Analysis of the Holarctic Dictyoptera aurora Complex (Coleoptera, Lycidae) Reveals Hidden Diversity and Geographic Structure in Müllerian Mimicry Ring
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
22-35327S
Czech Science Foundation
PubMed
36135518
PubMed Central
PMC9502218
DOI
10.3390/insects13090817
PII: insects13090817
Knihovny.cz E-zdroje
- Klíčová slova
- Müllerian mimicry, aposematic signal, barcode, cryptic species, dispersal, last glacial maximum, morphological stasis, mtDNA, rRNA, taxonomy,
- Publikační typ
- časopisecké články MeSH
The elateroid family Lycidae is known for limited dispersal propensity and high species-level endemism. The red net-winged beetle, Dictyoptera aurora (Herbst, 1874), differs from all relatives by the range comprising almost the entire Holarctic region. Based on a five-marker phylogeny and 67 barcode entries (cox1-5' mtDNA) from the whole range, we recovered two genetically distinct species within traditionally defined D. aurora and resurrected the name D. coccinata (Say, 1835) as the oldest available synonym for Nearctic populations. Yet, no reliable morphological trait distinguishes these species except for minute differences in the male genitalia. D. coccinata is a monophylum resulting from a single Miocene dispersal event, ~15.8 million years ago, and genetic divergence implies long-term isolation by the Bering Strait. Far East Asian and west European populations are also genetically distinct, although to a lower extent. Two independent colonization events established the Fennoscandian populations after the last glacial maximum. Besides intrinsic factors, the high morphological similarity might result from stabilizing selection for shared aposematic signals. The rapidly accumulating barcode data provide valuable information on the evolutionary history and the origins of regional faunas.
Zobrazit více v PubMed
Hebert P.D.N., Cywinska A., Ball S.L., deWaard J.R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. Biol. 2003;270:313–321. doi: 10.1098/rspb.2002.2218. PubMed DOI PMC
Hendrich L., Moriniere J., Haszprunar G., Hebert P.D.N., Hausmann A., Kohler F., Balke M. A comprehensive DNA barcode database for Central European beetles with a focus on Germany: Adding more than 3500 identified species to BOLD. Mol. Ecol. Res. 2015;15:795–818. doi: 10.1111/1755-0998.12354. PubMed DOI
Lee M., Oliver P. Count cryptic species in biodiversity tally. Nature. 2016;534:621. doi: 10.1038/534621a. PubMed DOI
DeSalle R., Goldstein P. Review and Interpretation of Trends in DNA Barcoding. Front. Ecol. Evol. 2019;7:302. doi: 10.3389/fevo.2019.00302. DOI
Dinca V., Dapporto L., Somervuo P., Voda R., Cuvelier S., Gascoigne-Pees M., Huemer P., Mutanen M., Hebert P.D.N., Vila R. High resolution DNA barcode library for European butterflies reveals continental patterns of mitochondrial genetic diversity. Commun. Biol. 2021;4:315. doi: 10.1038/s42003-021-01834-7. PubMed DOI PMC
Huemer P., Karsholt O., Aarvik L., Berggren K., Bidzilya O., Junnilainen J., Landry J.F., Mutanen M., Nupponen K., Segerer A., et al. DNA barcode library for European Gelechiidae (Lepidoptera) suggests greatly underestimated species diversity. Zookeys. 2020;921:141–157. doi: 10.3897/zookeys.921.49199. PubMed DOI PMC
McCulloch G.A., Dutoit L., Craw D., Kroos G.C., Waters J.M. Genomics Reveals Exceptional Phylogenetic Diversity Within a Narrow-Range Flightless Insect. Ins. Syst. Divers. 2022;6:5. doi: 10.1093/isd/ixac009. DOI
Andujar C., Arribas P., Ruzicka F., Crampton-Platt A., Timmermans M.J.T.N., Vogler A.P. Phylogenetic community ecology of soil biodiversity using mitochondrial metagenomics. Mol. Ecol. 2015;24:3603–3617. doi: 10.1111/mec.13195. PubMed DOI
Crampton-Platt A., Yu D.W., Zhou X., Vogler A.P. Mitochondrial metagenomics: Letting the genes out of the bottle. Gigascience. 2016;5:15. doi: 10.1186/s13742-016-0120-y. PubMed DOI PMC
Wang W.Y., Srivathsan A., Foo M., Yamane S.K., Meier R. Sorting specimen-rich invertebrate samples with cost-effective NGS barcodes: Validating a reverse workflow for specimen processing. Mol. Ecol. Res. 2018;18:490–501. doi: 10.1111/1755-0998.12751. PubMed DOI
Yeo D., Puniamoorthy J., Ngiam R.W.J., Meier R. Towards holomorphology in entomology: Rapid and cost-effective adult-larva matching using NGS barcodes. Syst. Entomol. 2018;43:678–691. doi: 10.1111/syen.12296. DOI
Bray T.C., Bocak L. Slowly dispersing neotenic beetles can speciate on a penny coin and generate space-limited diversity in the tropical mountains. Sci. Rep. 2016;6:33579. doi: 10.1038/srep33579. PubMed DOI PMC
Bocek M., Kusy D., Motyka M., Bocak L. Persistence of multiple patterns and intraspecific polymorphism in multi-species Müllerian communities of net-winged beetles. Front. Zool. 2019;16:38. doi: 10.1186/s12983-019-0335-8. PubMed DOI PMC
Janzen D.H., Burns J.M., Cong Q., Hallwachs W., Dapkey T., Manjunath R., Hajibabaei M., Hebert P.D.N., Grishin N.V. Nuclear genomes distinguish cryptic species suggested by their DNA barcodes and ecology. Proc. Natl. Acad. Sci. USA. 2017;114:8313–8318. doi: 10.1073/pnas.1621504114. PubMed DOI PMC
Ahrens D., Fujisawa T., Krammer H.J., Eberle J., Fabrizi S., Vogler A.P. Rarity and Incomplete Sampling in DNA-Based Species Delimitation. Syst. Biol. 2016;65:478–494. doi: 10.1093/sysbio/syw002. PubMed DOI
Polaszek A., Fusu L., Viggiani G., Hall A., Hanson P., Polilov A.A. Revision of the World Species of Megaphragma Timberlake (Hymenoptera: Trichogrammatidae) Insects. 2022;13:561. doi: 10.3390/insects13060561. PubMed DOI PMC
Masek M., Motyka M., Kusy D., Bocek M., Li Y., Bocak L. Molecular Phylogeny, Diversity and Zoogeography of Net-Winged Beetles (Coleoptera: Lycidae) Insects. 2018;9:154. doi: 10.3390/insects9040154. PubMed DOI PMC
Kusy D., Motyka M., Bocek M., Masek M., Bocak L. Phylogenomic analysis resolves the relationships among net-winged beetles (Coleoptera: Lycidae) and reveals the parallel evolution of morphological traits. Syst. Entomol. 2019;44:911–925. doi: 10.1111/syen.12363. DOI
Green J.W. The Lycidae of the United States and Canada. III. The Tribe Platerodini (In Part) (Coleoptera) Trans. Am. Entomol. Soc. 1951;77:1–20.
Miller R.S. Lycidae. In: Arnett R.H., Thomas M.C., Frank H., Skelley P.E., editors. American Beetles. Volume 2. CRC Press; Washington, DC, USA: 2002. pp. 174–178.
Kazantsev S.V. An Annotated Checklist of Cantharoidea (Coleoptera) of Russia and Adjacent Territories. Russ. Entomol. J. 2012;20:387–410. doi: 10.15298/rusentj.20.4.05. DOI
Stevens G.C. The latitudinal gradients in geographical range: How so many species co-exist in the tropics. [(accessed on 14 August 2022)];Am. Natl. 1989 133:240–256. doi: 10.1086/284913. Available online: https://www.jstor.org/stable/2462300. DOI
Stauffer D., Rohde K. Simulation of Rapoport’s rule for latitudinal species spread. Theor. Biosci. 2006;125:55–65. doi: 10.1016/j.thbio.2006.01.002. PubMed DOI
Green J.W. The Lycidae of the United States and Canada. I. The tribe Lycini (Coleoptera) Trans. Am. Entomol. Soc. 1949;75:53–70.
Green J.W. The Lycidae of the United States and Canada. IV. The tribe Calopterini (Coleoptera) Trans. Am. Entomol. Soc. 1952;78:1–19.
Pérez-Hernández C.X., Zaragoza-Caballero S., Romo-Galicia A. Checklist of net-winged beetles (Coleoptera: Lycidae) from Mexico. Zootaxa. 2019;4623:239–260. doi: 10.11646/zootaxa.4623.2.2. PubMed DOI
Li Y., Gunter N., Pang H., Bocak L. DNA-based species delimitation separates highly divergent populations within morphologically coherent clades of poorly dispersing beetles. Zool. J. Linn. Soc. 2015;175:59–72. doi: 10.1111/zoj.12262. DOI
Jiruskova A., Motyka M., Bocek M., Bocak L. The Malacca Strait separates distinct faunas of poorly-flying Cautires net-winged beetles. PeerJ. 2019;7:e6511. doi: 10.7717/peerj.6511. PubMed DOI PMC
Motyka M., Kusy D., Bocek M., Bilkova R., Vogler A.P., Bocak L. Phylogenomic and mitogenomic data can accelerate inventorying of tropical beetles during the current biodiversity crisis. eLife. 2021;10:e71895. doi: 10.7554/eLife.71895. PubMed DOI PMC
Kusy D., Motyka M., Fusek L., Li Y., Bocek M., Bilkova R., Ruskova M., Bocak L. Sexually dimorphic characters and shared aposematic patterns mislead the morphology-based classification of the Lycini (Coleoptera: Lycidae) Zool. J. Linn. Soc. 2021;191:902–927. doi: 10.1093/zoolinnean/zlaa055. DOI
Kazantsev S.V., Nikitsky N.B. Larvae of net-winged beetles (Lycidae: Coleoptera) of the European part of Russia and the Caucasus. Cauc. Entomol. Bull. 2011;7:129–134. doi: 10.23885/1814-3326-2011-7-2-129-134. DOI
Kusy D., Sklenarova K., Bocak L. The effectiveness of DNA-based delimitation in Synchonnus net-winged beetles (Coleoptera: Lycidae) assessed, and description of 11 new species. Austral. Entomol. 2018;57:25–39. doi: 10.1111/aen.12266. DOI
Hewitt G. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 1999;68:87–112. doi: 10.1111/j.1095-8312.1999.tb01160.x. DOI
Hewitt G. The genetic legacy of the Quaternary ice ages. Nature. 2000;405:907–913. doi: 10.1038/35016000. PubMed DOI
Strandberg G., Brandefelt J., Kjellström E., Smith B. High-resolution regional simulation of last glacial maximum climate in Europe. Tellus A Dyn. Meteorol. Oceanogr. 2011;63:107–125. doi: 10.1111/j.1600-0870.2010.00485.x. DOI
Krivolutskaya G.O. Entomofauna of the Kuril Islands: Principal Features and Origin. Izdatel’stvo Nauka, Leningrad, Division; Leningrad, Russia: 1973. p. 315.
Kleine R. Pars 123: Lycidae. Coleopterorum Catalogus auspiciis et auxilio W. Junk editus a Schenkling. Conchology, Inc.; Lapu-Lapu City, Philippines: 1933. p. 145.
Motyka M., Masek M., Bocak L. Congruence between morphology and molecular phylogeny: The reclassification of Calochromini (Coleoptera: Lycidae) and their dispersal history. Zool. J. Linn. Soc. 2017;180:47–65. doi: 10.1111/zoj.12497. DOI
Bocek M., Bocak L. Species limits in polymorphic mimetic Eniclases net-winged beetles from New Guinean mountains (Coleoptera, Lycidae) Zookeys. 2016;593:15–35. doi: 10.3897/zookeys.593.7728. PubMed DOI PMC
Bocek M., Bocak L. The origins and dispersal history of the trichaline net-winged beetles in South East Asia, Wallacea, New Guinea and Australia. Zool. J. Linn. Soc. 2019;185:1079–1094. doi: 10.1093/zoolinnean/zly090. DOI
Ferreira V.S., Solodovnikov A., Ivie M.A., Kundrata R. Dominican Amber Net-Winged Beetles suggest stable Paleoenvironment as a driver for Conserved Morphology in a Paedomorphic lineage. Sci. Rep. 2022;12:5820. doi: 10.1038/s41598-022-09867-6. PubMed DOI PMC
Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Bininda-Emonds O.R.P. transAlign: Using amino acids to facilitate the multiple alignment of protein coding DNA sequences. BMC Bioinform. 2005;6:156. doi: 10.1186/1471-2105-6-156. PubMed DOI PMC
Nguyen L.T., Schmid H.A., von Haeseler A., Minh B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Chernomor O., von Haeseler A., Minh B.Q. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 2016;65:997–1008. doi: 10.1093/sysbio/syw037. PubMed DOI PMC
Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S. ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Hoang D.T., Chernomor O., von Haeseler A., Minh B.Q., Vinh L.S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018;35:518–522. doi: 10.1093/molbev/msx281. PubMed DOI PMC
Clement M., Posada M., Crandall K.A. TCS: A computer program to estimate gene genealogies. Mol. Ecol. 2000;9:1657–1659. doi: 10.1046/j.1365-294x.2000.01020.x. PubMed DOI
Leigh J.W., Bryant D., Nakagawa S. Popart: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015;6:1110–1116. doi: 10.1111/2041-210X.12410. DOI
Motyka M., Kusy D., Masek M., Bocek M., Li Y., Bilkova R., Kapitán J., Yagi T., Bocak L. Conspicuousness, phylogenetic structure, and origins of Müllerian mimicry in 4000 lycid beetles from all zoogeographic regions. Sci. Rep. 2021;11:5961. doi: 10.1038/s41598-021-85567-x. PubMed DOI PMC
Drummond A.J., Suchard M.A., Xie D., Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012;29:1969–1973. doi: 10.1093/molbev/mss075. PubMed DOI PMC
Rambaut A., Drummond A.J., Xie D., Baele G., Suchard M.A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018;67:901–904. doi: 10.1093/sysbio/syy032. PubMed DOI PMC
Houlbert C. Les coléoptères d’Europe France et régions voisines. Anatomie générale; classification et tableaux génériques illustrés. In: Toulouse D., editor. Encyclopédie Scientifique. Tome Second. G. Doin; Paris, France: 1922.
Latreille P.A. Crustacés, arachnides et partie des insectes. In: Cuvier G., editor. Le Règne Animal Distribué D’après Son Organisation Pour Servir de Base à L’histoire Naturelle des Animaux et D’introduction à L ’Anatomie Compare. Déterville; Paris, France: 1829. p. xxvii+584. Avec Figures Dessinées D’après Nature. Nouvelle Édition, Revue et Augmentee; Tome IV.
Mulsant E. Tableaux synoptique des Lycides, ou des especesdu genre Lycus, qui se rencontrent dans les environs de Lyon. Ann. Sci. Phys. Natur. d’Agric. et d’Industr. 1838;1:77–81.
Say T. Descriptions of new North American Coleopterous Insects., and observations on some already described. Boston J. Nat. Hist. 1835;1:151–202.
Schaeffer C. New Coleoptera and miscellaneous notes. J. N. Y. Entomol. Soc. 1911;19:113–126.
Herbst J.F.W. Kritisches Verzichniss meiner Insectensammluyng. Arch. Insectengesch. 1784;5:73–151. pls. 24–30.
Linnaeus C. Systema Naturae, per Regna Tria Naturae, Secundum Classes, Ordines, Genera. Species Cum Characteribus, Differentiis, Synonimis, Locis. Tomus, I. Editio Duodecima. Tomus I., Pars II. Laurentii Salvii; Holmiae, Turkey: 1767. pp. 533–1327.
Mannerheim C.G.v. Description de quelques autres Nouvelles espèces de coléoptères de Finnlande. Bull. Soc. Nat. Moscou. 1843;16:88–89.62.
Pic M. Notes diverses, descriptions et diagnoses. L’Echange. 1914;30:49–56.
Linnaeus C. Fauna Suecica sistens Animalia Sueciae Regni: Mammalia, Ayes, Amphibia, Pisces, Insecta, Vermes. Distributa per Classes et Ordines, Genera et Species, Cum Differentiis Specierum, Synonymis Auctorum, Nominibus Incolarum, Locis Natalium, Descriptionibus Insectorum. Editio Altera, Auction. Laurentii Salvii; Stockholmiae, Sweden: 1761. 48 + 578, 2 pls.
Motschulsky V.D. Coleopteres rapportes de la Siberie orientate et notamment des pays situes sur les bords du fleuve Amour par MM. Schrenck, Maack, Ditmar, Voznessenski etc. pp. 77–257 + [1], pls 6–11, 1 map. In: Schrenck P.L., editor. Reisen und Forschungen im Amur-Lande in den Jahren 1854-1856 im Auftrage der Kaiserl. Akademie der Wissenschaften zu St. Peterburg ausgefuhrt und in Verbindung mit mehreren Gelehrten herausgegeben von Dr.Leopold Schrenck. Kaiserliche Akademie der Wissenschaften; St. Peterburg, Russia: 1860. p. 976. Band II. Zweite Lieferung. Coleopteren.
Pupin O. Dictyoptera aurora caprai n. subsp. ed illustazioni di altri Dictyopterini. Boll. Soc. Entomol. Ital. 1974;106:40–46.
Nakane T. Fauna Japonica. Lycidae (Insecta: Coleoptera) Academic Press of Japan; Tokyo, Japan: 1969. p. 224.
Bergsten J., Bilton D.T., Fujisawa T., Elliott M., Monaghan M.T., Balke M., Hendrich L., Geijer J., Herrmann J., Foster G.N., et al. The Effect of Geographical Scale of Sampling on DNA Barcoding. Syst. Biol. 2012;61:851–869. doi: 10.1093/sysbio/sys037. PubMed DOI PMC
LeConte J. The Complete writings of Thomas Say on the Entomology of North America. Volume 2 Bailliere Bros; New York, NY, USA: 1859.
International Commission on Zoological Nomenclature (ICZN) International Code of Zoological Nomenclature. The International Trust for Zoological Nomenclature; London, UK: 1999. PubMed PMC
Ikeda H., Nishikawa M., Sota T. Loss of flight promotes beetle diversification. Nat. Commun. 2012;3:648. doi: 10.1038/ncomms1659. PubMed DOI PMC
Eldredge N., Thompson J.N., Brakefield P.M., Gavrilets S., Jablonski D., Jackson J.B.C., Lenski R.E., Lieberman B.S., McPeek M.A., Miller W. The dynamics of evolutionary stasis. Paleobiology. 2005;31:133–145. doi: 10.1666/0094-8373(2005)031[0133:TDOES]2.0.CO;2. DOI
Davis C.C., Chaefer H., Xi Z., Baum D.A., Donoghue M.J., Harmon L.J. Long-term morphological stasis maintained by a plant-polinator mutualism. Proc. Natl. Acad. Sci. USA. 2014;111:5914–5919. doi: 10.1073/pnas.1403157111. PubMed DOI PMC
Kazantsev S.V. Phylogeny of the tribe Erotini (Coleoptera, Lycidae), with descriptions of new taxa. Zootaxa. 2004;496:1–48. doi: 10.11646/zootaxa.496.1.1. DOI
Kazantsev S.V. New taxa of Helcophorus Fairmaire, 1891, with a key to species of the genus (Coleoptera: Lycidae) In: Hartmann M., Weipert J., editors. Biodiversität und Naturausstattung im Himalaya. Band 5. Verein der Freunde & Förderer des Naturkundemuseums Erfurt e.V.; Erfurt, Germany: 2015. pp. 383–389.
Motyka M., Kampova L., Bocak L. Phylogeny and evolution of Müllerian mimicry in aposematic Dilophotes: Evidence for advergence and size-constraints in evolution of mimetic sexual dimorphism. Sci. Rep. 2018;8:3744. doi: 10.1038/s41598-018-22155-6. PubMed DOI PMC
Motyka M., Bocek M., Kusy D., Bocak L. Interactions in multi-pattern Mullerian communities support origins of new patterns, false structures, imperfect resemblance and mimetic sexual dimorphism. Sci. Rep. 2020;10:11193. doi: 10.1038/s41598-020-68027-w. PubMed DOI PMC
Lukhtanov V.A., Kandul N.P., Plotkin J.B., Dantchenko A.V., Haig D., Pierce N.E. Reinforcement of pre-zygotic isolation and karyotype evolution in Agrodiaetus butterflies. Nature. 2005;436:385–389. doi: 10.1038/nature03704. PubMed DOI
Bocak L., Yagi T. Evolution of mimicry patterns in Metriorrhynchus (Coleoptera: Lycidae): The history of dispersal and speciation in South East Asia. Evolution. 2010;64:39–52. doi: 10.1111/j.1558-5646.2009.00812.x. PubMed DOI
Kazantsev S.V. Morphology of Lycidae with some considerations on evolution of the Coleoptera. Elytron. 2005;19:49–226.
Kazantsev S.V. New and little known taxa of neotenic Lycidae (Coleoptera), with discussion of their phylogeny. Russ. Entomol. J. 2013;22:9–31. doi: 10.11646/zootaxa.4965.3.2. DOI
Gould S.J. Ontogeny and Phylogeny. Harvard University Press; Cambridge, MA, USA: 1977.
Raup D.M., Sepkoski J.J., Jr. Periodicity of extinctions in the geologic past. Proc. Natl. Acad. Sci. USA. 1984;81:801–805. doi: 10.1073/pnas.81.3.801. PubMed DOI PMC
Malohlava V., Bocak L. Evidence of extreme habitat stability in a Southeast Asian biodiversity hotspot based on the evolutionary analysis of neotenic net-winged beetles. Mol. Ecol. 2010;19:4800–4811. doi: 10.1111/j.1365-294X.2010.04850.x. PubMed DOI
Masek M., Palata V., Bray T.C., Bocak L. Molecular phylogeny reveals high diversity and geographic structure in Asian neotenic net-winged beetles Platerodrilus (Coleoptera: Lycidae) PLoS ONE. 2015;10:e0123855. doi: 10.1371/journal.pone.0123855. PubMed DOI PMC
Poinar G., Jr., Poinar R. The Amber Forest: A Reconstruction of a Vanished World. Princeton University Press; Princeton, NJ, USA: 1999. p. 239.
Kleine R. Eine Lycidae aus dem Baltischen Bernstein. Entomol. Bl. 1940;36:179–180.
Winkler J.R. Three new genera of fossil Lycidae from Baltic Amber. Mitt. Münch. Entomol. Ges. 1987;77:61–78.
Kazantsev S.V., Perkovsky E.E. Imprint of a Helcophorus Fairmaire, 1881: The first net-winged beetle (Coleoptera: Lycidae) from Rovno amber. Zootaxa. 2022;5128:84–90. doi: 10.11646/zootaxa.5128.1.4. PubMed DOI
Chang H., Kirejtshuk A., Ren D. New Fossil Elaterids (Coleoptera: Polyphaga: Elateridae) from the Jehol Biota in China. [(accessed on 14 August 2022)];Ann. Entomol. Soc. Am. 2010 103:866–874. doi: 10.1603/AN09076. Available online: http://www.bioone.org/doi/full/10.1603/AN09076. DOI
Muona J., Chang H., Ren D. The Clicking Elateroidea from Chinese Mesozoic Deposits (Insecta, Coleoptera) Insects. 2020;11:875. doi: 10.3390/insects11120875. PubMed DOI PMC
Tihelka E., Huang D.Y., Cai C. A new genus and tribe of Cretaceous net-winged beetles from Burmese amber (Coleoptera: Elateroidea: Lycidae) Palaeoentomology. 2019;2:262–270. doi: 10.11646/palaeoentomology.2.3.11. DOI
Bocak L., Li Y., Ellenberger S. The discovery of Burmolycus compactus gen. et sp. nov. from the mid-Cretaceous of Myanmar provides the evidence for early diversification of net-winged beetles (Coleoptera, Lycidae) Cret. Res. 2019;99:149–155. doi: 10.1016/j.cretres.2019.02.018. DOI
Li Y.D., Tihelka E., Huang D.Y., Cai C.Y. Murcybolus gen. nov., a new net-winged beetle genus from mid-Cretaceous Burmese amber (Coleoptera: Lycidae: Burmolycini) Zootaxa. 2021;4966:76–83. doi: 10.11646/zootaxa.4966.1.8. PubMed DOI
Kazantsev S.V. A new fossil genus of net-winged beetles, with a brief review of amber Lycidae (Insecta: Coleoptera) Zootaxa. 2013;3608:94–100. doi: 10.11646/zootaxa.3608.1.8. PubMed DOI
Kazantsev S.V. Protolycus gedaniensis gen. n., sp. n., the first Baltic amber representative of Lycini (Coleoptera, Lycidae, Lycinae) Palaeoentomology. 2019;3:327–332. doi: 10.11646/palaeoentomology.2.4.5. DOI
Molino-Olmedo F., Ferreira V.S., Branham M.A., Ivie M.A. The description of Prototrichalus gen. nov. and three new species from Burmese amber supports a mid-Cretaceous origin of the Metriorrhynchini (Coleoptera, Lycidae) Cret. Res. 2020;111:104452. doi: 10.1016/j.cretres.2020.104452. DOI
Yamamoto S. Fossil evidence of elytra reduction in ship-timber beetles. Sci. Rep. 2019;9:493. doi: 10.1038/s41598-019-41310-1. PubMed DOI PMC
Li Y.D., Peris D., Yamamoto S., Hsiao Y., Newton A.F., Cai C.Y. Revisiting the Raractocetus Fossils from Mesozoic and Cenozoic Amber Deposits (Coleoptera: Lymexylidae) Insects. 2022;13:768. doi: 10.3390/insects13090768. PubMed DOI PMC
Yamamoto S., Takahashi Y., Parker J. Evolutionary stasis in enigmatic jacobsoniid beetles. Gond. Res. 2017;45:275–281. doi: 10.1016/j.gr.2016.12.008. DOI
Hörnschemeyer T., Wedmann S., Poinar G.O. How long can insect species exist? Evidence from extant and fossil Micromalthus beetles. Zool. J. Linn. Soc. 2010;158:300–311. doi: 10.1111/j.1096-3642.2009.00549.x. DOI
Ross A.J. Burmese (Myanmar) amber checklist and bibliography 2018. Palaeoentomology. 2019;2:22–84. doi: 10.11646/palaeoentomology.2.1.5. DOI
Zhang S.Q., Che L.H., Li Y., Dan L., Pang H., Ślipiński A., Zhang P. Evolutionary history of Coleoptera revealed by extensive sampling of genes and species. Nat. Commun. 2018;9:205. doi: 10.1038/s41467-017-02644-4. PubMed DOI PMC
McKenna D.D., Shin S., Ahrens D., Balke M., Beza-Beza C., Clarke D.J., Donath A., Escalona H.E., Letsch H., Liu S., et al. The evolution and genomic basis of beetle diversity. Proc. Natl. Acad. Sci. USA. 2019;116:24729–24737. doi: 10.1073/pnas.1909655116. PubMed DOI PMC
Dering M., Kosinski P., Wyka T.P., Pers-Kamczyc E., Boratynski A., Boratynska K., Reich P.B., Romo A., Zadworny M., Zytkowiak R., et al. Tertiary remnants and Holocene colonizers: Genetic structure and phylogeography of Scots pine reveal higher genetic diversity in young boreal than in relict Mediterranean populations and a dual colonization of Fennoscandia. Divers. Distr. 2017;23:540–555. doi: 10.1111/ddi.12546. DOI
Hedenas L. Rhytidium rugosum (Bryophyta) colonized Scandinavia from at least two glacial refugial source populations. Bot. J. Linn. Soc. 2015;179:635–657. doi: 10.1111/boj.12341. DOI
Markova S., Hornikova M., Lanier H.C., Henttonen H., Searle J.B., Weider L.J., Kotlik P. High genomic diversity in the bank vole at the northern apex of a range expansion: The role of multiple colonizations and end-glacial refugia. Mol. Ecol. 2020;29:1730–1744. doi: 10.1111/mec.15427. PubMed DOI