The lipidomics reporting checklist a framework for transparency of lipidomic experiments and repurposing resource data
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
P30 AG013319
NIA NIH HHS - United States
P30 AG044271
NIA NIH HHS - United States
R01 AG061729
NIA NIH HHS - United States
PubMed
39151590
PubMed Central
PMC11417233
DOI
10.1016/j.jlr.2024.100621
PII: S0022-2275(24)00126-3
Knihovny.cz E-resources
- Keywords
- FAIR, checklist, lipid metabolism, lipidomics, mass spectrometry, metabolomics, quality control, reference standards,
- MeSH
- Checklist * MeSH
- Humans MeSH
- Lipidomics * methods standards MeSH
- Lipids analysis chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Lipids MeSH
The rapid increase in lipidomic studies has led to a collaborative effort within the community to establish standards and criteria for producing, documenting, and disseminating data. Creating a dynamic easy-to-use checklist that condenses key information about lipidomic experiments into common terminology will enhance the field's consistency, comparability, and repeatability. Here, we describe the structure and rationale of the established Lipidomics Minimal Reporting Checklist to increase transparency in lipidomics research.
Biological Sciences Division Pacific Northwest National Laboratory Richland Washington USA
Core Facility Mass Spectrometry and Lipidomics ZMF Medical University of Graz Graz Austria
Department of Analytical Chemistry Faculty of Chemistry University of Vienna Vienna Austria
Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
Heidelberg University Biochemistry Center University of Heidelberg Heidelberg Germany
Institute for Bio and Geosciences Forschungszentrum Jülich GmbH Jülich Germany
Institute of Clinical Chemistry and Laboratory Medicine University of Regensburg Regensburg Germany
Kansas Lipidomics Research Center Division of Biology Kansas State University Manhattan Kansas USA
Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore
Lipidomics Consulting Ltd Esbo Finland
Max Planck Institute of Molecular Cell Biology and Genetics Dresden Germany
MetaboHUB Metatoul National Infrastructure of Metabolomics and Fluxomics Inserm I2MC Toulouse France
Swansea University Medical School Swansea Wales UK
Systems Immunity Research Institute School of Medicine Cardiff University Cardiff UK
See more in PubMed
Liebisch G., Ahrends R., Arita M., Arita M., Bowden J.A., Ejsing C.S., et al. Lipidomics needs more standardization. Nat. Metab. 2019;1:745–747. PubMed
Köfeler H.C., Eichmann T.O., Ahrends R., Bowden J.A., Danne-Rasche N., Dennis E.A., et al. Quality control requirements for the correct annotation of lipidomics data. Nat. Commun. 2021;12:4771. PubMed PMC
Liebisch G., Fahy E., Aoki J., Dennis E.A., Durand T., Ejsing C.S., et al. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J. Lipid Res. 2020;61:1539–1555. PubMed PMC
Kofeler H.C., Ahrends R., Baker E.S., Ekroos K., Han X., Hoffmann N., et al. Recommendations for good practice in MS-based lipidomics. J. Lipid Res. 2021;62 PubMed PMC
Wilkinson M.D., Dumontier M., Aalbersberg I.J., Appleton G., Axton M., Baak A., et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data. 2016;3 PubMed PMC
McDonald J.G., Ejsing C.S., Kopczynski D., Holcapek M., Aoki J., Arita M., et al. Introducing the lipidomics minimal reporting checklist. Nat. Metab. 2022;4:1086–1088. PubMed
Burla B., Arita M., Arita M., Bendt A.K., Cazenave-Gassiot A., Dennis E.A., et al. MS-based lipidomics of human blood plasma: a community-initiated position paper to develop accepted guidelines. J. Lipid Res. 2018;59:2001–2017. PubMed PMC
Ulmer C.Z., Koelmel J.P., Jones C.M., Garrett T.J., Aristizabal-Henao J.J., Vesper H.W., et al. A review of efforts to improve lipid stability during sample preparation and standardization efforts to ensure accuracy in the reporting of lipid measurements. Lipids. 2021;56:3–16. PubMed PMC
Vale G., McDonald J.G. Mass Spectrometry for Lipidomics: Methods and Applications. Wiley; Hoboken, NJ: 2023. Preanalytics for lipidomics analysis; pp. 13–40.
Krautbauer S., Blazquez R., Liebisch G., Höring M., Neubert P., Pukrop T., et al. Application of lipid class ratios for sample stability monitoring-evaluation of murine tissue homogenates and SDS as a stabilizer. Metabolites. 2021;11:277. PubMed PMC
Wang X., Gu X., Song H., Song Q., Gao X., Lu Y., et al. Phenylmethanesulfonyl fluoride pretreatment stabilizes plasma lipidome in lipidomic and metabolomic analysis. Anal. Chim. Acta. 2015;893:77–83. PubMed
Shiva S., Enninful R., Roth M.R., Tamura P., Jagadish K., Welti R. An efficient modified method for plant leaf lipid extraction results in improved recovery of phosphatidic acid. Plant Methods. 2018;14:14. PubMed PMC
Koelmel J.P., Jones C.M., Ulmer C.Z., Garrett T.J., Yost R.A., Schock T.B., et al. Examining heat treatment for stabilization of the lipidome. Bioanalysis. 2018;10:291–305. PubMed
O’Donnell V.B., Milne G.L., Nogueira M.S., Giera M., Helge Schebb N. Mass Spectrometry for Lipidomics: Methods and Applications. Wiley; Hoboken, NJ: 2023. Quantitation of oxylipins in biological samples, focusing on plasma, and urine; pp. 317–350.
Griffiths W.J., Crick P.J., Wang Y. Methods for oxysterol analysis: past, present and future. Biochem. Pharmacol. 2013;86:3–14. PubMed
Wang Q., Hoene M., Hu C., Fritsche L., Ahrends R., Liebisch G., et al. Ex vivo instability of lipids in whole blood: preanalytical recommendations for clinical lipidomics studies. J. Lipid Res. 2023;64 PubMed PMC
Höring M., Krautbauer S., Hiltl L., Babl V., Sigruener A., Burkhardt R., et al. Accurate lipid quantification of tissue homogenates requires suitable sample concentration, solvent composition, and homogenization procedure-A case study in murine liver. Metabolites. 2021;11:365. PubMed PMC
Horing M., Stieglmeier C., Schnabel K., Hallmark T., Ekroos K., Burkhardt R., et al. Benchmarking one-phase lipid extractions for plasma lipidomics. Anal. Chem. 2022;94:12292–12296. PubMed PMC
Baker D.L., Umstot E.S., Desiderio D.M., Tigyi G.J. Quantitative analysis of lysophosphatidic acid in human blood fractions. Ann.N.Y.Acad.Sci. 2000;905:267–269. PubMed
Shevchenko A., Simons K. Lipidomics: coming to grips with lipid diversity. Nat.Rev.Mol.Cell Biol. 2010;11:593–598. PubMed
Holčapek M., Peterka O., Chocholoušková M., Wolrab D. In: Mass Spectrometry for Lipidomics: Methods and Applications. Holčapek M., Ekroos K., editors. Wiley; Hoboken, NJ: 2023. Liquid chromatography – and supercritical fluid chromatography – mass spectrometry; pp. 91–115.
Sokol E., Almeida R., Hannibal-Bach H.K., Kotowska D., Vogt J., Baumgart J., et al. Profiling of lipid species by normal-phase liquid chromatography, nanoelectrospray ionization, and ion trap-orbitrap mass spectrometry. Anal. Biochem. 2013;443:88–96. PubMed
Peterka O., Maccelli A., Jirásko R., Vaňková Z., Idkowiak J., Hrstka R., et al. HILIC/MS quantitation of low-abundant phospholipids and sphingolipids in human plasma and serum: dysregulation in pancreatic cancer. Analytica Chim. Acta. 2024;1288 PubMed
Ovčačíková M., Lísa M., Cífková E., Holčapek M. Retention behavior of lipids in reversed-phase ultrahigh-performance liquid chromatography–electrospray ionization mass spectrometry. J. Chromatogr. A. 2016;1450:76–85. PubMed
Höring M., Ejsing C.S., Krautbauer S., Ertl V.M., Burkhardt R., Liebisch G. Accurate quantification of lipid species affected by isobaric overlap in Fourier-transform mass spectrometry. J. Lipid Res. 2021;62 PubMed PMC
Michael J.A., Young R.S.E., Balez R., Jekimovs L.J., Marshall D.L., Poad B.L.J., et al. Deep characterisation of the sn-isomer lipidome using high-throughput data-independent acquisition and ozone-induced dissociation. Angew. Chem. Int. Ed. Engl. 2024;63 PubMed
Klein D.R., Brodbelt J.S. Structural characterization of phosphatidylcholines using 193 nm ultraviolet photodissociation mass spectrometry. Anal. