Hidden diversity in the Brazilian Atlantic rainforest: the discovery of Jurasaidae, a new beetle family (Coleoptera, Elateroidea) with neotenic females

. 2020 Jan 31 ; 10 (1) : 1544. [epub] 20200131

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32005908
Odkazy

PubMed 32005908
PubMed Central PMC6994542
DOI 10.1038/s41598-020-58416-6
PII: 10.1038/s41598-020-58416-6
Knihovny.cz E-zdroje

Beetles are the most species-rich animal radiation and are among the historically most intensively studied insect groups. Consequently, the vast majority of their higher-level taxa had already been described about a century ago. In the 21st century, thus far, only three beetle families have been described de novo based on newly collected material. Here, we report the discovery of a completely new lineage of soft-bodied neotenic beetles from the Brazilian Atlantic rainforest, which is one of the most diverse and also most endangered biomes on the planet. We identified three species in two genera, which differ in morphology of all life stages and exhibit different degrees of neoteny in females. We provide a formal description of this lineage for which we propose the new family Jurasaidae. Molecular phylogeny recovered Jurasaidae within the basal grade in Elateroidea, sister to the well-sclerotized rare click beetles, Cerophytidae. This placement is supported by several larval characters including the modified mouthparts. The discovery of a new beetle family, which is due to the limited dispersal capability and cryptic lifestyle of its wingless females bound to long-term stable habitats, highlights the importance of the Brazilian Atlantic rainforest as a top priority area for nature conservation.

Erratum v

PubMed

Zobrazit více v PubMed

Ślipiński, S. A., Leschen, R. A. B., Lawrence, J. F. Order Coleoptera Linnaeus, 1758 in Animal Biodiversity: An Outline of Higher-Level Classification and Survey of Taxonomic Richness (ed. Zhang, Z. Q.). Zootaxa3148, 203–208 (2011). PubMed

Lord NP, et al. Phylogenetic analysis of the minute brown scavenger beetles (Coleoptera: Latridiidae), and recognition of a new beetle family, Akalyptoischiidae fam.n. (Coleoptera: Cucujoidea) Syst. Entomol. 2010;35:753–763. doi: 10.1111/j.1365-3113.2010.00532.x. DOI

Robertson JA, et al. Phylogeny and classification of Cucujoidea and the recognition of a new superfamily Coccinelloidea (Coleoptera: Cucujiformia) Syst. Entomol. 2015;40:745–778. doi: 10.1111/syen.12138. DOI

Shin S, et al. Phylogenomic data yield new and robust insights into the phylogeny and evolution of weevils. Mol. Biol. Evol. 2018;35:823–836. doi: 10.1093/molbev/msx324. PubMed DOI

Gimmel ML, Bocakova M, Gunter NL, Leschen RAB. Comprehensive phylogeny of the Cleroidea (Coleoptera: Cucujiformia) Syst. Entomol. 2019;44:527–558. doi: 10.1111/syen.12338. DOI

Ribera I, Beutel RG, Balke M, Vogler AP. Discovery of Aspidytidae, a new family of aquatic Coleoptera. Proc. R. Soc. B. 2002;269:2351–2356. doi: 10.1098/rspb.2002.2157. PubMed DOI PMC

Balke, M., Ribera, I. & Beutel, R. G. Aspidytidae: on the discovery of a new family of beetles and a key to fossil and extant adephagan families in Water Beetles of China, Vol. III (ed. Jäch, M. A. & Ji, L.) 53–66 (Zoologisch-Botanische Gesellschaft in Österreich and Wiener Coleopterologenverein 2003).

