Tharina gen. nov. along with T. antennalis (as type species), T. ecuadoriensis, T. micra, and T. peckorum spp. nov. (Coleoptera: Endomychidae: Endomychinae) from Venezuela, Ecuador, and Bolivia are described, diagnosed, and illustrated. Mouthpart structures, in this genus, which are unique within the family Endomychidae, are discussed in terms of their function. Notes on the unusual female genitalia in one species are provided.
- MeSH
- Coleoptera anatomy & histology classification MeSH
- Genitalia, Female anatomy & histology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Bolivia MeSH
- Ecuador MeSH
- Venezuela MeSH
Numerous new material of the genus Motonerus Hansen, 1989 (Coleoptera: Hydrophilidae: Sphaeridiinae) was examined over the past decade, resulting in the discovery of several undescribed species as well as new distributional records for most of the previously described species. Three species are here described as new: Motonerus explanatus sp. nov. (Panama), M. inca sp. nov. (Venezuela, Ecuador, Peru, Bolivia) and M. sofiae sp. nov. (Peru). New country records are provided for M. depressus Fikáček & Short (new for Venezuela, Ecuador, Peru and Bolivia), M. hanseni Fikáček & Short (new for Panama) and M. problematicus Fikáček & Short (new for Panama). An updated identification key and distributional maps are provided for all species, along with complete occurrence data in a DarwinCore formatted file. Potential distribution of the genus is modeled using the maximum entropy approach. Wing morphology is examined in detail, which revealed most species are macropterous, with M. andersoni Fikáček & Short being brachypterous, and M. apterus Fikáček & Short, M. oosternoides Fikáček & Short, and M. explanatus sp. nov. micropterous. The third instar of the putative larva of M. obscurus Hansen is briefly described based on larvae collected in association with adults.
- MeSH
- Coleoptera classification MeSH
- Wings, Animal anatomy & histology MeSH
- Larva anatomy & histology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Bolivia MeSH
- Ecuador MeSH
- Panama MeSH
- Peru MeSH
- Venezuela MeSH
Necrophagous beetles of genus Thanatophilus are well recognized as a group of beetles with a high potential utility in forensic entomology. They can be used to estimate postmortem interval (PMI) or validate the value for other groups of insects commonly encountered on human remains, like blowflies (Calliphoridae). However, reliable tools for instar and species identification of their larvae are needed as such information is crucial for allowing accurate PMI estimate. One of the most common species of the genus Thanatophilus in Europe is Thanatophilus sinuatus. This species occurs frequently on human remains and its larvae feed on decaying tissues throughout their development. Therefore, the larvae could become useful bioindicators for forensic entomology, although their current description does not allow reliable instar or species identification. Our goal was to provide morphological characters for species and instar identification of all larval stages of T. sinuatus. The larvae were obtained from laboratory rearing under controlled conditions (20 °C and 16:8 h of light/dark period). Qualitative and quantitative morphological instar and species-specific characters are described and illustrated. Additionally, we report observations of biological and developmental lengths for all stages of the species. We also compared these morphological characters with recent description of T. rugosus and provided an identification key of these two similar and often co-occurring species. We noticed that some characters for instar identification were shared between T. sinuatus and T. rugosus and were confirmed by comparison with larvae of T. dentigerus that they can be applied to other species of the genus.
- MeSH
- Coleoptera classification growth & development MeSH
- Forensic Entomology * MeSH
- Evaluation Studies as Topic MeSH
- Pupa classification growth & development MeSH
- Larva classification growth & development MeSH
- Microscopy, Electron, Scanning MeSH
- Optical Imaging MeSH
- Feeding Behavior MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
The structure of forests is an important stabilizing factor regarding ongoing global climate and land use change. Biodiverse mountain forests with natural structure are one of the ecosystems most endangered by these problems. We focused on the mountain forest islands of European beech (Fagus sylvatica) and their role in the natural distribution of organisms. The study area was situated in the oldest Czech national park, Krkonoše (385 km2), which is the highest mountain ridge in the country. We studied multi-taxa (lichens, beetles and hymenopterans) responses to three hierarchical spatial levels of the environment: the topography was described by the elevation gradient; the patch structure was described by canopy openness, dead wood amounts, and Norway spruce (Picea abies) cover; and the tree level was described by species of the sampled tree and its diameter. Lichens preferred higher elevations, while insect groups responded conversely. Furthermore, insect groups were mainly influenced by the inner patch structure of beech islands. Lichens may be jeopardized due to the predicted future increase in temperatures, since they would need to shift toward higher altitudes. Insects may be mainly threatened in the future by land use changes (i.e., forest management) - as indicated by an interconnection of canopy openness and the amount of dead wood.
