtribal classification of Metriorrhynchini (Insecta: Coleoptera: Lycidae): an integrative approach using molecular phylogeny and morphology of adults and larvae. Arthropod Syst Phyl. 2014;72:37–54. doi: 10.1371/journal.pone.0067957. DOI
Bocek M, Bocak L. The molecular phylogeny and classification of trichaline net-winged beetles (Lycidae: Metriorrhynchini) PeerJ. 2017;5:e3963. doi: 10.7717/peerj.3963. PubMed DOI PMC
Bocek M, Bocak L. The origins and dispersal history of the trichaline net-winged beetles in South East Asia, Wallacea, New Guinea and Australia. Zool J Linnean Soc. 2019;185:1079–1094. doi: 10.1093/zoolinnean/zly090. DOI
Kalousova R, Bocak L. Species delimitation of colour polymorphic Cladophorus (Coleoptera: Lycidae) from New Guinea. Zootaxa. 2017;4320:505–522. doi: 10.11646/zootaxa.4320.3.6. DOI
Nadeau N. Butterfly genomics sheds light on the process of hybrid speciation. Mol Ecol. 2014;23:4441–4443. doi: 10.1111/mec.12877. PubMed DOI
Fabricant SA, Herberstein ME. Hidden in plain orange: aposematic coloration is cryptic to a colourblind insect predator. Behav Ecol. 2015;26:38–44. doi: 10.1093/beheco/aru157. DOI
Michie LJ, Mallard F, Majerus MEN, Jiggins FM. Melanic through nature or nurture: genetic polymorphism and phenotypic plasticity in Harmonia axyridis. J Evol Biol. 2010;23:1699–1707. doi: 10.1111/j.1420-9101.2010.02043. PubMed DOI
Stuckert AMM, Venegas PJ, Summers K. Experimental evidence for predator learning and Müllerian mimicry in Peruvian poison frogs (Ranitomeya, Dendrobatidae) Evol Ecol. 2014;28:413–426. doi: 10.1007/s10682-013-9685-4. DOI
Bocak L, Yagi T. Evolution of mimicry patterns in Metriorrhynchus (Coleoptera: Lycidae): the history of dispersal and speciation in Southeast Asia. Evolution. 2010;64:39–52. doi: 10.1111/j.1558-5646.2009.00812.x. PubMed DOI
Leache AD, Oaks JR. The utility of single nucleotide polymorphism (SNP) data in phylogenetics. Ann Rev Ecol Syst. 2017;48:69–84. doi: 10.1146/annurev-ecolsys-110316-022645. DOI
Willmott KR, Willmott JCR, Elias M, Jiggins CD. Maintaining mimicry diversity: optimal warning color patterns differ among microhabitats in Amazonian clearwing butterflies. Proc R Soc – Biol Sci 2017;284, 20170744. 10.1098/rspb. 2017.0744. PubMed PMC
Raska J, Stys P, Exnerova A. How variation in prey aposematic signals affects avoidance learning, generalization and memory of a salticid spider. Anim Behav. 2017;130:107–117. doi: 10.1016/j.anbehav.2017.06.012. DOI
Roper TJ, Redston S. Conspicuousness of distasteful prey affects the strength and durability of one-trial avoidance-learning. Anim Behav. 1987;35:739–747. doi: 10.1016/S0003-3472(87)80110-0. DOI
Rowe C, Lindström L, Lyytinen A. The importance of pattern similarity between Müllerian mimics in predator avoidance learning. Proc R Soc – Biol Sci. 2004;271:407–413. doi: 10.1098/rspb.2003.2615. PubMed DOI PMC
Aronsson M, Gamberale-Stille G. Importance of internal pattern contrast and contrast against the background in aposematic signals. Behav Ecol. 2009;20:1356–1362. doi: 10.1093/beheco/arp141. DOI
Gagliardo A, Guilford T. Why do warning-colored prey live gregariously. Proc R Soc – Biol Sci. 1993;251:69–74. doi: 10.1098/rspb.1993.0010. DOI
O’Hanlon JC. The roles of color and shape in pollinator deception in the orchid mantis Hymenopus coronatus. Ethology. 2014;120:652–661. doi: 10.1111/eth.12238. DOI
Kazemi B, Gamberale-Stille G, Tullberg BS, Leimar O. Stimulus salience as an explanation for imperfect mimicry. Curr Biol. 2014;24:965–969. doi: 10.1016/j.cub.2014.02.061. PubMed DOI
