Exploring the Impact of Organic Solvent Quality and Unusual Adduct Formation during LC-MS-Based Lipidomic Profiling

. 2023 Aug 22 ; 13 (9) : . [epub] 20230822

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37755246

Grantová podpora
NU20-01-00186 Ministry of Health
NU22-02-00161 Ministry of Health
21-00477S Czech Science Foundation
LTAUSA19124 Ministry of Education Youth and Sports
LX22NPO5104 Ministry of Education Youth and Sports
LQ200111901 Czech Academy of Sciences

Liquid chromatography-mass spectrometry (LC-MS) is the key technique for analyzing complex lipids in biological samples. Various LC-MS modes are used for lipid separation, including different stationary phases, mobile-phase solvents, and modifiers. Quality control in lipidomics analysis is crucial to ensuring the generated data's reliability, reproducibility, and accuracy. While several quality control measures are commonly discussed, the impact of organic solvent quality during LC-MS analysis is often overlooked. Additionally, the annotation of complex lipids remains prone to biases, leading to potential misidentifications and incomplete characterization of lipid species. In this study, we investigate how LC-MS-grade isopropanol from different vendors may influence the quality of the mobile phase used in LC-MS-based untargeted lipidomic profiling of biological samples. Furthermore, we report the occurrence of an unusual, yet highly abundant, ethylamine adduct [M+46.0651]+ that may form for specific lipid subclasses during LC-MS analysis in positive electrospray ionization mode when acetonitrile is part of the mobile phase, potentially leading to lipid misidentification. These findings emphasize the importance of considering solvent quality in LC-MS analysis and highlight challenges in lipid annotation.

Zobrazit více v PubMed

Rustam Y.H., Reid G.E. Analytical challenges and recent advances in mass spectrometry based lipidomics. Anal. Chem. 2018;90:374–397. doi: 10.1021/acs.analchem.7b04836. PubMed DOI

Cajka T., Fiehn O. Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics. Anal. Chem. 2016;88:524–545. doi: 10.1021/acs.analchem.5b04491. PubMed DOI

Rampler E., El Abiead Y., Schoeny H., Rusz M., Hildebrand F., Fitz V., Koellensperger G. Recurrent topics in mass spectrometry-based metabolomics and lipidomics-standardization, coverage, and throughput. Anal. Chem. 2021;93:519–545. doi: 10.1021/acs.analchem.0c04698. PubMed DOI PMC

Kostidis S., Sanchez-Lopez E., Giera M. Lipidomics analysis in drug discovery and development. Curr. Opin. Chem. Biol. 2023;72:102256. doi: 10.1016/j.cbpa.2022.102256. PubMed DOI

Géhin C., Fowler S.J., Trivedi D.K. Chewing the fat: How lipidomics is changing our understanding of human health and disease in 2022. Anal. Sci. Adv. 2023;4:104–131. doi: 10.1002/ansa.202300009. PubMed DOI PMC

Cajka T., Fiehn O. Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. TrAC-Trend Anal. Chem. 2014;61:192–206. doi: 10.1016/j.trac.2014.04.017. PubMed DOI PMC

Miller K.E., Jorgenson J.W. Comparison of microcapillary column length and inner diameter investigated with gradient analysis of lipids by ultrahigh-pressure liquid chromatography-mass spectrometry. J. Sep. Sci. 2020;43:4094–4102. doi: 10.1002/jssc.202000545. PubMed DOI PMC

Cajka T., Fiehn O. Increasing lipidomic coverage by selecting optimal mobile-phase modifiers in LC–MS of blood plasma. Metabolomics. 2016;12:34. doi: 10.1007/s11306-015-0929-x. DOI

Narvaez-Rivas M., Zhang Q.B. Comprehensive untargeted lipidomic analysis using core-shell C30 particle column and high field orbitrap mass spectrometer. J. Chromatogr. A. 2016;1440:123–134. doi: 10.1016/j.chroma.2016.02.054. PubMed DOI PMC

Lange M., Fedorova M. Evaluation of lipid quantification accuracy using HILIC and RPLC MS on the example of NIST (R) SRM (R) 1950 metabolites in human plasma. Anal. Bioanal. Chem. 2020;412:3573–3584. doi: 10.1007/s00216-020-02576-x. PubMed DOI PMC

Criscuolo A., Zeller M., Cook K., Angelidou G., Fedorova M. Rational selection of reverse phase columns for high throughput LC-MS lipidomics. Chem. Phys. Lipids. 2019;221:120–127. doi: 10.1016/j.chemphyslip.2019.03.006. PubMed DOI

Contrepois K., Mahmoudi S., Ubhi B.K., Papsdorf K., Hornburg D., Brunet A., Snyder M. Cross-platform comparison of untargeted and targeted lipidomics approaches on aging mouse plasma. Sci. Rep. 2018;8:17747. doi: 10.1038/s41598-018-35807-4. PubMed DOI PMC

Cajka T., Hricko J., Rudl Kulhava L., Paucova M., Novakova M., Kuda O. Optimization of mobile phase modifiers for fast LC-MS-based untargeted metabolomics and lipidomics. Int. J. Mol. Sci. 2023;24:1987. doi: 10.3390/ijms24031987. PubMed DOI PMC

Monnin C., Ramrup P., Daigle-Young C., Vuckovic D. Improving negative liquid chromatography/electrospray ionization mass spectrometry lipidomic analysis of human plasma using acetic acid as a mobile-phase additive. Rapid Commun. Mass. Sp. 2018;32:201–211. doi: 10.1002/rcm.8024. PubMed DOI

Creydt M., Fischer M. Plant metabolomics: Maximizing metabolome coverage by optimizing mobile phase additives for nontargeted mass spectrometry in positive and negative electrospray ionization mode. Anal. Chem. 2017;89:10474–10486. doi: 10.1021/acs.analchem.7b02592. PubMed DOI

Lenk A. Solvents: An overlooked ally for liquid chromatography–mass spectrometry. Column. 2018;14:19–21.

Lupo S. LC-MS sensitivity: Practical strategies to boost your signal and lower your noise. LC GC Eur. 2018;31:512–520.

Ni Z.X., Wolk M., Jukes G., Espinosa K.M., Ahrends R., Aimo L., Alvarez-Jarreta J., Andrews S., Andrews R., Bridge A., et al. Guiding the choice of informatics software and tools for lipidomics research applications. Nat. Methods. 2023;20:193–204. doi: 10.1038/s41592-022-01710-0. PubMed DOI PMC

Kind T., Liu K.H., Lee do Y., DeFelice B., Meissen J.K., Fiehn O. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat. Methods. 2013;10:755–758. doi: 10.1038/nmeth.2551. PubMed DOI PMC

Kyle J.E., Crowell K.L., Casey C.P., Fujimoto G.M., Kim S., Dautel S.E., Smith R.D., Payne S.H., Metz T.O. LIQUID: An-open source software for identifying lipids in LC-MS/MS-based lipidomics data. Bioinformatics. 2017;33:1744–1746. doi: 10.1093/bioinformatics/btx046. PubMed DOI PMC

Ni Z.X., Angelidou G., Lange M., Hoffmann R., Fedorova M. LipidHunter identifies phospholipids by high-throughput processing of LC-MS and shotgun lipidomics datasets. Anal. Chem. 2017;89:8800–8807. doi: 10.1021/acs.analchem.7b01126. PubMed DOI

Rakusanova S., Fiehn O., Cajka T. Toward building mass spectrometry-based metabolomics and lipidomics atlases for biological and clinical research. TrAC-Trend Anal. Chem. 2023;158:116825. doi: 10.1016/j.trac.2022.116825. DOI

Kofeler H.C., Eichmann T.O., Ahrends R., Bowden J.A., Danne-Rasche N., Dennis E.A., Fedorova M., Griffiths W.J., Han X.L., Hartler J., et al. Quality control requirements for the correct annotation of lipidomics data. Nat. Commun. 2021;12:4771. doi: 10.1038/s41467-021-24984-y. PubMed DOI PMC

Hricko J., Kulhava L.R., Paucova M., Novakova M., Kuda O., Fiehn O., Cajka T. Short-term stability of serum and liver extracts for untargeted metabolomics and lipidomics. Antioxidants. 2023;12:986. doi: 10.3390/antiox12050986. PubMed DOI PMC

Janovska P., Melenovsky V., Svobodova M., Havlenova T., Kratochvilova H., Haluzik M., Hoskova E., Pelikanova T., Kautzner J., Monzo L., et al. Dysregulation of epicardial adipose tissue in cachexia due to heart failure: The role of natriuretic peptides and cardiolipin. J. Cachexia Sarcopenia Muscle. 2020;11:1614–1627. doi: 10.1002/jcsm.12631. PubMed DOI PMC

Tsugawa H., Ikeda K., Takahashi M., Satoh A., Mori Y., Uchino H., Okahashi N., Yamada Y., Tada I., Bonini P., et al. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol. 2020;38:1159–1163. doi: 10.1038/s41587-020-0531-2. PubMed DOI

Kirwan J.A., Gika H., Beger R.D., Bearden D., Dunn W.B., Goodacre R., Theodoridis G., Witting M., Yu L.R., Wilson I.D. Quality assurance and quality control reporting in untargeted metabolic phenotyping: mQACC recommendations for analytical quality management. Metabolomics. 2022;18:70. doi: 10.1007/s11306-022-01926-3. PubMed DOI PMC

Benke P.I., Burla B., Ekroos K., Wenk M.R., Torta F. Impact of ion suppression by sample cap liners in lipidomics. Anal. Chim. Acta. 2020;1137:136–142. doi: 10.1016/j.aca.2020.09.055. PubMed DOI

Lippa K.A., Aristizabal-Henao J.J., Beger R.D., Bowden J.A., Broeckling C., Beecher C., Clay Davis W., Dunn W.B., Flores R., Goodacre R., et al. Reference materials for MS-based untargeted metabolomics and lipidomics: A review by the metabolomics quality assurance and quality control consortium (mQACC) Metabolomics. 2022;18:24. doi: 10.1007/s11306-021-01848-6. PubMed DOI PMC

Kofeler H.C., Ahrends R., Baker E.S., Ekroos K., Han X.L., Hoffmann N., Holcapek M., Wenk M.R., Liebisch G. Recommendations for good practice in MS-based lipidomics. J. Lipid Res. 2021;62:100138. doi: 10.1016/j.jlr.2021.100138. PubMed DOI PMC

Page J.S., Bogdanov B., Vilkov A.N., Prior D.C., Buschbach M.A., Tang K., Smith R.D. Automatic gain control in mass spectrometry using a jet disrupter electrode in an electrodynamic ion funnel. J. Am. Soc. Mass Spectr. 2005;16:244–253. doi: 10.1016/j.jasms.2004.11.003. PubMed DOI PMC

Urban M., Enot D.P., Dallmann G., Korner L., Forcher V., Enoh P., Koal T., Keller M., Deigner H.P. Complexity and pitfalls of mass spectrometry-based targeted metabolomics in brain research. Anal. Biochem. 2010;406:124–131. doi: 10.1016/j.ab.2010.07.002. PubMed DOI

Keller B.O., Suj J., Young A.B., Whittal R.M. Interferences and contaminants encountered in modern mass spectrometry. Anal. Chim. Acta. 2008;627:71–81. doi: 10.1016/j.aca.2008.04.043. PubMed DOI

Hernandez-Fernandez J., Puello-Polo E., Lopez-Martinez J. Recovery of (Z)-13-docosenamide from industrial wastewater and its application in the production of virgin polypropylene to improve the coefficient of friction in film type applications. Sustainability. 2023;15:1247. doi: 10.3390/su15021247. DOI

Hermabessiere L., Receveur J., Himber C., Mazurais D., Huvet A., Lagarde F., Lambert C., Paul-Pont I., Dehaut A., Jezequel R., et al. An Irgafos (R) 168 story: When the ubiquity of an additive prevents studying its leaching from plastics. Sci. Total. Environ. 2020;749:141651. doi: 10.1016/j.scitotenv.2020.141651. PubMed DOI

Du B.B., Shen M.J., Pan Z.B., Zhu C.Y., Luo D., Zeng L.X. Trace analysis of multiple synthetic phenolic antioxidants in foods by liquid chromatography-tandem mass spectrometry with complementary use of electrospray ionization and atmospheric pressure chemical ionization. Food Chem. 2022;375:131663. doi: 10.1016/j.foodchem.2021.131663. PubMed DOI

Lange M., Angelidou G., Ni Z.X., Criscuolo A., Schiller J., Bluher M., Fedorova M. AdipoAtlas: A reference lipidome for human white adipose tissue. Cell Rep. Med. 2021;2:100407. doi: 10.1016/j.xcrm.2021.100407. PubMed DOI PMC

Bowden J.A., Heckert A., Ulmer C.Z., Jones C.M., Koelmel J.P., Abdullah L., Ahonen L., Alnouti Y., Armando A.M., Asara J.M., et al. Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950-Metabolites in Frozen Human Plasma. J. Lipid Res. 2017;58:2275–2288. doi: 10.1194/jlr.M079012. PubMed DOI PMC

Stoll D.R. Contaminants everywhere! Tips and tricks for reducing background signals when using LC-MS. LC GC N. Am. 2018;36:498–504.

Koelmel J.P., Li X.D., Stow S.M., Sartain M.J., Murali A., Kemperman R., Tsugawa H., Takahashi M., Vasiliou V., Bowden J.A., et al. Lipid Annotator: Towards accurate annotation in non-targeted liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS) lipidomics using a rapid and user-friendly software. Metabolites. 2020;10:101. doi: 10.3390/metabo10030101. PubMed DOI PMC

Cajka T., Fiehn O. LC-MS-based lipidomics and automated identification of lipids using the LipidBlast in-silico MS/MS library. Methods Mol. Biol. 2017;1609:149–170. doi: 10.1007/978-1-4939-6996-8_14. PubMed DOI

Koelmel J.P., Ulmer C.Z., Jones C.M., Yost R.A., Bowden J.A. Common cases of improper lipid annotation using high-resolution tandem mass spectrometry data and corresponding limitations in biological interpretation. BBA-Mol. Cell Biol. L. 2017;1862:766–770. doi: 10.1016/j.bbalip.2017.02.016. PubMed DOI PMC

Kruve A., Kaupmees K. Adduct formation in ESI/MS by mobile phase additives. J. Am. Soc. Mass Spectr. 2017;28:887–894. doi: 10.1007/s13361-017-1626-y. PubMed DOI

Gonzalez-Riano C., Gradillas A., Barbas C. Exploiting the formation of adducts in mobile phases with ammonium fluoride for the enhancement of annotation in liquid chromatography-high resolution mass spectrometry based lipidomics. J. Chromatogr. A Open. 2021;1:100018. doi: 10.1016/j.jcoa.2021.100018. DOI

Gu Z.M., Ma J.Y., Zhao X.G., Wu J., Zhang D.L. Reduction of nitriles to amines in positive ion electrospray ionization mass spectrometry. Rapid Commun. Mass Sp. 2006;20:2969–2972. doi: 10.1002/rcm.2690. PubMed DOI

Licea-Perez H., Junnotula V., Zohrabian S., Karlinsey M. Development of a multi-sugar LC-MS/MS assay using simple chemical derivatization with acetic anhydride. Anal. Methods. 2016;8:3023–3033. doi: 10.1039/C6AY00061D. DOI

Byrdwell W.C., Kotapati H.K., Goldschmidt R. Fast chromatography of pulse triacylglycerols. J. Am. Oil Chem. Soc. 2023;100:25–43. doi: 10.1002/aocs.12665. DOI

Brejchova K., Radner F.P.W., Balas L., Paluchova V., Cajka T., Chodounska H., Kudova E., Schratter M., Schreiber R., Durand T., et al. Distinct roles of adipose triglyceride lipase and hormone-sensitive lipase in the catabolism of triacylglycerol estolides. Proc. Natl. Acad. Sci. USA. 2021;118:e2020999118. doi: 10.1073/pnas.2020999118. PubMed DOI PMC

Wang Y.F., Harrington P.D., Chen P. Metabolomic profiling and comparison of major cinnamon species using UHPLC-HRMS. Anal. Bioanal. Chem. 2020;412:7669–7681. doi: 10.1007/s00216-020-02904-1. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...