Spangler PJ, Steiner WE. A new aquatic beetle family, Meruidae, from Venezuela (Coleoptera: Adephaga) Syst. Entomol. 2005;30:339–357. doi: 10.1111/j.1365-3113.2005.00288.x. DOI

Bocak L, Kundrata R, Andújar-Fernández C, Vogler AP. The discovery of Iberobaeniidae (Coleoptera: Elateroidea), a new family of beetles from Spain, with immatures detected by environmental DNA sequencing. Proc. R. Soc. B. 2016;283:20152350. doi: 10.1098/rspb.2015.2350. PubMed DOI PMC

Kundrata R, Baena M, Bocak L. Iberobaenia andujari sp. nov., the third species of Iberobaeniidae (Coleoptera: Elateroidea) from southern Spain. Ann Zool. 2017;67:121–129. doi: 10.3161/00034541ANZ2017.67.1.014. DOI

McKenna DD, et al. The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Syst. Entomol. 2015;40:835–880. doi: 10.1111/syen.12132. DOI

Zhang SQ, et al. Evolutionary history of Coleoptera revealed by extensive sampling of genes and species. Nat. Comm. 2018;9:205. doi: 10.1038/s41467-017-02644-4. PubMed DOI PMC

Kundrata R, Bocakova M, Bocak L. The comprehensive phylogeny of the superfamily Elateroidea (Coleoptera: Elateriformia) Mol. Phylogenet. Evol. 2014;76:162–171. doi: 10.1016/j.ympev.2014.03.012. PubMed DOI

Bocak L, Motyka M, Bocek M, Bocakova M. Incomplete sclerotization and phylogeny: The phylogenetic classification of Plastocerus (Coleoptera: Elateroidea) PLoS One. 2018;13:e0194026. doi: 10.1371/journal.pone.0194026. PubMed DOI PMC

Kusy D, et al. Genome sequencing of Rhinorhipus Lawrence exposes an early branch of the Coleoptera. Front. Zool. 2018;15:21. doi: 10.1186/s12983-018-0262-0. PubMed DOI PMC

Kusy D, Motyka M, Bocek M, Vogler AP, Bocak L. Genome sequences identify three families of Coleoptera as morphologically derived click beetles (Elateridae) Sci. Rep. 2018;8:17084. doi: 10.1038/s41598-018-35328-0. PubMed DOI PMC

Lawrence JF. Rhinorhipidae, a new beetle family from Australia, with comments on the phylogeny of the Elateriformia. Invertebr. Taxon. 1988;2:1–53. doi: 10.1071/IT9880001. DOI

Gould SJ. Ontogeny and Phylogeny. Cambridge: Harvard University Press; 1977.

Cicero JM. Ontophylogenetics of cantharoid larviforms (Coleoptera: Cantharoidea) Coleopt. Bull. 1988;42:105–151.

Bocak L, Bocakova M, Hunt T, Vogler AP. Multiple ancient origins of neoteny in Lycidae (Coleoptera): consequences for ecology and macroevolution. Proc. R. Soc. B. 2008;275:2015–2023. doi: 10.1098/rspb.2008.0476. PubMed DOI PMC

Crowson RA. A review of the classification of Cantharoidea (Coleoptera), with the definition of two new families Cneoglossidae and Omethidae. Rev. Univ. Madrid. 1972;21:35–77.

Bocakova M, Bocak L, Hunt T, Teraväinen M, Vogler AP. Molecular phylogenetics of Elateriformia (Coleoptera): evolution of bioluminescence and neoteny. Cladistics. 2007;23:477–496. doi: 10.1111/j.1096-0031.2007.00164.x. DOI

Kundrata R, Bocak L. The phylogeny and limits of Elateridae (Insecta, Coleoptera): is there a common tendency of click beetles to soft-bodiedness and neoteny? Zool. Scr. 2011;40:364–378. doi: 10.1111/j.1463-6409.2011.00476.x. DOI

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J. Biodiversity hotspots for conservation priorities. Nature. 2000;403:853–885. doi: 10.1038/35002501. PubMed DOI

Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM. The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 2009;142:1141–1153. doi: 10.1016/j.biocon.2009.02.021. DOI

Dias, D. S., Rosa, S. P. & Silveira, L. F. L. Diversidade de vagalumes Lampyridae (Coleoptera) da Reserva Biológica Municipal da Serra dos Toledos, Itajubá-MG in Caderno de Resumos da XXIV Jornada de Iniciação Científica da UNIFEI (ed. Canuto, J. G.) 699–701 (Universidade Federal de Itajubá 2017).

