Unlocking the mystery of the mid-Cretaceous Mysteriomorphidae (Coleoptera: Elateroidea) and modalities in transiting from gymnosperms to angiosperms

. 2020 Oct 08 ; 10 (1) : 16854. [epub] 20201008

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33033283
Odkazy

PubMed 33033283
PubMed Central PMC7545178
DOI 10.1038/s41598-020-73724-7
PII: 10.1038/s41598-020-73724-7
Knihovny.cz E-zdroje

The monospecific family Mysteriomorphidae was recently described based on two fossil specimens from the Late Cretaceous Kachin amber of northern Myanmar. The family was placed in Elateriformia incertae sedis without a clear list of characters that define it either in Elateroidea or in Byrrhoidea. We report here four additional adult specimens of the same lineage, one of which was described using a successful reconstruction from a CT-scan analysis to better observe some characters. The new specimens enabled us to considerably improve the diagnosis of Mysteriomorphidae. The family is definitively placed in Elateroidea, and we hypothesize its close relationship with Elateridae. Similarly, there are other fossil families of beetles that are exclusively described from Cretaceous ambers. These lineages may have been evolutionarily replaced by the ecological revolution launched by angiosperms that introduced new co-associations with taxa. These data indicate a macroevolutionary pattern of replacement that could be extended to other insect groups.

Zobrazit více v PubMed

Labandeira CC, Kvaček J, Mostovski M. Pollination drops, pollen, and insect pollination of Mesozoic gymnosperms. Taxon. 2007;56:663–695. doi: 10.2307/25065852. DOI

Wang B, Zhang H, Jarzembowski EA. Early Cretaceous angiosperms and beetle evolution. Front. Plant Sci. 2013;4:360. PubMed PMC

Labandeira, C. C. Why did terrestrial insect diversity not increase during the angiosperm radiation? Mid-Mesozoic, plant-associated insect lineages harbor clues in Evolutionary Biology: Genome Evolution, Speciation, Coevolution and Origin of Life (ed. Pontarotti, P.) 261–299 (Springer International Publishing, 2014).

Peris D, et al. False blister beetles and the expansion of gymnosperm-insect pollination modes before angiosperm dominance. Curr. Biol. 2017;27:897–904. doi: 10.1016/j.cub.2017.02.009. PubMed DOI

Peris, D., et al. Generalist pollen-feeding beetles during the mid-Cretaceous. iScience, 23, 100913 (2020). PubMed PMC

Cai C, et al. Beetle pollination of cycads in the Mesozoic. Curr. Biol. 2018;28:2806–2812. doi: 10.1016/j.cub.2018.06.036. PubMed DOI

Peris D, Ruzzier E, Perrichot V, Delclòs X. Evolutionary and paleobiological implications of Coleoptera (Insecta) from Tethyan-influenced Cretaceous ambers. Geosci. Front. 2016;7:695–706. doi: 10.1016/j.gsf.2015.12.007. DOI

Peris, D. Coleoptera in amber from Cretaceous resiniferous forests. Cret. Res.113, 104484 (2020).

McKenna DD, et al. The evolution and genomic basis of beetle diversity. PNAS. 2019;116:24729–24737. doi: 10.1073/pnas.1909655116. PubMed DOI PMC

McKenna DD, et al. The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Syst. Entomol. 2015;40:835–880. doi: 10.1111/syen.12132. DOI

Zhang S-Q, et al. Evolutionary history of Coleoptera revealed by extensive sampling of genes and species. Nat. Comm. 2018;9:205. doi: 10.1038/s41467-017-02644-4. PubMed DOI PMC

Labandeira CC, Sepkoski JJ., Jr Insect diversity in the fossil record. Science. 1993;261:310–315. doi: 10.1126/science.11536548. PubMed DOI

Nicholson DB, Mayhew PJ, Ross AJ. Changes to the fossil record of insects through fifteen years of discovery. PLoS ONE. 2015;10:e0128554. doi: 10.1371/journal.pone.0128554. PubMed DOI PMC

Schachat SR, Labandeira CC, Clapham ME, Payne JL. A Cretaceous peak in family-level insect diversity estimated with mark-recapture methodology. Proc. R. Soc. B. 2019;286:20192054. doi: 10.1098/rspb.2019.2054. PubMed DOI PMC

Farrell BD. “Inordinate fondness” explained: why are there so many beetles? Science. 1998;281:555–559. doi: 10.1126/science.281.5376.555. PubMed DOI