Johnstone RA. The evolution of inaccurate mimics. Nature. 2002;418:524–526. doi: 10.1038/nature00845. PubMed DOI
Cuthill IC, Allen WL, Arbuckle K, Caspers B, Chaplin G, Hauber ME, et al. The biology of color. Science. 2017;357:470–473. doi: 10.1126/science.aan0221. PubMed DOI
Wilson JS, Jahner JP, Williams KA, Forister ML. Ecological and evolutionary processes drive the origin and maintenance of imperfect mimicry. PLoS One. 2013;8:e61610. doi: 10.1371/journal.pone.0061610. PubMed DOI PMC
Bocek M, Bocak L. Species limits in polymorphic mimetic Eniclases net-winged beetles from new Guinean mountains (Coleoptera: Lycidae) ZooKeys. 2016;593:15–35. doi: 10.3897/zookeys.593.7728. PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–274. doi: 10.1111/j.1420-9101.2010.02043. PubMed DOI PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Meth. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29:1969–1973. doi: 10.1093/molbev/mss075. PubMed DOI PMC
Papadopoulou A, Anastasiou I, Vogler AP. Revisiting the insect mitochondrial molecular clock: the mid-Aegean trench calibration. Mol Biol Evol. 2010;27:1659–1672. doi: 10.1093/molbev/msq051. PubMed DOI
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarisation in Bayesian phylogenetics using tracer 1.7. Syst Biol. 2018;67:901–904. doi: 10.1093/sysbio/syy032. PubMed DOI PMC
Bray TC, Bocak L. Slowly dispersing neotenic beetles can speciate on a penny coin and generate space-limited diversity in the tropical mountains. Sci Rep. 2016;6:33579. doi: 10.1038/srep33579. PubMed DOI PMC
Lavretsky Philip, DaCosta Jeffrey M., Sorenson Michael D., McCracken Kevin G., Peters Jeffrey L. ddRAD‐seq data reveal significant genome‐wide population structure and divergent genomic regions that distinguish the mallard and close relatives in North America. Molecular Ecology. 2019;28(10):2594–2609. doi: 10.1111/mec.15091. PubMed DOI
Ekblom R, Galindo J. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity. 2011;107:1–15. doi: 10.1038/hdy.2010.152. PubMed DOI PMC
Eaton DAR, Overcast I. iPYRAD: interactive assembly and analysis of RADseq data sets. 2016. PubMed
Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH. Stacks: building and genotyping loci de novo from short-read sequences. G3: Genes Genom Genet. 2011;1:171–182. doi: 10.1534/g3.111.000240. PubMed DOI PMC
Takahashi T, Nagata N, Sota T. Application of RAD-based phylogenetics to complex relationships among variously related taxa in a species flock. Mol Phyl Evol. 2014;80:77–81. doi: 10.1016/j.ympev.2014.07.01. PubMed DOI
Huang H, Knowles LL. Unforeseen consequences of excluding missing data from next-generation sequences: simulation study of RAD sequences. Syst Biol. 2016;65:357–365. doi: 10.1093/sysbio/syu046. PubMed DOI
Frichot E, François O. LEA: an R package for landscape and ecological association studies. Methods Ecol Evol. 2015;6:925–929. doi: 10.1111/2041-210X.12382. DOI
Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics. 2012;28:3326–3332. doi: 10.1093/bioinformatics/bts606. PubMed DOI PMC
Chifman J, Kubatko L. Quartet inference from SNP data under the coalescent model. Bioinformatics. 2014;30:3317–3324. doi: 10.1093/bioinformatics/btu530. PubMed DOI PMC
Swofford DL. PAUP* Phylogenetic Analysis using Parsimony (and Other Methods). 2002; Sinauer associates, Sunderland, MA.
Reaz R, Bayzid MS, Rahman MS. Accurate phylogenetic tree reconstruction from quartets: a heuristic approach. PLoS One. 2014;9:e104008. doi: 10.1371/journal.pone.0104008. PubMed DOI PMC