Amaral DT, Mitani Y, Ohmiya Y, Viviani VR. Organization and comparative analysis of the mitochondrial genomes of bioluminescent Elateroidea (Coleoptera: Polyphaga) Gene. 2016;586:254–262. doi: 10.1016/j.gene.2016.04.009. PubMed DOI

Fallon TR, et al. Firefly genomes illuminate parallel origins of bioluminescence in beetles. eLife. 2018;7:e36495. doi: 10.7554/eLife.36495. PubMed DOI PMC

Kundrata R, Bocak L. Molecular phylogeny reveals the gradual evolutionary transition to soft-bodiedness in click-beetles and identifies Sub-Saharan Africa as a cradle of diversity for Drilini (Coleoptera: Elateridae) Zool. J. Linn. Soc. 2019;187:413–452. doi: 10.1093/zoolinnean/zlz033. DOI

Zaragoza-Caballero S, Zurita-García ML. A preliminary study on the phylogeny of the family Phengodidae (Insecta: Coleoptera) Zootaxa. 2015;3947:527–542. doi: 10.11646/zootaxa.3947.4.4. PubMed DOI

Rosa, S. P., Costa C. & Lopes, A. C. C. Discovery of a new genus and species of Penicillophorinae (Phengodidae) from Southeastern Brazil: description of larva, pupa, neotenic female and male in Abstracts of the Immature Beetles Meeting 2017 October 5−6, Prague, Czech Republic (ed. Seidel, M., Arriaga-Varela, E. & Vondráček, D.). Acta Entomol. Mus. Nat. Pragae57, 852–853 (2017).

Beutel RG. Phylogenetic analysis of Elateriformia (Coleoptera: Polyphaga) based on larval characters. J. Zool. Syst. Evol. Res. 1995;33:145–171. doi: 10.1111/j.1439-0469.1995.tb00222.x. DOI

Lawrence JF, et al. Phylogeny of the Coleoptera based on morphological characters of adults and larvae. Ann. Zool. 2011;61:1–217. doi: 10.3161/000345411X576725. DOI

Kawashima, I., Lawrence, J. F. & Branham, M. A. Rhagophthalmidae Olivier, 1907 in Coleoptera, Beetles; Volume 2: Morphology and Systematics (Elateroidea, Bostrichiformia, Cucujiformia partim) (eds. Leschen, R. A. B., Beutel, R. G. & Lawrence, J. F) in Handbook of Zoology, Arthropoda: Insecta (eds. Kristensen, N. P. & Beutel, R. G.) 135–140 (Berlin/New York: Walter de Gruyter GmbH & Co. 2010).

Malohlava V, Bocak L. Evidence of extreme habitat stability in a Southeast Asian biodiversity hotspot based on the evolutionary analysis of neotenic net-winged beetles. Mol. Ecol. 2010;19:4800–4811. doi: 10.1111/j.1365-294X.2010.04850.x. PubMed DOI

Bray TC, Bocak L. Slowly dispersing neotenic beetles can speciate on a penny coin and generate space-limited diversity in the tropical mountains. Sci. Rep. 2016;6:33579. doi: 10.1038/srep33579. PubMed DOI PMC

Mateos, E., Guix, J. C., Serra, A. & Pisciotta, K. Censuses of vertebrates in a Brazilian Atlantic rainforest area: The Paranapiacaba fragment. Centre de Recursos de Biodiversitat Animal Divisió III, Universitat de Barcelona (2002).

Mittermeier, R. A. et al. Hotspots revisited: Earth’s biologically richest and most endangered terrestrial ecoregions. CEMEX/Agrupación Sierra Madre, Mexico City (2004).

Pie MR, Faircloth BC, Ribeiro LF, Bornschein MR, Mccormack JE. Phylogenomics of montane frogs of the Brazilian Atlantic Forest is consistent with isolation in sky islands followed by climatic stability. Biol. J. Linn. Soc. 2018;125:72–82.

Paviolo A, et al. A biodiversity hotspot losing its top predator: The challenge of jaguar conservation in the Atlantic Forest of South America. Sci. Rep. 2016;6:37147. doi: 10.1038/srep37147. PubMed DOI PMC

Morellato LPC, Haddad CFB. Introduction: The Brazilian Atlantic Forest. Biotropica. 2000;32:786–792. doi: 10.1111/j.1744-7429.2000.tb00618.x. DOI

Joly CA, Metzger JP, Tabarelli M. Experiences from the Brazilian Atlantic Forest: ecological findings and conservation initiatives. New Phytol. 2014;204:459–473. doi: 10.1111/nph.12989. PubMed DOI

Bornschein MR, et al. Three new species of phytotelm-breeding Melanophryniscus from the Atlantic Rainforest of southern Brazil (Anura: Bufonidae) PLoS One. 2015;10:e0142791. doi: 10.1371/journal.pone.0142791. PubMed DOI PMC

Lourenço-de-Moraes R, et al. Diversity of miniaturized frogs of the genus Adelophryne (Anura: Eleutherodactylidae): A new species from the Atlantic Forest of northeast Brazil. PLoS One. 2018;13:e0201781. doi: 10.1371/journal.pone.0201781. PubMed DOI PMC

Maciel AO, et al. Phylogenetic systematics of the Neotropical caecilian amphibian Luetkenotyphlus (Gymnophiona: Siphonopidae) including the description of a new species from the vulnerable Brazilian Atlantic Forest. Zool. Anz. 2019;281:76–83. doi: 10.1016/j.jcz.2019.07.001. DOI

Cezar LA, Fisher EM, Lamas CJ. Four new species of Oidardis Hermann, 1912 (Diptera, Asilidae, Laphriinae, Atomosiini) from two major faunistic surveys in the Atlantic Rainforest. ZooKeys. 2013;350:47–74. doi: 10.3897/zookeys.350.6096. PubMed DOI PMC

Magalhaes ILF, Fernandes LR, Ramirez MJ, Bonaldo AB. Phylogenetic position and taxonomic review of the Ianduba spiders (Araneae: Corinnidae) endemic to the Brazilian Atlantic rainforest. Arthropod Syst. Phyl. 2016;74:127–159.

Silveira L, et al. Integrative taxonomy of new firefly taxa from the Atlantic Rainforest. Syst. Biodivers. 2016;14:371–384. doi: 10.1080/14772000.2016.1153006. DOI

Roza AS, Quintino HYS, Mermudes JRM, Silveira LFL. Akamboja gen. nov., a new genus of railroad-worm beetle endemic to the Atlantic Rainforest, with five new species (Coleoptera: Phengodidae, Mastinocerinae) Zootaxa. 2017;4306:501–523. doi: 10.11646/zootaxa.4306.4.3. DOI

Campello-Gonçalves L, Souto PM, Mermudes JRM, Silveira LFL. Uanauna gen. nov., a new genus of fireflies endemic to the Brazilian Atlantic forest (Coleoptera: Lampyridae), with key to brazilian genera of Lucidotina. Zootaxa. 2019;4585:59–72. doi: 10.11646/zootaxa.4585.1.4. PubMed DOI

Falaschi RL, et al. Neoceroplatus betaryiensis nov. sp. (Diptera: Keroplatidae) is the first record of a bioluminescent fungus-gnat in South America. Sci. Rep. 2019;9:11291. doi: 10.1038/s41598-019-47753-w. PubMed DOI PMC

Melloni R, Guida EC, Andrade MR, Melloni EGP. Fungos micorrízicos arbusculares em solos da Reserva Biológica Municipal Serra dos Toledos, Itajubá/MG. Ciência Flor. 2011;21:799–809.

ICMBIO. Plano de manejo do Parque Nacional da Serra dos Orgãos. Instituto Chico Mendes de Conservacão da Biodiversidade, Portaria ICMBio, Brasília (2008).

Kundrata R, et al. One less mystery in Coleoptera systematics: the position of Cydistinae (Elateriformia incertae sedis) resolved by multigene phylogenetic analysis. Zool. J. Linn. Soc. 2019 doi: 10.1093/zoolinnean/zlz104. DOI

Hunt T, et al. A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science. 2007;318:1913–1916. doi: 10.1126/science.1146954. PubMed DOI

Kundrata R, Jäch MA, Bocak L. Molecular phylogeny of the Byrrhoidea-Buprestoidea complex (Coleoptera, Elateriformia) Zool. Scr. 2017;46:150–164. doi: 10.1111/zsc.12196. DOI

Kearse M, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC

Katoh K, Standley DM. MAFFT Multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013;30:2725–2729. doi: 10.1093/molbev/mst197. PubMed DOI PMC

Lanfear R, Calcott B, Ho SYW, Guindon S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 2012;29:1695–1701. doi: 10.1093/molbev/mss020. PubMed DOI

Stamatakis A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–2690. doi: 10.1093/bioinformatics/btl446. PubMed DOI

Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML web servers. Syst. Biol. 2008;57:758–771. doi: 10.1080/10635150802429642. PubMed DOI

Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:754–755. doi: 10.1093/bioinformatics/17.8.754. PubMed DOI

Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018;67:901–904. doi: 10.1093/sysbio/syy032. PubMed DOI PMC

Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees in Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010. New Orleans, LA (2010).

Xia X, Xie Z, Salemi M, Chen L, Wang Y. An index of substitution saturation and its application. Mol. Phylogenet. Evol. 2003;26:1–7. doi: 10.1016/S1055-7903(02)00326-3. PubMed DOI

Xia, X. & Lemey, P. Assessing substitution saturation with DAMBE in The Phylogenetic Handbook: A Practical Approach to DNA and Protein Phylogeny, 2nd Edition (eds. Lemey, P., Salemi, M. & Vandamme, A. M.) 615–630 (Cambridge: Cambridge University Press, 2009).

Lawrence, J. F., Beutel, R. G., Leschen, R. A. B. & Ślipiński, S. A. Glossary of morphological terms in Coleoptera, Beetles; Volume 2: Morphology and Systematics (Elateroidea, Bostrichiformia, Cucujiformia partim) (eds. Leschen, R. A. B., Beutel, R. G. & Lawrence, J. F) in Handbook of Zoology, Arthropoda: Insecta (eds. Kristensen, N. P. & Beutel, R. G.) 9–20 (Berlin/New York: Walter de Gruyter GmbH & Co., 2010).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Rhagophthalmidae Olivier, 1907 (Coleoptera, Elateroidea): described genera and species, current problems, and prospects for the bioluminescent and paedomorphic beetle lineage

. 2022 ; 1126 () : 55-130. [epub] 20221101

Diversity of the Paedomorphic Snail-Eating Click-Beetle Genus Malacogaster Bassi, 1834 (Elateridae: Agrypninae: Drilini) in the Mediterranean

. 2022 Oct 13 ; 11 (10) : . [epub] 20221013

Dominican amber net-winged beetles suggest stable paleoenvironment as a driver for conserved morphology in a paedomorphic lineage

. 2022 Apr 06 ; 12 (1) : 5820. [epub] 20220406

An unusual elateroid lineage from mid-Cretaceous Burmese amber (Coleoptera: Elateroidea)

. 2021 Nov 09 ; 11 (1) : 21985. [epub] 20211109

Hide-and-Seek with Tiny Neotenic Beetles in One of the Hottest Biodiversity Hotspots: Towards an Understanding of the Real Diversity of Jurasaidae (Coleoptera: Elateroidea) in the Brazilian Atlantic Forest

. 2021 May 09 ; 10 (5) : . [epub] 20210509

Cretophengodidae, a new Cretaceous beetle family, sheds light on the evolution of bioluminescence

. 2021 Jan 27 ; 288 (1943) : 20202730. [epub] 20210120

Unlocking the mystery of the mid-Cretaceous Mysteriomorphidae (Coleoptera: Elateroidea) and modalities in transiting from gymnosperms to angiosperms

. 2020 Oct 08 ; 10 (1) : 16854. [epub] 20201008

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...