Grimaldi DA. The co-radiations of pollinating insects and angiosperms in the Cretaceous. Ann. Missouri Bot. Gard. 1999;86:373–406. doi: 10.2307/2666181. DOI

Smith DM, Marcot JD. The fossil record and macroevolutionary history of the beetles. Proc. R. Soc. B. 2015;282:20150060. doi: 10.1098/rspb.2015.0060. PubMed DOI PMC

Dmitriev VY, et al. Insect diversity from the Carboniferous to Recent. Paleontol. J. 2018;52:610–619. doi: 10.1134/S0031030118060047. DOI

Ross, A. J., Jarzembowski, E. A. & Brooks, S. J. The Cretaceous and Cenozoic record of insects (Hexapoda) with regard to global change in Biotic Response to Global Change, the Last 145 Million Years (eds. Culver, S. J. & Rawson, P. F.) 288–302 (Cambridge University Press, 2000).

Condamine FL, Clapham ME, Kergoat GJ. Global patterns of insect diversification: towards a reconciliation of fossil and molecular evidence? Sci. Rep. 2016;6:19208. doi: 10.1038/srep19208. PubMed DOI PMC

Alekseev, V. I. & Ellenberger, S. A new beetle family, Mysteriomorphidae fam. nov. (Coleoptera: Elateriformia incertae sedis), from mid-Cretaceous amber of northern Myanmar. Palaeoentomol. 2, 482–490 (2019).

Lawrence JF, et al. Phylogeny of the Coleoptera based on morphological characters of adults and larvae. Ann. Zool. 2011;61:1–217. doi: 10.3161/000345411X576725. DOI

Timmermans MJTN, Vogler AP. Phylogenetically informative rearrangements in mitochondrial genomes of Coleoptera, and monophyly of aquatic elateriform beetles (Dryopoidea) Mol. Phylogenet. Evol. 2012;63:299–304. doi: 10.1016/j.ympev.2011.12.021. PubMed DOI

Kundrata R, Bocakova M, Bocak L. The comprehensive phylogeny of the superfamily Elateroidea (Coleoptera: Elateriformia) Mol. Phylogenet. Evol. 2014;76:162–171. doi: 10.1016/j.ympev.2014.03.012. PubMed DOI

Kundrata R, Jäch MA, Bocak L. Molecular phylogeny of the Byrrhoidea—Buprestoidea complex (Coleoptera, Elateriformia) Zool. Scr. 2017;46:150–164. doi: 10.1111/zsc.12196. DOI

Rosa S, Costa C, Kramp K, Kundrata R. Hidden diversity in the Brazilian Atlantic rainforest: the discovery of Jurasaidae, a new beetle family (Coleoptera, Elateroidea) with neotenic females. Sci. Rep. 2020;10:1544. doi: 10.1038/s41598-020-58416-6. PubMed DOI PMC

Kundrata R, Bocak L. Molecular phylogeny reveals the gradual evolutionary transition to soft-bodiedness in click-beetles and identifies Sub-Saharan Africa as a cradle of diversity for Drilini (Coleoptera: Elateridae) Zool. J. Linnean Soc. 2019;187:413–452. doi: 10.1093/zoolinnean/zlz033. DOI

Shi G, et al. Age constraint on Burmese amber based on U-Pb dating of zircons. Cret. Res. 2012;37:155–163. doi: 10.1016/j.cretres.2012.03.014. DOI

Lawrence JF. Rhinorhipidae, a new beetle family from Australia, with comments on the phylogeny of Elateriformia. Invertebr. Taxon. 1988;2:1–53. doi: 10.1071/IT9880001. DOI

Bocak L, Motyka M, Bocek M, Bocakova M. Incomplete sclerotization and phylogeny: The phylogenetic classification of Plastocerus (Coleoptera: Elateroidea) PLoS ONE. 2018;13:e0194026. doi: 10.1371/journal.pone.0194026. PubMed DOI PMC

Kusy D, et al. Genome sequencing of Rhinorhipus Lawrence exposes an early branch of the Coleoptera. Front. Zool. 2018;15:21. doi: 10.1186/s12983-018-0262-0. PubMed DOI PMC

Kusy D, Motyka M, Bocek M, Vogler AP, Bocak L. Genome sequences identify three families of Coleoptera as morphologically derived click beetles (Elateridae) Sci. Rep. 2018;8:17084. doi: 10.1038/s41598-018-35328-0. PubMed DOI PMC

Winkler J. R. Berendtimiridae fam. n., a new family of fossil beetles from Baltic Amber. Mitt. Münch. Entomol. Ges.77, 51–59 (1987).

Kovalev, A. V. & Kirejtshuk, A. G. Asiopsectra gen. n., a second genus of the family Brachypsectridae (Coleoptera, Elateroidea) from the Palaearctic Region. Insect Syst. Evol.47, 195–208 (2016).

Yu Y, et al. Reconciling past and present: Mesozoic fossil record and a new phylogeny of the family Cerophytidae (Coleoptera: Elateroidea) Cret. Res. 2019;99:51–70. doi: 10.1016/j.cretres.2019.02.024. DOI

Friis, E. M., Crane, P. R. & Pedersen, K. R. Early Flowers and Angiosperm Evolution (Cambridge University Press, Cambridge 2011).

Doyle JA. Molecular and fossil evidence on the origin of angiosperms. Annu. Rev. Earth Planet. Sci. 2012;40:301–303. doi: 10.1146/annurev-earth-042711-105313. DOI

Li HT, et al. Origin of angiosperms and the puzzle of the Jurassic gap. Nat. Plants. 2019;5:461–470. doi: 10.1038/s41477-019-0421-0. PubMed DOI

Sauquet H, Magallón S. Key questions and challenges in angiosperm macroevolution. New Phytol. 2018;219:1170–1187. doi: 10.1111/nph.15104. PubMed DOI

Feild TS, Arens NC. Form, function and environments of the early angiosperms: merging extant phylogeny and ecophysiology with fossils. New Phytol. 2005;166:383–408. doi: 10.1111/j.1469-8137.2005.01333.x. PubMed DOI

Friis EM, Pedersen KR, Crane PR. Cretaceous angiosperm flowers: innovation and evolution in plant reproduction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006;232:251–293. doi: 10.1016/j.palaeo.2005.07.006. DOI

Martin CH, Richards EJ. The paradox behind the pattern of rapid adaptive radiation: how can the speciation process sustain itself through an early burst? Annu. Rev. Ecol. Evol. Syst. 2019;50:569–593. doi: 10.1146/annurev-ecolsys-110617-062443. PubMed DOI PMC

Labandeira CC. The fossil history of insect diversity. In: Foottit RG, Adler PH, editors. Insect Biodiversity. London: Wiley; 2018. pp. 723–788.

Clarke DJ, Limaye A, McKenna DD, Oberprieler RG. The weevil fauna preserved in Burmese amber-Snapshot of a unique, extinct lineage (Coleoptera: Curculionoidea) Diversity. 2019;11:1. doi: 10.3390/d11010001. DOI

Solórzano-Kraemer MM, et al. Arthropods in modern resins reveal if amber accurately recorded forest arthropod communities. PNAS. 2018;115:6739–6744. doi: 10.1073/pnas.1802138115. PubMed DOI PMC

Peris, D. & Rust, J. Cretaceous beetles (Insecta: Coleoptera) in amber: the palaeoecology of this most diverse group of insects. Zool. J. Linnean Soc.189, 1085–1104 (2020).

Ren D, et al. A probable pollination mode before angiosperms: Eurasian, long proboscid scorpionflies. Science. 2009;326:840–847. doi: 10.1126/science.1178338. PubMed DOI PMC

Labandeira CC. The pollination of mid Mesozoic seed plants and the early history of long-proboscid insects. Ann. Missouri Bot. Gard. 2010;97:469–513. doi: 10.3417/2010037. DOI

Lin X, Labandeira CC, Shih CK, Hotton C, Ren D. Life habits and evolutionary biology of new two-winged, long proboscid scorpionflies from mid-Cretaceous Myanmar amber. Nat. Comm. 2019;10:1235. doi: 10.1038/s41467-019-09236-4. PubMed DOI PMC

Zhao, X., et al. Mouthpart homologies and life habits of Mesozoic long-proboscid scorpionflies. Sci. Adv.6, eaay1259 (2020). PubMed PMC

Cruickshank RD, Ko K. Geology of an amber locality in the Hukawng Valley, northern Myanmar. J. Asian Earth Sci. 2003;21:441–455. doi: 10.1016/S1367-9120(02)00044-5. DOI

Yu TT, et al. An ammonite trapped in Burmese amber. PNAS. 2019;116:11345–11350. doi: 10.1073/pnas.1821292116. PubMed DOI PMC

Kundrata R, et al. One less mystery in Coleoptera systematics: the position of Cydistinae (Elateriformia incertae sedis) resolved by multigene phylogenetic analysis. Zool. J. Linnean Soc. 2019;187:1259–1277. doi: 10.1093/zoolinnean/zlz104. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...