Dominican amber net-winged beetles suggest stable paleoenvironment as a driver for conserved morphology in a paedomorphic lineage
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
Agreement No. 101018841
Marie Curie - United Kingdom
PubMed
35388125
PubMed Central
PMC8986798
DOI
10.1038/s41598-022-09867-6
PII: 10.1038/s41598-022-09867-6
Knihovny.cz E-resources
- MeSH
- Coleoptera * anatomy & histology MeSH
- Amber * MeSH
- Forests MeSH
- Fossils MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Dominican Republic MeSH
- Names of Substances
- Amber * MeSH
Paedomorphosis is a heterochronic syndrome in which adult individuals display features of their immature forms. In beetles, this phenomenon occurs widely in the superfamily Elateroidea, including the net-winged beetles (Lycidae), and, due to the usual flightlessness of paedomorphic females, it is hypothesized to cause speciation rates higher than in non-paedomorphic lineages. However, some fossils of paedomorphic lycids do not support this with palaeobiological data. Discovery of new Lycidae fossils attributed to the West Indian extant paedomorphic genus Cessator Kazantsev in the Dominican amber also suggests morphological stasis within this genus in the Greater Antilles. We describe Cessator anachronicus Ferreira and Ivie, sp. nov. based on adult males, as well as the first ever recorded fossil net-winged beetle larva of the same genus. We propose that the relatively young age of the studied fossils combined with the stable conditions in the forest floor of the Greater Antilles through the last tens of million years could explain the exceptionally conserved morphology in the net-winged beetles affected by the paedomorphic syndrome.
See more in PubMed
Reilly SM, Wiley EO, Meinhardt DJ. An integrative approach to heterochrony: The distinction between interspecific and intraspecific phenomena. Biol. J. Linn. Soc. 1997;60:119–143.
McNamara KJ. Heterochrony: The evolution of development. Evol. Educ. Outreach. 2012;5:203–218.
Bocakova M, Bocak L, Hunt T, Teravainen M, Vogler AP. Molecular phylogenetics of Elateriformia (Coleoptera): Evolution of bioluminescence and neoteny. Cladistics. 2007;23:477–496.
Bocak L, Kundrata R, Andújar Fernández C, Vogler A. The discovery of Iberobaeniidae (Coleoptera: Elateroidea): A new family of beetles from Spain, with immatures detected by environmental DNA sequencing. Proc. R. Soc. B Biol. Sci. 2016;283:20152350. PubMed PMC
McMahon DP, Hayward A. Why grow up? A perspective on insect strategies to avoid metamorphosis. Ecol. Entomol. 2016;41:505–515.
Ferreira VS, Keller O, Branham MA. Multilocus phylogeny support the nonbioluminescent firefly Chespirito as a New Subfamily in the Lampyridae (Coleoptera: Elateroidea) Insect Syst. Div. 2020;4:1–13.
Rosa SP, Costa C, Kramp K, Kundrata R. Hidden diversity in the Brazilian Atlantic rainforest: The discovery of Jurasaidae, a new beetle family (Coleoptera, Elateroidea) with neotenic females. Sci. Rep. 2020;10:1544. PubMed PMC
Masek M, Ivie MA, Palata V, Bocak L. Molecular phylogeny and classification of Lyropaeini (Coleoptera: Lycidae) with description of larvae and new species of Lyropaeus. Raffles Bull. Zool. 2014;62:136–145.
Crowson RA. A review of the classification of Cantharoidea (Coleoptera), with definition of two new families: Cneoglossidae and Omethidae. Rev. Univ. Madrid. 1972;21:35–77.
Cicero JM. Ontophylogenetics of cantharoid larviforms (Coleoptera: Cantharoidea) Col. Bull. 1988;42:105–151.
Kundrata R, Bocakova M, Bocak L. The comprehensive phylogeny of the superfamily Elateroidea (Coleoptera: Elateriformia) Mol. Phylogenet. Evol. 2014;76:162–171. PubMed
Ferreira VS, Keller O, Branham MA, Ivie MA. Molecular data support the placement of the enigmatic Cheguevaria as a subfamily of Lampyridae (Insecta: Coleoptera) Zool. J. Linn. Soc. 2019;187:1253–1258.
Kundrata R, Bocak L. Molecular phylogeny reveals the gradual evolutionary transition to soft-bodiedness in click-beetles and identifies Sub-Saharan Africa as a cradle of diversity for Drilini (Coleoptera: Elateridae) Zool. J. Linn. Soc. 2019;187:413–452.
Douglas HB, et al. Anchored phylogenomics, evolution and systematics of Elateridae: Are all bioluminescent Elateroidea derived click beetles? Biology. 2021;10:451. PubMed PMC
Kusy D, Motyka M, Bocek M, Masek M, Bocak L. Phylogenomic analysis resolves the relationships among net-winged beetles (Coleoptera: Lycidae) and reveals the parallel evolution of morphological traits. Syst. Entomol. 2019;44:911–925.
Li Y, Pang H, Bocak L. A review of the neotenic genus Atelius Waterhouse, 1878 from China (Coleoptera: Lycidae) Ann. Zool. 2018;68:351–356.
Bocakova M. Lolodorfus, a new genus of net-winged beetles (Coleoptera: Lycidae: Dexorinae) from Cameroon. Zootaxa. 2014;3811:374–380. PubMed
Bocakova M. Revision of the tribe Calopterini (Coleoptera, Lycidae) Stud. Neotrop. Fauna Environ. 2003;38:207–234.
Bocakova M. Phylogeny and classification of the tribe Calopterini (Coleoptera, Lycidae) Insect Syst. Evol. 2005;35:437–447.
Kazantsev SV. New and little-known taxa of “neotenic” Lycidae (Coleoptera), with discussion of their phylogeny. Rus. Entomol. J. 2013;22:9–31.
Kazantsev SV. New leptolycines from Ecuador and Peru (Coleoptera: Lycidae) Rus. Entomol. J. 2017;26:127–146.
Ferreira VS, Ivie MA. Redescription of Cephalolycus Pic, 1926 (Coleoptera: Elateroidea: Lycidae) and a discussion on its taxonomic position. Col. Bull. 2016;70:663–666.
Ferreira VS, Ivie MA. A revision of Lycinella Gorham, 1884 with the description of six new species (Coleoptera, Lycidae, Calopterini) ZooKeys. 2018;792:69–89. PubMed PMC
Ferreira VS, Silveira LFL. A New paedomorphic genus of net-winged beetles from the Atlantic rainforest (Coleoptera, Elateroidea, Lycidae) Pap. Avulsos. Zool. 2020;60:e202060.
Ferreira VS. Revision of Acroleptus Bourgeois, 1886 and Descriptions of New Aporrhipis Species (Lycidae, Calopterini, Acroleptina) J. Nat. Hist. 2020;53:2739–2756.
Bocak L, Bocakova M, Hunt T, Vogler AP. Multiple ancient origins of neoteny in Lycidae (Coleoptera): Consequences for ecology and macroevolution. Proc. R. Soc. B: Biol. Sci. 2008;275:2015–2023. PubMed PMC
Malohlava V, Bocak L. Evidence of extreme habitat stability in a Southeast Asian biodiversity hotspot based on the evolutionary analysis of neotenic net-winged beetles. Mol. Ecol. 2010;19:4800–4811. PubMed
Bray TC, Bocak L. Slowly dispersing neotenic beetles can speciate on a penny coin and generate space-limited diversity in the tropical mountains. Sci. Rep. 2016;6:33579. PubMed PMC
Reaney AM, Khelladi-Bouchenak Y, Tobias JA, Abzhanov A. Ecological and morphological determinants of evolutionary diversification in Darwin's finches and their relatives. Ecol. Evol. 2020;10:14020–14032. PubMed PMC
Beltrán DF, Shultz AJ, Parra JL. Speciation rates are positively correlated with the rate of plumage color evolution in hummingbirds. Evolution. 2021;75:1665–1680. PubMed
Fanti F, Pankowski MG. Two new species of soldier beetles (Coleoptera, Cantharidae), the first from the tribe Silini in Dominican amber. Zootaxa. 2021;4996:163–170. PubMed
Li Y, Kundrata R, Tihelka E, Liu Z, Huang D, Cai C. Cretophengodidae, a new Cretaceous beetle family, sheds light on the evolution of bioluminescence. Proc. R. Soc. B: Biol. Sci. 2021;288:20202730. PubMed PMC
Li Y, Kundrata R, Packova G, Huang D, Cai C. An unusual elateroid lineage from mid-Cretaceous Burmese amber (Coleoptera: Elateroidea) Sci. Rep. 2021;11:21985. PubMed PMC
Wickham HF. New miocene coleoptera from florissant. Bull. Mus. Comp. Zool. Harv. 1914;58:423–494.
Kazantsev SV. First fossil representative of the net-winged beetles genus Plateros Bourgeois, 1879 (Insecta: Coleoptera: Lycidae) from Mexican amber, with redescription of Electropteron avus gen.n., sp.n. from Dominican amber and a note on the time of origin of the family. Rus. Entomol. J. 2020;29:377–387.
Tihelka E, Huang D, Cai C. A new genus and tribe of Cretaceous net-winged beetles from Burmese amber (Coleoptera: Elateroidea: Lycidae) Palaeontomology. 2019;2:262–270.
Bocak, L., Muller, P., Motyka, M, & Kusy, D. Prototrichalus is transferred to the Tenebrionoidea: a comment on Molino-Olmedo et al., 2020, 'The description of Prototrichalus gen. nov. and three new species from Burmese amber supports a mid-Cretaceous origin of the Metriorrhynchini (Coleoptera, Lycidae). Cret. Res. (proof version) (2021).
Ferreira VS, Ivie MA. The first fossil species of the extant genus Cessator Kazantsev (Coleoptera: Lycidae): a new leptolycini from Dominican Amber. Col. Bull. 2017;71:57–60.
Bocak L, Li Y, Ellenberger S. The discovery of Burmolycus compactus gen. et. sp. nov. from the mid-Cretaceous of Myanmar provides the evidence for early diversification of net-winged beetles (Coleoptera, Lycidae) Cret. Res. 2019;99:149–155.
Kazantsev SV. Leptolycini of Puerto Rico (Coleoptera: Lycidae) Russ. Entom. J. 2009;18:87–95.
Ikeda H, Nishikawa M, Sota T. Loss of flight promotes beetle diversification. Nat. Comm. 2011;3:648. PubMed PMC
Kazantsev SV. A new lycid genus from the Dominican Amber (Insecta, Coleoptera, Lycidae, Leptolycinae, Leptolycini) Psyche. 2012;2012:982141.
Ferreira, V.S., & Ivie, M.A. Lessons from a Museum’s Cabinet: DNA barcoding and Collections-based Life Stage Associations Reveals a Hidden Diversity in the Puerto Rican Bank Paedomorphic Lycidae (Coleoptera: Elateroidea: Leptolycini). Insect Syst. Div. (Accepted for publication on 22-Feb-2022) (2022).
Wu RJC. Secrets of a Lost World: Dominican Amber and Its Inclusions. Privately published; 1997.
Li Y, Tihelka E, Huang D, Cai C. Murcybolus gen. nov., a new net-winged beetle genus from mid-Cretaceous Burmese amber (Coleoptera: Lycidae: Burmolycini) Zootaxa. 2021;4966:77–83. PubMed
Rabosky DL, Adams DC. Rates of morphological evolution are correlated with species richness in salamanders. Evolution. 2011;66:1807–1818. PubMed
Rabosky DL, et al. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat. Commun. 2013;4:1958. PubMed
Grimaldi DA. The age of Dominican amber. In: Anderson KB, Crelling JC, editors. Amber, Resinite, and Fossil Resins. American Chemical Society; 1994. pp. 203–217.
Grimaldi DA. Amber: Window to the Past. Abrams/American Museum of Natural History; 1996.
Iturralde-Vinent MA. Geology of the amber-bearing deposits of the Greater Antilles. Car. J. Sci. 2001;37:141–167.
Grimaldi, D. A. & Engel, M. S. Evolution of the Insects. (2005). Cambridge University Press.
Poinar G., Jr Palaeoecological perspectives in Dominican amber. Ann. Soc. Entomol. Fr. 2010;46:23–52.
Ortega-Ariza D, Franseen EK, Santos-Mercado H, Ramírez-Martínez WR, Core-Suárez EE. Strontium isotope stratigraphy for Oligocene-Miocene carbonate systems in Puerto Rico and the Dominican Republic: Implications for Caribbean processes affecting depositional history. J. Geol. 2015;123:539–560.
Iturralde-Vinent MA, MacPhee RDE. Remarks on the age of Dominican amber. Palaeoentomology. 2019;2:236–240.
Solorzáno-Kraemer MM, Delclòs X, Engel MS, Peñalver E. A revised definition for copal and its significance for palaeontological and Anthropocene biodiversity-loss studies. Sci. Rep. 2020;10:19904. PubMed PMC
Braga JC, et al. Pliocene–lower Pleistocene carbonates and associated deposits (Fms Yanigua and Los Haitises) in eastern Hispaniola (Dominican Republic) Sediment. Geol. 2012;265(266):182–194.
Hörnschemeyer T, Wedmann S, Poinar GO. How long can insect species exist? Evidence from extant and fossil Micromalthus beetles. Zool. J. Linn. Soc. 2010;158:300–311.
Poinar G, Jr, Brown AE. Descriptions of a broad-nosed weevil (Eudiagogini: Curculionidae) and false ladybird beetle (Nilionini: Nilionidae) in Dominican amber. Hist. Biol. 2011;23:231–235.
Tarasov S, Vaz-de-Mello FZ, Krell F, Dimitrov D. A review and phylogeny of Scarabaeine dung beetle fossils (Coleoptera: Scarabaeidae: Scarabaeinae), with the description of two Canthochilum species from Dominican amber. PeerJ. 2016;4:e1988. PubMed PMC
Keller O, Skelley P. A new species of Notaepytus Skelley, 2009 (Coleoptera: Erotylidae: Tritomini) from Dominican amber. Zootaxa. 2019;4609:191–195. PubMed
Yamamoto S, Takahashi Y, Parker J. Evolutionary stasis in enigmatic jacobsoniid beetles. Gond. Res. 2017;45:275–281.
Cai C, et al. Basal polyphagan beetles in mid-Cretaceous amber from Myanmar: Biogeographic implications and long-term morphological stasis. Proc. R. Soc. B: Biol. Sci. 2019;286:1–9. PubMed PMC
Miller, R. S. A revision of Leptolycini (Coleoptera: Lycidae) with a discussion of paedomorphosis. PhD Dissertation, The Ohio State University, 1–403 (1991).
Schneider H, Schmidt AR, Nascimbene PC, Heinrichs J. A new Dominican amber fossil of the derived fern genus Pleopeltis confirms generic stasis in the epiphytic fern diversity of the West Indies. Org. Divers. Evol. 2015;15:277–283.
Kaasalainen U, et al. A Caribbean epiphyte community preserved in Miocene Dominican amber. Earth Environ. Sci. Trans. R. Soc. Edinb. 2017;107:321–331.
Adams DC, Berns CM, Kozak KH, Wiens JJ. Are rates of species diversification correlated with rates of morphological evolution? Proc. R. Soc. B: Biol. Sci. 2009;276:2729–2738. PubMed PMC
Ferreira VS, Barclay MVL, Ivie MA. Redescription of Aporrhipis Pascoe, 1887 (Coleoptera: Lycidae), with a discussion of its tribal placement. Coll. Bull. 2018;72:371–375.
Leng CW, Mutchler AJ. Article VIII—The Lycidae, Lampyridae and Cantharidae (Telephoridae) of the West Indies. Bull. Am. Mus. Nat. Hist. 1922;46:413–499.
Kazantsev SV. Morphology of Lycidae with some considerations on evolution of the Coleoptera. Elytron. 2005;17:49–226.
Lawrence JF, et al. Phylogeny of the Coleoptera based on morphological characters of adults and larvae. Ann. Zool. 2011;61:1–217.
Ferreira VS, Costa C. A description of the Larva of Metapteron xanthomelas (Lucas, 1857) from the Restinga Forest of Southeastern Brazil (Coleoptera: Lycidae, Calopterini) Zootaxa. 2015;3915:295–300. PubMed