- MeSH
- Biodiversity * MeSH
- Coleoptera classification MeSH
- Hymenoptera classification MeSH
- Forests * MeSH
- Lichens classification MeSH
- Spatial Analysis MeSH
- Conservation of Natural Resources MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
Plastoceridae Crowson, 1972, Drilidae Blanchard, 1845 and Omalisidae Lacordaire, 1857 (Elateroidea) are families of the Coleoptera with obscure phylogenetic relationships and modified morphology showing neotenic traits such as soft bodies, reduced wing cases and larviform females. We shotgun sequenced genomes of Plastocerus, Drilus and Omalisus and incorporated them into data matrices of 66 and 4202 single-copy nuclear genes representing Elateroidea. Phylogenetic analyses indicate their terminal positions within the broadly defined well-sclerotized and fully metamorphosed Elateridae and thus Omalisidae should now be considered as Omalisinae stat. nov. in Elateridae Leach, 1815. The results support multiple independent origins of incomplete metamorphosis in Elateridae and indicate the parallel evolution of morphological and ecological traits. Unlike other neotenic elateroids derived from the supposedly pre-adapted aposematically coloured and unpalatable soft-bodied elateroids, such as fireflies (Lampyridae) and net-winged beetles (Lycidae), omalisids and drilids evolved from well-sclerotized click beetles. These findings suggest sudden morphological shifts through incomplete metamorphosis, with important implications for macroevolution, including reduced speciation rate and high extinction risk in unstable habitats. Precise phylogenetic placement is necessary for studies of the molecular mechanisms of ontogenetic shifts leading to profoundly changed morphology.
- MeSH
- Molecular Sequence Annotation MeSH
- Coleoptera classification genetics MeSH
- Phylogeny MeSH
- Genome, Insect * MeSH
- Insect Proteins genetics MeSH
- Wings, Animal anatomy & histology metabolism MeSH
- Gene Expression Regulation * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
A phylogenetic tree at the species level is still far off for highly diverse insect orders, including the Coleoptera, but the taxonomic breadth of public sequence databases is growing. In addition, new types of data may contribute to increasing taxon coverage, such as metagenomic shotgun sequencing for assembly of mitogenomes from bulk specimen samples. The current study explores the application of these techniques for large-scale efforts to build the tree of Coleoptera. We used shotgun data from 17 different ecological and taxonomic datasets (5 unpublished) to assemble a total of 1942 mitogenome contigs of >3000 bp. These sequences were combined into a single dataset together with all mitochondrial data available at GenBank, in addition to nuclear markers widely used in molecular phylogenetics. The resulting matrix of nearly 16,000 species with two or more loci produced trees (RAxML) showing overall congruence with the Linnaean taxonomy at hierarchical levels from suborders to genera. We tested the role of full-length mitogenomes in stabilizing the tree from GenBank data, as mitogenomes might link terminals with non-overlapping gene representation. However, the mitogenome data were only partly useful in this respect, presumably because of the purely automated approach to assembly and gene delimitation, but improvements in future may be possible by using multiple assemblers and manual curation. In conclusion, the combination of data mining and metagenomic sequencing of bulk samples provided the largest phylogenetic tree of Coleoptera to date, which represents a summary of existing phylogenetic knowledge and a defensible tree of great utility, in particular for studies at the intra-familial level, despite some shortcomings for resolving basal nodes.
- MeSH
- Algorithms MeSH
- Coleoptera classification genetics MeSH
- Databases, Genetic MeSH
- Phylogeny * MeSH
- Metagenomics * MeSH
- Mitochondria genetics MeSH
- Base Sequence MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Multiple patterns and intraspecific polymorphism should not persist in mutualistic Müllerian systems due to purifying and frequency-dependent selection, but they are commonly identified in nature. We analysed molecular phylogeny and reconstructed dispersal history of 58 species of Dilophotes (Coleoptera: Lycidae) in Asia. Dilophotes colonized the Great Sundas and Malay Peninsula where they joined extensive mimetic communities of net-winged beetles. We identified the brightly bi-coloured males and females which adverged on five occasions to different autochthonous models. This is the first described case of Müllerian sexual dimorphism based on sex-specific body size. We propose that the constraint, i.e. the conservative sexual size dimorphism, forced the unprofitable prey to such complex adaptation in a multi-pattern environment. Although mimetic sexual dimorphism has frequently evolved in Dilophotes, a single pattern has been maintained by both sexes in multiple closely related, sympatrically occurring species. Some patterns may be suboptimal because they are rare, crudely resemble co-mimics, or are newly evolved, but they persist in Müllerian communities for a long time. We assume that failure to closely resemble the most common model can increase the diversity of large Müllerian communities and produce mimetic dimorphism.
The development of modern methods of species delimitation, unified under the "integrated taxonomy" approach, allows a critical examination and re-evaluation of complex taxonomic groups. The rose chafer Protaetia (Potosia) cuprea is a highly polymorphic species group with a large distribution range. Despite its overall commonness, its taxonomy is unclear and subject to conflicting hypotheses, most of which largely fail to account for its evolutionary history. Based on the sequences of two mitochondrial markers from 65 individuals collected across the species range, and a detailed analysis of morphological characters including a geometric morphometry approach, we infer the evolutionary history and phylogeography of the P. cuprea species complex. Our results demonstrate the existence of three separate lineages in the Western Palearctic region, presumably with a species status. However, these lineages are in conflict with current taxonomic concepts. None of the 29 analyzed morphological characters commonly used in the taxonomy of this group proved to be unambiguously species- or subspecies- specific. The geometric morphometry analysis reveals a large overlap in the shape of the analyzed structures (pronotum, meso-metaventral projection, elytra and aedeagus), failing to identify either the genetically detected clades or the classical species entities. Our results question the monophyly of P. cuprea in regard to P. cuprina, as well as the species status of P. metallica. On the other hand, we found support for the species status of the Sicilian P. hypocrita. Collectively, our findings provide a new and original insight into the taxonomy and phylogeny of the P. cuprea species complex. At the same time, the results represent the first attempt to elucidate the phylogeography of these polymorphic beetles.
- MeSH
- Coleoptera classification genetics MeSH
- DNA genetics MeSH
- Phylogeography * MeSH
- Haplotypes MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Arctic Regions MeSH
BACKGROUND: The tribe Coccinellini is a group of relatively large ladybird beetles that exhibits remarkable morphological and biological diversity. Many species are aphidophagous, feeding as larvae and adults on aphids, but some species also feed on other hemipterous insects (i.e., heteropterans, psyllids, whiteflies), beetle and moth larvae, pollen, fungal spores, and even plant tissue. Several species are biological control agents or widespread invasive species (e.g., Harmonia axyridis (Pallas)). Despite the ecological importance of this tribe, relatively little is known about the phylogenetic relationships within it. The generic concepts within the tribe Coccinellini are unstable and do not reflect a natural classification, being largely based on regional revisions. This impedes the phylogenetic study of important traits of Coccinellidae at a global scale (e.g. the evolution of food preferences and biogeography). RESULTS: We present the most comprehensive phylogenetic analysis of Coccinellini to date, based on three nuclear and one mitochondrial gene sequences of 38 taxa, which represent all major Coccinellini lineages. The phylogenetic reconstruction supports the monophyly of Coccinellini and its sister group relationship to Chilocorini. Within Coccinellini, three major clades were recovered that do not correspond to any previously recognised divisions, questioning the traditional differentiation between Halyziini, Discotomini, Tytthaspidini, and Singhikaliini. Ancestral state reconstructions of food preferences and morphological characters support the idea of aphidophagy being the ancestral state in Coccinellini. This indicates a transition from putative obligate scale feeders, as seen in the closely related Chilocorini, to more agile general predators. CONCLUSIONS: Our results suggest that the classification of Coccinellini has been misled by convergence in morphological traits. The evolutionary history of Coccinellini has been very dynamic in respect to changes in host preferences, involving multiple independent host switches from different insect orders to fungal spores and plants tissues. General predation on ephemeral aphids might have created an opportunity to easily adapt to mixed or specialised diets (e.g. obligate mycophagy, herbivory, predation on various hemipteroids or larvae of leaf beetles (Chrysomelidae)). The generally long-lived adults of Coccinellini can consume pollen and floral nectars, thereby surviving periods of low prey frequency. This capacity might have played a central role in the diversification history of Coccinellini.
- MeSH
- Biological Evolution MeSH
- Coleoptera classification genetics growth & development physiology MeSH
- Phylogeny MeSH
- Larva physiology MeSH
- Evolution, Molecular MeSH
- Predatory Behavior MeSH
- Food Preferences MeSH
- Introduced Species MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH