Integrated phylogenomics and fossil data illuminate the evolution of beetles

. 2022 Mar ; 9 (3) : 211771. [epub] 20220323

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35345430

Grantová podpora
BB/T012773/1 Biotechnology and Biological Sciences Research Council - United Kingdom

Beetles constitute the most biodiverse animal order with over 380 000 described species and possibly several million more yet unnamed. Recent phylogenomic studies have arrived at considerably incongruent topologies and widely varying estimates of divergence dates for major beetle clades. Here, we use a dataset of 68 single-copy nuclear protein-coding (NPC) genes sampling 129 out of the 193 recognized extant families as well as the first comprehensive set of fully justified fossil calibrations to recover a refined timescale of beetle evolution. Using phylogenetic methods that counter the effects of compositional and rate heterogeneity, we recover a topology congruent with morphological studies, which we use, combined with other recent phylogenomic studies, to propose several formal changes in the classification of Coleoptera: Scirtiformia and Scirtoidea sensu nov., Clambiformia ser. nov. and Clamboidea sensu nov., Rhinorhipiformia ser. nov., Byrrhoidea sensu nov., Dryopoidea stat. res., Nosodendriformia ser. nov. and Staphyliniformia sensu nov., and Erotyloidea stat. nov., Nitiduloidea stat. nov. and Cucujoidea sensu nov., alongside changes below the superfamily level. Our divergence time analyses recovered a late Carboniferous origin of Coleoptera, a late Palaeozoic origin of all modern beetle suborders and a Triassic-Jurassic origin of most extant families, while fundamental divergences within beetle phylogeny did not coincide with the hypothesis of a Cretaceous Terrestrial Revolution.

Zobrazit více v PubMed

Stork NE. 2018. How many species of insects and other terrestrial arthropods are there on Earth? Annu. Rev. Entomol. 63, 31-45. (10.1146/annurev-ento-020117-043348) PubMed DOI

Erwin TL. 1982. Tropical forests: their richness in Coleoptera and other arthropod species. Coleopt. Bull. 36, 74-75.

Ślipiński A, Leschen RAB, Lawrence JF. 2011. Order Coleoptera Linnaeus, 1758. in Zhang, Z. (ed.) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa 3148, 203-208. (10.11646/zootaxa.3148.1.39) PubMed DOI

Beutel RG, Yan EV, Kukalová-Peck J. 2019. Is †Skleroptera (†Stephanastus) an order in the stemgroup of Coleopterida (Insecta)? Insect Syst. Evol. 50, 670-678. (10.1163/1876312X-00002187) DOI

Kirejtshuk AG, Poschmann M, Prokop J, Garrouste R, Nel A. 2014. Evolution of the elytral venation and structural adaptations in the oldest Palaeozoic beetles (Insecta: Coleoptera: Tshekardocoleidae). J. Syst. Palaeontol. 12, 575-600. (10.1080/14772019.2013.821530) DOI

Yan EV, Beutel RG, Lawrence JF. 2018. Whirling in the late Permian: ancestral Gyrinidae show early radiation of beetles before Permian-Triassic mass extinction. BMC Evol. Biol. 18, 33. (10.1186/s12862-018-1139-8) PubMed DOI PMC

Beutel RG, Yan EV, Lawrence JF. 2019. Phylogenetic methods applied to extinct beetles — the case of †Tunguskagyrus (Gyrinidae or †Triaplidae). Palaeoentomology 2, 372-380. (10.11646/palaeoentomology.2.4.11) DOI

Grimaldi D, Engel MS. 2005. Evolution of the insects, 1st edn. Cambridge, UK: Cambridge University Press.

Hunt T, et al. 2007. A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science 318, 1913-1916. (10.1126/science.1146954) PubMed DOI

Zhang SQ, Che LH, Li Y, Liang D, Pang H, Ślipiński A, Zhang P. 2018. Evolutionary history of Coleoptera revealed by extensive sampling of genes and species. Nat. Commun. 9, 205. (10.1038/s41467-017-02644-4) PubMed DOI PMC

Lloyd GT, Davis KE, Pisani D, Tarver JE, Ruta M, Sakamoto M, Hone DWE, Jennings R, Benton MJ. 2008. Dinosaurs and the Cretaceous Terrestrial Revolution. Proc. R. Soc. B 275, 2483-2490. (10.1098/rspb.2008.0715) PubMed DOI PMC

Smith DM, Marcot JD. 2015. The fossil record and macroevolutionary history of the beetles. Proc. R. Soc. B 282, 20150060. (10.1098/rspb.2015.0060) PubMed DOI PMC

McKenna DD, Sequeira AS, Marvaldi AE, Farrell BD. 2009. Temporal lags and overlap in the diversification of weevils and flowering plants. Proc. Natl Acad. Sci. USA 106, 7083-7088. (10.1073/pnas.0810618106) PubMed DOI PMC

Crowson RA. 1981. The biology of the Coleoptera. London, UK: Academic Press.

Farrell BD. 1998. ‘Inordinate fondness’ explained: why are there so many beetles? Science 281, 555-559. (10.1126/science.281.5376.555) PubMed DOI

McKenna DD, et al. 2015. The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Syst. Entomol. 40, 835-880. (10.1111/syen.12132) DOI

Vogler AP. 2005. Molecular systematics of Coleoptera: what has been achieved so far? In Handbook of zoology. Arthropoda: insecta. Coleoptera, beetles. Vol. 1: morphology and systematics (Archostemata, Adephaga, Myxophaga, Polyphaga partim) (eds Beutel RG, Leschen RAB), pp. 17-22. Berlin, Germany: Walter De Gruyter.

Bocak L, Barton C, Crampton-Platt A, Chesters D, Ahrens D, Vogler AP. 2014. Building the Coleoptera tree-of-life for >8000 species: composition of public DNA data and fit with Linnaean classification. Syst. Entomol. 39, 97-110. (10.1111/syen.12037) DOI

McKenna DD. 2016. Molecular systematics of Coleoptera. In Handbook of zoology. Arthropoda: insecta. Coleoptera, beetles. Vol. 1: morphology and systematics (Archostemata, Adephaga, Myxophaga, Polyphaga partim) (eds Beutel RG, Leschen RAB), pp. 23-34. Berlin, Germany: Walter De Gruyter.

Lawrence JF, Ślipiński A, Seago AE, Thayer MK, Newton AF, Marvaldi AE. 2011. Phylogeny of the Coleoptera based on morphological characters of adults and larvae. Ann. Zool. 61, 1-217. (10.3161/000345411X576725) DOI

Timmermans MJTN, et al. 2016. Family-level sampling of mitochondrial genomes in Coleoptera: compositional heterogeneity and phylogenetics. Genome. Biol. Evol. 8, 161-175. (10.1093/gbe/evv241) PubMed DOI PMC

Yuan ML, Zhang QL, Zhang L, Guo ZL, Liu YJ, Shen YY, Shao R. 2016. High-level phylogeny of the Coleoptera inferred with mitochondrial genome sequences. Mol. Phylogenet. Evol. 104, 99-111. (10.1016/j.ympev.2016.08.002) PubMed DOI

McKenna DD, et al. 2019. The evolution and genomic basis of beetle diversity. Proc. Natl Acad. Sci. USA 116, 24 729-24 737. (10.1073/pnas.1909655116) PubMed DOI PMC

Philippe H, Brinkmann H, Lavrov DV, Littlewood DTJ, Manuel M, Wörheide G, Baurain D. 2011. Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol. 9, e1000602. (10.1371/journal.pbio.1000602) PubMed DOI PMC

Cai C, Tihelka E, Pisani D, Donoghue PCJ. 2020. Data curation and modeling of compositional heterogeneity in insect phylogenomics: a case study of the phylogeny of Dytiscoidea (Coleoptera: Adephaga). Mol. Phylogenet. Evol. 147, 106782. (10.1016/j.ympev.2020.106782) PubMed DOI

Kapli P, Flouri T, Telford MJ. 2021. Systematic errors in phylogenetic trees. Curr. Biol. 31, R59-R64. (10.1016/j.cub.2020.11.043) PubMed DOI

Lartillot N, Philippe H. 2004. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol. Biol. Evol. 21, 1095-1109. (10.1093/molbev/msh112) PubMed DOI

