Introduction of a lipidomics scoring system for data quality assessment
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
40316026
PubMed Central
PMC12345285
DOI
10.1016/j.jlr.2025.100817
PII: S0022-2275(25)00077-X
Knihovny.cz E-zdroje
- Klíčová slova
- chromatography, glycerophospholipids, lipidomics, lipids, mass spectrometry, sphingolipids, sterols,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The scientific field of lipidomics has shown a constantly growing publication number in recent years, which is accompanied by an increasing need for quality standards. While the official shorthand nomenclature of lipids is a first and important step toward a reporting quality tool, an additional point score would reflect the quality of reported data at an even more detailed granularity. Thus, we propose a lipidomics scoring scheme that considers all the different layers of analytical information to be obtained by mass spectrometry, chromatography, and ion mobility spectrometry and awards scoring points for each of them. Furthermore, the scoring scheme is integrated with the annotation levels as proposed by the official shorthand nomenclature, with a point score, which roughly correlates with the annotated compound details. The merit of such a scoring system is the fact that it abstracts evidence for structural information into a number, which gives even the nonlipidomics expert an idea about the reporting, and by extension, data quality at first glance. Additionally, it could serve as an aid for internal quality control and for data quality assessment in the peer review process.
Core Facility Mass Spectrometry ZMF Medical University of Graz Graz Austria
Department of Chemistry Tsinghua University Beijing China
Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC
Institute of Analytical Chemistry University of Vienna Vienna Austria
Institute of Clinical Chemistry and Laboratory Medicine University of Regensburg Regensburg Germany
Zobrazit více v PubMed
van Meer G., Voelker D.R., Feigenson G.W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Bio. 2008;9:112–124. PubMed PMC
Quehenberger O., Armando A.M., Brown A.H., Milne S.B., Myers D.S., Merrill A.H., et al. Lipidomics reveals a remarkable diversity of lipids in human plasma. J. Lipid Res. 2010;51:3299–3305. PubMed PMC
Brugger B., Erben G., Sandhoff R., Wieland F.T., Lehmann W.D. Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. P. Natl. Acad. Sci. U. S. A. 1997;94:2339–2344. PubMed PMC
Wenk M.R. The emerging field of lipidomics. Nat. Rev. Drug Discov. 2005;4:594–610. PubMed
Han X.L., Gross R.W. Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom. Rev. 2005;24:367–412. PubMed
Ekroos K., Chernushevich I.V., Simons K., Shevchenko A. Quantitative profiling of phospholipids by multiple precursor ion scanning on a hybrid quadrupole time-of-flight mass spectrometer. Anal. Chem. 2002;74:941–949. PubMed
Fahy E., Subramaniam S., Brown H.A., Glass C.K., Merrill A.H., Murphy R.C., et al. A comprehensive classification system for lipids. J. Lipid Res. 2005;46:839–861. PubMed
Liebisch G., Vizcaino J.A., Kofeler H., Trotzmuller M., Griffiths W.J., Schmitz G., et al. Shorthand notation for lipid structures derived from mass spectrometry. J. Lipid Res. 2013;54:1523–1530. PubMed PMC
Liebisch G., Fahy E., Aoki J., Dennis E.A., Durand T., Ejsing C.S., et al. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J. Lipid Res. 2020;61:1539–1555. PubMed PMC
Liebisch G., Ejsing C.S., Ekroos K. Identification and annotation of lipid species in metabolomics studies need improvement. Clin. Chem. 2015;61:1542–1544. PubMed
Liebisch G., Ahrends R., Arita M., Arita M., Bowden J.A., Ejsing C.S., et al. Lipidomics needs more standardization. Nat. Metab. 2019;1:745–747. PubMed
Kofeler H.C., Eichmann T.O., Ahrends R., Bowden J.A., Danne-Rasche N., Dennis E.A., et al. Quality control requirements for the correct annotation of lipidomics data. Nat. Commun. 2021;12:4771. PubMed PMC
Pauling J.K., Hermansson M., Hartler J., Christiansen K., Gallego S.F., Peng B., et al. Proposal for a common nomenclature for fragment ions in mass spectra of lipids. PLoS One. 2017;12 PubMed PMC
Hsu F.F., Turk J. Electrospray ionization with low-energy collisionally activated dissociation tandem mass spectrometry of glycerophospholipids: mechanisms of fragmentation and structural characterization. J. Chromatogr. B, Anal. Tech. Biomed. Life Sci. 2009;877:2673–2695. PubMed PMC
Hong S., Lu Y., Yang R., Gotlinger K.H., Petasis N.A., Serhan C.N. Resolvin D1, protectin D1, and related docosahexaenoic acid-derived products: analysis via electrospray/low energy tandem mass spectrometry based on spectra and fragmentation mechanisms. J. Am. Soc. Mass Spectrom. 2007;18:128–144. PubMed PMC
Michaud A.L., Yurawecz M.P., Delmonte P., Corl B.A., Bauman D.E., Brenna J.T. Identification and characterization of conjugated fatty acid methyl esters of mixed double bond geometry by acetonitrile chemical ionization tandem mass spectrometry. Anal. Chem. 2003;75:4925–4930. PubMed
Ohba M., Saeki K., Koga T., Okuno T., Kobayashi Y., Yokomizo T. Profiling of bioactive lipids in different dendritic cell subsets using an improved multiplex quantitative LC-MS/MS method. Biochem. Biophys. Res. Commun. 2018;504:562–568. PubMed
Bui H.H., Sanders P.E., Bodenmiller D., Kuo M.S., Donoho G.P., Fischl A.S. Direct analysis of PI(3,4,5)P3 using liquid chromatography electrospray ionization tandem mass spectrometry. Anal. Biochem. 2018;547:66–76. PubMed
Adas F., Picart D., Berthou F., Simon B., Amet Y. Liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry of omega- and (omega-1)-hydroxylated metabolites of elaidic and oleic acids in human and rat liver microsomes. J. Chromatogr. B Biomed. Sci. Appl. 1998;714:133–144. PubMed
Lisa M., Holcapek M. Characterization of triacylglycerol enantiomers using chiral HPLC/APCI-MS and synthesis of enantiomeric triacylglycerols. Anal. Chem. 2013;85:1852–1859. PubMed
Dodds J.N., Baker E.S. Ion mobility spectrometry: fundamental concepts, instrumentation, applications, and the road ahead. J. Am. Soc. Mass Spectrom. 2019;30:2185–2195. PubMed PMC
Groessl M., Graf S., Knochenmuss R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst. 2015;140:6904–6911. PubMed
Paglia G., Kliman M., Claude E., Geromanos S., Astarita G. Applications of ion-mobility mass spectrometry for lipid analysis. Anal. Bioanal. Chem. 2015;407:4995–5007. PubMed
Hartler J., Triebl A., Ziegl A., Trotzmuller M., Rechberger G.N., Zeleznik O.A., et al. Deciphering lipid structures based on platform-independent decision rules. Nat. Methods. 2017;14:1171–1174. PubMed PMC
Pittenauer E., Allmaier G. The renaissance of high-energy CID for structural elucidation of complex lipids: MALDI-TOF/RTOF-MS of alkali cationized triacylglycerols. J. Am. Soc. Mass Spectrom. 2009;20:1037–1047. PubMed
Williams P.E., Klein D.R., Greer S.M., Brodbelt J.S. Pinpointing double bond and sn-positions in glycerophospholipids via hybrid 193 nm ultraviolet photodissociation (UVPD) mass spectrometry. J. Am. Chem. Soc. 2017;139:15681–15690. PubMed PMC
Ryan E., Nguyen C.Q.N., Shiea C., Reid G.E. Detailed structural characterization of sphingolipids via 193 nm ultraviolet photodissociation and ultra high resolution tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 2017;28:1406–1419. PubMed
Brown S.H.J., Mitchell T.W., Blanksby S.J. Analysis of unsaturated lipids by ozone-induced dissociation. BBA-Mol. Cell Biol. L. 2011;1811:807–817. PubMed
Zhang W., Zhang D., Chen Q., Wu J., Ouyang Z., Xia Y. Online photochemical derivatization enables comprehensive mass spectrometric analysis of unsaturated phospholipid isomers. Nat. Commun. 2019;10:79. PubMed PMC
Baba T., Campbell J.L., Le Blanc J.C.Y., Baker P.R.S., Ikeda K. Quantitative structural multiclass lipidomics using differential mobility: electron impact excitation of ions from organics (EIEIO) mass spectrometry. J. Lipid Res. 2018;59:910–919. PubMed PMC
Prost K., Birk J.J., Lehndorff E., Gerlach R., Amelung W. Steroid biomarkers revisited - improved source identification of faecal remains in archaeological soil material. PLoS One. 2017;12 PubMed PMC
Wojcik R., Webb I.K., Deng L., Garimella S.V., Prost S.A., Ibrahim Y.M., et al. Lipid and glycolipid isomer analyses using ultra-high resolution ion mobility spectrometry separations. Int. J. Mol. Sci. 2017;18:183. PubMed PMC
Sud M., Fahy E., Cotter D., Brown A., Dennis E.A., Glass C.K., et al. LMSD: LIPID MAPS structure database. Nucleic Acids Res. 2007;35:D527–D532. PubMed PMC
Team R.C. R Foundation for Statistical Computing; Vienna, Austria: 2023. R: A Language and Environment for Statistical Computing.
Kopczynski D., Hoffmann N., Peng B., Liebisch G., Spener F., Ahrends R. Goslin 2.0 implements the recent lipid shorthand nomenclature for MS-derived lipid structures. Anal. Chem. 2022;94:6097–6101. PubMed PMC
Kopczynski D., Ejsing C.S., McDonald J.G., Bamba T., Baker E.S., Bertrand-Michel J., et al. The lipidomics reporting checklist a framework for transparency of lipidomic experiments and repurposing resource data. J. Lipid Res. 2024;65 PubMed PMC