Quality control requirements for the correct annotation of lipidomics data
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu dopisy, Research Support, N.I.H., Extramural, práce podpořená grantem, komentáře
Grantová podpora
R35 GM139641
NIGMS NIH HHS - United States
203014/Z/16/Z
Wellcome Trust - United Kingdom
BBS/E/B/000C0431
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/N015932/1
Biotechnology and Biological Sciences Research Council - United Kingdom
Wellcome Trust - United Kingdom
PubMed
34362906
PubMed Central
PMC8346590
DOI
10.1038/s41467-021-24984-y
PII: 10.1038/s41467-021-24984-y
Knihovny.cz E-zdroje
- MeSH
- lidé MeSH
- lipidomika * MeSH
- metabolomika * MeSH
- řízení kvality MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- dopisy MeSH
- komentáře MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Babraham Institute Babraham Research Campus Cambridge UK
Barshop Inst Longev and Aging Studies Univ Texas Hlth Sci Ctr San Antonio San Antonio TX USA
Bioanalytical Chemistry Research Center Borstel Borstel Germany
Cell Biology and Biophysics Unit European Molecular Biology Laboratory Heidelberg Germany
Center for Biotechnology and Biomedicine Universität Leipzig Leipzig Germany
Core Facility Mass Spectrometry and Lipidomics ZMF Medical University of Graz Graz Austria
Department for Analytical Chemistry University of Vienna Vienna Austria
Department of Environmental Health Sciences School of Public Health Yale University New Haven CT USA
Department of Pharmacology University of California San Diego CA USA
German Center for Infection Research Borstel Germany
German Centre for Lung Research Airway Research Center North Borstel Germany
Institute for Molecular Biosciences Karl Franzens University of Graz Graz Austria
Institute of Clinical Chemistry and Laboratory Medicine University of Regensburg Regensburg Germany
Institute of Pharmaceutical Sciences University of Graz Graz Austria
Lipidomics Consulting Ltd Esbo Finland
Max Planck Institute of Molecular Cell Biology and Genetics Dresden Germany
Swansea Univerity Medical School Swansea UK
Systems Immunity Research Institute Cardiff University Cardiff United Kingdom
Zobrazit více v PubMed
Vasilopoulou CG, et al. Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts. Nat. Commun. 2020;11:331. doi: 10.1038/s41467-019-14044-x. PubMed DOI PMC
Hartler J, et al. Deciphering lipid structures based on platform-independent decision rules. Nat. Methods. 2017;14:1171–1174. doi: 10.1038/nmeth.4470. PubMed DOI PMC
Hartler J, et al. Automated annotation of sphingolipids including accurate identification of hydroxylation sites using MS(n) data. Anal. Chem. 2020;92:14054–14062. doi: 10.1021/acs.analchem.0c03016. PubMed DOI PMC
Ni Z, Angelidou G, Lange M, Hoffmann R, Fedorova M. LipidHunter identifies phospholipids by high-throughput processing of LC-MS and shotgun lipidomics datasets. Anal. Chem. 2017;89:8800–8807. doi: 10.1021/acs.analchem.7b01126. PubMed DOI
Herzog, R. et al. A novel informatics concept for high-throughput shotgun lipidomics based on the molecular fragmentation query language. Genome Biol. 12 (2011). PubMed PMC
Koelmel JP, et al. LipidMatch: an automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass spectrometry data. Bmc Bioinforma. 2017;18:331. doi: 10.1186/s12859-017-1744-3. PubMed DOI PMC
Tsugawa H, et al. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol. 2020;38:1159–1163. doi: 10.1038/s41587-020-0531-2. PubMed DOI
Fauland A, et al. A comprehensive method for lipid profiling by liquid chromatography-ion cyclotron resonance mass spectrometry. J. Lipid Res. 2011;52:2314–2322. doi: 10.1194/jlr.D016550. PubMed DOI PMC
Ovcacikova M, Lisa M, Cifkova E, Holcapek M. Retention behavior of lipids in reversed-phase ultrahigh-performance liquid chromatography-electrospray ionization mass spectrometry. J. Chromatogr. A. 2016;1450:76–85. doi: 10.1016/j.chroma.2016.04.082. PubMed DOI
Danne-Rasche N, Coman C, Ahrends R. Nano-LC/NSI MS refines lipidomics by enhancing lipid coverage, measurement sensitivity, and linear dynamic range. Anal. Chem. 2018;90:8093–8101. doi: 10.1021/acs.analchem.8b01275. PubMed DOI
Aicheler F, et al. Retention time prediction improves identification in nontargeted lipidomics approaches. Anal. Chem. 2015;87:7698–7704. doi: 10.1021/acs.analchem.5b01139. PubMed DOI
Liebisch G, et al. Shorthand notation for lipid structures derived from mass spectrometry. J. Lipid Res. 2013;54:1523–1530. doi: 10.1194/jlr.M033506. PubMed DOI PMC
Liebisch G, et al. Lipidomics needs more standardization. Nat. Metab. 2019;1:745–747. doi: 10.1038/s42255-019-0094-z. PubMed DOI
Liebisch G, et al. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J. Lipid Res. 2020;61:1539–1555. doi: 10.1194/jlr.S120001025. PubMed DOI PMC
Software and Computational Tools for LC-MS-Based Epilipidomics: Challenges and Solutions
Recommendations for good practice in MS-based lipidomics