Lartillot N, Brinkmann H, Philippe H. 2007. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol. Biol. 7, S4. (10.1186/1471-2148-7-S1-S4) PubMed DOI PMC

Pisani D, Pett W, Dohrmann M, Feuda R, Rota-Stabelli O, Philippe H, Lartillot N, Wörheide G. 2015. Genomic data do not support comb jellies as the sister group to all other animals. Proc. Natl Acad. Sci. USA 112, 15 402-15 407. (10.1073/pnas.1518127112) PubMed DOI PMC

Feuda R, Dohrmann M, Pett W, Philippe H, Rota-Stabelli O, Lartillot N, Wörheide G, Pisani D. 2017. Improved modeling of compositional heterogeneity supports sponges as sister to all other animals. Curr. Biol. 27, 3864-3870.e4. (10.1016/j.cub.2017.11.008) PubMed DOI

Puttick MN, et al. 2018. The interrelationships of land plants and the nature of the ancestral embryophyte. Curr. Biol. 28, 733-745.e2. (10.1016/j.cub.2018.01.063) PubMed DOI

Williams TA, Cox CJ, Foster PG, Szöllősi GJ, Embley TM. 2020. Phylogenomics provides robust support for a two-domains tree of life. Nat. Ecol. Evol. 4, 138-147. (10.1038/s41559-019-1040-x) PubMed DOI PMC

Song H, Sheffield NC, Cameron SL, Miller KB, Whiting MF. 2010. When phylogenetic assumptions are violated: base compositional heterogeneity and among-site rate variation in beetle mitochondrial phylogenomics. Syst. Entomol. 35, 429-448. (10.1111/j.1365-3113.2009.00517.x) DOI

Cai CY, Wang YL, Liang L, Yin ZW, Thayer MK, Newton AF, Zhou YL. 2019. Congruence of morphological and molecular phylogenies of the rove beetle subfamily Staphylininae (Coleoptera: Staphylinidae). Sci. Rep. 9, 1-11. (10.1038/s41598-019-51408-1) PubMed DOI PMC

Toussaint EFA, Seidel M, Arriaga-Varela E, Hájek J, Král D, Sekerka L, Short AEZ, Fikáček M. 2017. The peril of dating beetles. Syst. Entomol. 42, 1-10. (10.1111/syen.12198) DOI

Linder HP, Hardy CR, Rutschmann F. 2005. Taxon sampling effects in molecular clock dating: an example from the African Restionaceae. Mol. Phylogenet. Evol. 35, 569-582. (10.1016/j.ympev.2004.12.006) PubMed DOI

Duchêne S, Lanfear R, Ho SYW. 2014. The impact of calibration and clock-model choice on molecular estimates of divergence times. Mol. Phylogenet. Evol. 78, 277-289. (10.1016/j.ympev.2014.05.032) PubMed DOI

Clarke JT, Warnock RCM, Donoghue PCJ. 2011. Establishing a time-scale for plant evolution. New Phytol. 192, 266-301. (10.1111/j.1469-8137.2011.03794.x) PubMed DOI

Inoue J, Donoghue PCJ, Yang Z. 2010. The impact of the representation of fossil calibrations on Bayesian estimation of species divergence times. Syst. Biol. 59, 74-89. (10.1093/sysbio/syp078) PubMed DOI

Sauquet H, et al. 2012. Testing the impact of calibration on molecular divergence times using a fossil-rich group: the case of Nothofagus (Fagales). Syst. Biol. 61, 289-313. (10.1093/sysbio/syr116) PubMed DOI

Parham JF, et al. 2011. Best practices for justifying fossil calibrations. Syst. Biol. 61, 346-359. (10.1093/sysbio/syr107) PubMed DOI PMC

Hipsley CA, Müller J. 2014. Beyond fossil calibrations: realities of molecular clock practices in evolutionary biology. Front. Genet. 5, 138. (10.3389/fgene.2014.00138) PubMed DOI PMC

Donoghue PCJ, Yang Z. 2016. The evolution of methods for establishing evolutionary timescales. Phil. Trans. R. Soc. B 371, 20160020. (10.1098/rstb.2016.0020) PubMed DOI PMC

Schachat SR, Labandeira CC. 2020. Are insects heading toward their first mass extinction? Distinguishing turnover from crises in their fossil record. Ann. Entomol. Soc. Am. 114, 99-118. (10.1093/aesa/saaa042) DOI

Che LH, Zhang SQ, Li Y, Liang D, Pang H, Ślipiński A, Zhang P. 2017. Genome-wide survey of nuclear protein-coding markers for beetle phylogenetics and their application in resolving both deep and shallow-level divergences. Mol. Ecol. Res. 17, 1342-1358. (10.1111/1755-0998.12664) PubMed DOI

Kusy D, et al. 2018. Genome sequencing of Rhinorhipus Lawrence exposes an early branch of the Coleoptera. Front. Zool. 15, 21. (10.1186/s12983-018-0262-0) PubMed DOI PMC

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772-780. (10.1093/molbev/mst010) PubMed DOI PMC

Criscuolo A, Gribaldo S. 2010. BMGE (block mapping and gathering with entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210. (10.1186/1471-2148-10-210) PubMed DOI PMC

Kück P, Meusemann K. 2010. FASconCAT: convenient handling of data matrices. Mol. Phylogenet. Evol. 56, 1115-1118. (10.1016/j.ympev.2010.04.024) PubMed DOI

Kück P, Struck TH. 2014. BaCoCa – a heuristic software tool for the parallel assessment of sequence biases in hundreds of gene and taxon partitions. Mol. Phylogenet. Evol. 70, 94-98. (10.1016/j.ympev.2013.09.011) PubMed DOI

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274. (10.1093/molbev/msu300) PubMed DOI PMC

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587-589. (10.1038/nmeth.4285) PubMed DOI PMC

Lartillot N, Lepage T, Blanquart S. 2009. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25, 2286-2288. (10.1093/bioinformatics/btp368) PubMed DOI

Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586-1591. (10.1093/molbev/msm088) PubMed DOI

Yang Z, Rannala B. 2006. Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Mol. Biol. Evol. 23, 212-226. (10.1093/molbev/msj024) PubMed DOI

Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901-904. (10.1093/sysbio/syy032) PubMed DOI PMC

Fernández R, Edgecombe GD, Giribet G. 2016. Exploring phylogenetic relationships within Myriapoda and the effects of matrix composition and occupancy on phylogenomic reconstruction. Syst. Biol. 65, 871-889. (10.1093/sysbio/syw041) PubMed DOI PMC

Kocot KM, et al. 2017. Phylogenomics of Lophotrochozoa with consideration of systematic error. Syst. Biol. 66, 256-282. (10.1093/sysbio/syw079) PubMed DOI

Sheffield NC, Song H, Cameron SL, Whiting MF. 2009. Nonstationary evolution and compositional heterogeneity in beetle mitochondrial phylogenomics. Syst. Biol. 58, 381-394. (10.1093/sysbio/syp037) PubMed DOI

Tihelka E, Cai C, Giacomelli M, Lozano-Fernandez J, Rota-Stabelli O, Huang D, Engel MS, Donoghue PCJ, Pisani D. 2021. The evolution of insect biodiversity. Curr. Biol. 31, R1299-R1311. (10.1016/j.cub.2021.08.057) PubMed DOI

Beutel RG, Haas F. 2000. Phylogenetic relationships of the suborders of Coleoptera (Insecta). Cladistics 16, 103-141. (10.1006/clad.1999.0124) PubMed DOI

Kukalová-Peck J, Lawrence JF. 2004. Relationships among coleopteran suborders and major endoneopteran lineages: evidence from hind wing characters. Eur. J. Entomol. 101, 95-144. (10.14411/eje.2004.018) DOI

Beutel RG, Pohl H, Yan EV, Anton E, Liu SP, Ślipiński A, McKenna D, Friedrich F. 2019. The phylogeny of Coleopterida (Hexapoda) – morphological characters and molecular phylogenies. Syst. Entomol. 44, 75-102. (10.1111/syen.12316) DOI

Baca SM, Alexander A, Gustafson GT, Short AEZ. 2017. Ultraconserved elements show utility in phylogenetic inference of Adephaga (Coleoptera) and suggest paraphyly of ‘Hydradephaga’. Syst. Entomol. 42, 786-795. (10.1111/syen.12244) DOI

Beutel RG, Ribera I, Fikáček M, Vasilikopoulos A, Misof B, Balke M. 2020. The morphological evolution of the Adephaga (Coleoptera). Syst. Entomol. 45, 378-395. (10.1111/syen.12403) DOI

Kusy D, Motyka M, Bocek M, Vogler AP, Bocak L. 2018. Genome sequences identify three families of Coleoptera as morphologically derived click beetles (Elateridae). Sci. Rep. 8, 17084. (10.1038/s41598-018-35328-0) PubMed DOI PMC

Crowson RA. 1955. The natural classification of the families of Coleoptera, 1st edn. London, UK: Nathaniel Lloyd & Co., Ltd.

Lawrence JF, Newton AF. 1982. Evolution and classification of beetles. Annu. Rev. Ecol. Syst. 13, 261-290. (10.1146/annurev.es.13.110182.001401) DOI

Lawrence JF. 1991. Byrrhidae (Byrrhoidea). In Immature insects, vol. 2 (ed. Stehr FW), pp. 384-386. Dubuque, IA: Kendall/Hunt Publishing.

Timmermans MJTN, Vogler AP. 2012. Phylogenetically informative rearrangements in mitochondrial genomes of Coleoptera, and monophyly of aquatic elateriform beetles (Dryopoidea). Mol. Phylogenet. Evol. 63, 299-304. (10.1016/j.ympev.2011.12.021) PubMed DOI

Kundrata R, Jäch MA, Bocak L. 2017. Molecular phylogeny of the Byrrhoidea–Buprestoidea complex (Coleoptera, Elateriformia). Zool. Scr. 46, 150-164. (10.1111/zsc.12196) DOI

Kundrata R, Bocakova M, Bocak L. 2014. The comprehensive phylogeny of the superfamily Elateroidea (Coleoptera: Elateriformia). Mol. Phylogenet. Evol. 76, 162-171. (10.1016/j.ympev.2014.03.012) PubMed DOI

Douglas HB, et al. 2021. Anchored phylogenomics, evolution and systematics of Elateridae: are all bioluminescent Elateroidea derived click beetles? Biology 10, 451. (10.3390/biology10060451) PubMed DOI PMC

Hansen M. 1997. Phylogeny and classification of the staphyliniform beetle families (Coleoptera). Biol. Skr. 48, 1-339.

Caterino MS, Hunt T, Vogler AP. 2005. On the constitution and phylogeny of Staphyliniformia (Insecta: Coleoptera). Mol. Phylogenet. Evol. 34, 655-672. (10.1016/j.ympev.2004.11.012) PubMed DOI

Lü L, Cai CY, Zhang X, Newton AF, Thayer MK, Zhou HZ. 2020. Linking evolutionary mode to palaeoclimate change reveals rapid radiations of staphylinoid beetles in low-energy conditions. Curr. Zool. 66, 435-444. (10.1093/cz/zoz053) PubMed DOI PMC

McKenna DD, et al. 2015. Phylogeny and evolution of Staphyliniformia and Scarabaeiformia: forest litter as a stepping stone for diversification of nonphytophagous beetles. Syst. Entomol. 40, 35-60. (10.1111/syen.12093) DOI

Robertson JA, et al. 2015. Phylogeny and classification of Cucujoidea and the recognition of a new superfamily Coccinelloidea (Coleoptera: Cucujiformia). Syst. Entomol. 40, 745-778. (10.1111/syen.12138) DOI

Kirejtshuk AG, Mantič M. 2015. On systematics of the subfamily Cybocephalinae (Coleoptera: Nitidulidae) with description of new species and generic taxa. Proc. Zool. Inst. Rus. Acad. Sci. 319, 196-214.

Cline AR, Smith TR, Miller K, Moulton M, Whiting M, Audisio P. 2014. Molecular phylogeny of Nitidulidae: assessment of subfamilial and tribal classification and formalization of the family Cybocephalidae (Coleoptera: Cucujoidea). Syst. Entomol. 39, 758-772. (10.1111/syen.12084) DOI

Shin S, et al. 2018. Phylogenomic data yield new and robust insights into the phylogeny and evolution of weevils. Mol. Biol. Evol. 35, 823-836. (10.1093/molbev/msx324) PubMed DOI

Yan EV, Lawrence JF, Beattie R, Beutel RG. 2018. At the dawn of the great rise: †Ponomarenkia belmonthensis (Insecta: Coleoptera), a remarkable new Late Permian beetle from the Southern Hemisphere. J. Syst. Palaeontol. 16, 611-619. (10.1080/14772019.2017.1343259) DOI

Metcalfe I, Crowley JL, Nicoll RS, Schmitz M. 2015. High-precision U-Pb CA-TIMS calibration of Middle Permian to Lower Triassic sequences, mass extinction and extreme climate-change in eastern Australian Gondwana. Gondwana Res. 28, 61-81. (10.1016/j.gr.2014.09.002) DOI

Clements T, Purnell M, Gabbott S, Purnell M, Gabbott S. 2019. The Mazon Creek Lagerstätte: a diverse late Paleozoic ecosystem entombed within siderite concretions. J. Geol. Soc. 176, 1-11. (10.1144/jgs2018-088) DOI

Béthoux O. 2009. The earliest beetle identified. J. Paleontol. 83, 931-937. (10.1666/08-158.1) DOI

Kukalova-Peck J, Beutel RG. 2012. Is the Carboniferous Adiphlebia lacoana really the "oldest beetle"? Critical reassessment and description of a new Permian beetle family. Eur. J. Entomol. 109, 633-645. (10.14411/eje.2013.027) DOI

Warnock RCM, Parham JF, Joyce WG, Lyson TR, Donoghue PCJ. 2015. Calibration uncertainty in molecular dating analyses: there is no substitute for the prior evaluation of time priors. Proc. R. Soc. B 282, 20141013. (10.1098/rspb.2014.1013) PubMed DOI PMC

Nel A, et al. 2013. The earliest known holometabolous insects. Nature 503, 257-261. (10.1038/nature12629) PubMed DOI

Wolfe JM, Daley AC, Legg DA, Edgecombe GD. 2016. Fossil calibrations for the arthropod Tree of Life. Earth Sci. Rev. 160, 43-110. (10.1016/j.earscirev.2016.06.008) DOI

Cai C, Lawrence JF, Yamamoto S, Leschen RAB, Newton AF, Ślipiński A, Yin Z, Huang D, Engel MS. 2019. Basal polyphagan beetles in mid-Cretaceous amber from Myanmar: biogeographic implications and long-term morphological stasis. Proc. R. Soc. B 286, 20182175. (10.1098/rspb.2018.2175) PubMed DOI PMC

Parker J. 2017. Staphylinids. Curr. Biol. 27, R49-R51. (10.1016/j.cub.2016.07.050) PubMed DOI

Lawrence JF, Ślipiński A. 2013. Australian beetles, volume 1: morphology, classification and keys. Clayton, Australia: CSIRO.

Lawrence JF, Newton AF. 1995. Families and subfamilies of Coleoptera. In Biology, phylogeny, and classification of Coleoptera: papers celebrating the 80th birthday of Roy A. Crowson (eds Pakaluk J, Ślipiński AS), pp. 779-1006. Warsaw, Poland: Muzeum i Instytut Zoologii PAN.

Kolbe H. 1908. Mein system der coleopteren. Zeitschr. wiss. Insectbiol. 4, 116-123, 153–162, 219–226, 246–251, 286–294, 389–400.

Leschen RAB, Lawrence JF, Ślipiński SA. 2005. Classification of basal Cucujoidea (Coleoptera: Polyphaga): cladistic analysis, keys and review of new families. Invert. Syst. 19, 17-73. (10.1071/IS04007) DOI

Liu J, Wang Y, Zhang R, Shi C, Lu W, Li J, Bai M. 2021. Three complete mitochondrial genomes of Erotylidae (Coleoptera: Cucujoidea) with higher phylogenetic analysis. Insects 12, 524. (10.3390/insects12060524) PubMed DOI PMC

Gunter NL, Levkaničová Z, Weir TH, Ślipiński A, Cameron SL, Bocak L. 2014. Towards a phylogeny of the Tenebrionoidea (Coleoptera). Mol. Phylogenet. Evol. 79, 305-312. (10.1016/j.ympev.2014.05.028) PubMed DOI

Labandeira CC, Sepkoski JJ. 1993. Insect diversity in the fossil record. Science 261, 310-315. (10.1126/science.11536548) PubMed DOI

Kukalová J. 1969. On the systematic position of the supposed Permian beetles, Tshecardocoleidae, with a description of a new collection from Moravia. Sb. geol. věd řada P. Paleontol. 11, 139-161.

Ponomarenko AG. 1969. Historical development of the Coleoptera-Archostemata. Trud. Paleontol. Inst. Akad. Nauk SSSR 125, 1-240.

Schachat SR, Labandeira CC, Saltzman MR, Cramer BD, Payne JL, Boyce CK. 2018. Phanerozoic pO2 and the early evolution of terrestrial animals. Proc. R. Soc. B 285, 20172631. (10.1098/rspb.2017.2631) PubMed DOI PMC

Gavrilets S, Losos JB. 2009. Adaptive radiation: contrasting theory with data. Science 323, 732-737. (10.1126/science.1157966) PubMed DOI

Ponomarenko AG, Prokin AA. 2015. Review of paleontological data on the evolution of aquatic beetles (Coleoptera). Paleontol. J. 49, 1383-1412. (10.1134/s0031030115130080) DOI

Ponomarenko AG. 1995. The geological history of beetles. In Biology, phylogeny, and classification of Coleoptera: papers celebrating the 80th birthday of Roy A. Crowson, pp. 155-172. Warsaw, Poland: Muzeum i Instytut Zoologii PAN.

Bocak L. 2016. Scirtiformia Fleming, 1821. In Handbook of zoology; Arthropoda: insecta, Coleoptera, beetles. Vol. 1: morphology and systematics (Polyphaga partim) (eds Beutel RG, Leschen RAB), pp. 201-202. Berlin, Germany: Walter de Gruyter.

Ruta R, Klausnitzer B, Prokin A. 2018. South American terrestrial larva of Scirtidae (Coleoptera: Scirtoidea): the adaptation of Scirtidae larvae to saproxylic habitat is more common than expected. Austral. Entomol. 57, 50-61. (10.1111/aen.12270) DOI

Lawrence JF, Yoshitomi H. 2007. Nipponocyphon, a new genus of Japanese Scirtidae (Coleoptera) and its phylogenetic significance. Elytra 35, 507-527.

Looy C, Kerp H, Duijnstee I, DiMichele B. 2014. The late Paleozoic ecological-evolutionary laboratory, a land-plant fossil record perspective. Sedimentary Rec. 12, 4-18. (10.2110/sedred.2014.4.4) DOI

Benton MJ. 2013. No gap in the Middle Permian record of terrestrial vertebrates: REPLY. Geology 41, e294. (10.1130/G34595Y.1) DOI

Barba-Montoya J, Reis MD, Schneider H, Donoghue PCJ, Yang Z. 2018. Constraining uncertainty in the timescale of angiosperm evolution and the veracity of a Cretaceous Terrestrial Revolution. New Phytol. 218, 819-834. (10.1111/nph.15011) PubMed DOI PMC

Condamine FL, Silvestro D, Koppelhus EB, Antonelli A. 2020. The rise of angiosperms pushed conifers to decline during global cooling. Proc. Natl Acad. Sci. USA 117, 28 867-28 875. (10.1073/pnas.2005571117) PubMed DOI PMC

Ahrens D, Schwarzer J, Vogler AP. 2014. The evolution of scarab beetles tracks the sequential rise of angiosperms and mammals. Proc. R. Soc. B 281, 20141470. (10.1098/rspb.2014.1470) PubMed DOI PMC

Faegri K, van der Pijl L. 1979. The principles of pollination ecology, 3rd edn. Oxford, UK: Pergamon Press.

Li HT, et al. 2019. Origin of angiosperms and the puzzle of the Jurassic gap. Nat. Plants 5, 461-470. (10.1038/s41477-019-0421-0) PubMed DOI

Silvestro D, et al. 2021. Fossil data support a pre-Cretaceous origin of flowering plants. Nat. Ecol. Evol. 5, 449-457. (10.1038/s41559-020-01387-8) PubMed DOI

Arillo A, Ortuño VM. 2008. Did dinosaurs have any relation with dung-beetles? (The origin of coprophagy). J. Nat. Hist. 42, 1405-1408. (10.1080/00222930802105130) DOI

Chin K, Gill BD. 1996. Dinosaurs, dung beetles, and conifers: participants in a Cretaceous food web. Palaios 11, 280-285. (10.2307/3515235) DOI

Kusý D, He JW, Bybee SM, Motyka M, Bi WX, Podsiadlowski L, Li XY, Bocak L. 2020. Phylogenomic relationships of bioluminescent elateroids define the ‘lampyroid’ clade with clicking Sinopyrophoridae as its earliest member. Syst. Entomol. 46, 111-123. (10.1111/syen.12451) DOI

Li YD, Kundrata R, Tihelka E, Liu Z, Huang D, Cai C. 2021. Cretophengodidae, a new Cretaceous beetle family, sheds light on the evolution of bioluminescence. Proc. R. Soc. B 288, 20202730. (10.1098/rspb.2020.2730) PubMed DOI PMC

Peris D, et al. 2020. Unlocking the mystery of the mid-Cretaceous Mysteriomorphidae (Coleoptera: Elateroidea) and modalities in transiting from gymnosperms to angiosperms. Sci. Rep. 10, 16854. (10.1038/s41598-020-73724-7) PubMed DOI PMC

Labandeira CC, Johnson KR, Wilf P. 2002. Impact of the terminal Cretaceous event on plant–insect associations. Proc. Natl Acad. Sci. USA 99, 2061-2066. (10.1073/pnas.042492999) PubMed DOI PMC

Whalley P. 1987. Insects and Cretaceous mass extinction. Nature 327, 562. (10.1038/327562b0) DOI

Crowson RA. 1960. The phylogeny of Coleoptera. Annu. Rev. Entomol. 5, 111-134. (10.1146/annurev.en.05.010160.000551) DOI

Cai C, et al. . 2022. Integrated phylogenomics and fossil data illuminate the evolution of beetles. Figshare. (10.6084/m9.figshare.c.5894006) PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Foveapeltis gen. nov., an unusual cleroid genus with large hypomeral cavities from mid-Cretaceous amber (Coleoptera: Cleroidea)

. 2024 Jul ; 14 (7) : e11589. [epub] 20240708

A light in the dark: a mid-Cretaceous bioluminescent firefly with specialized antennal sensory organs

. 2024 Jan ; 291 (2030) : 20241671. [epub] 20240911

Integrative taxonomy and species distribution models of the genus Diamesus Hope, 1840 (Coleoptera: Staphylinidae: Silphinae)

. 2023 Feb 23 ; 13 (1) : 3192. [epub] 20230223

Rhagophthalmidae Olivier, 1907 (Coleoptera, Elateroidea): described genera and species, current problems, and prospects for the bioluminescent and paedomorphic beetle lineage

. 2022 ; 1126 () : 55-130. [epub] 20221101

Beetle bioluminescence outshines extant aerial predators

. 2022 Jul 27 ; 289 (1979) : 20220821. [epub] 20220720

Review of the Family Thanerocleridae (Coleoptera: Cleroidea) and the Description of Thanerosus gen. nov. from Cretaceous Amber Using Micro-CT Scanning

. 2022 May 06 ; 13 (5) : . [epub] 20220506

Nothotytthonyx, a new genus of Malthininae (Coleoptera, Cantharidae) from mid-Cretaceous amber of northern Myanmar

. 2022 ; 1092 () : 19-30. [epub] 20220404

Integrated phylogenomics and fossil data illuminate the evolution of beetles

. 2022 Mar ; 9 (3) : 211771. [epub] 20220323

A New Genus and Species of Lophocateridae from Mid-Cretaceous Amber of Myanmar (Coleoptera)

. 2021 Nov 24 ; 12 (12) : . [epub] 20211124

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.c.5894006

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...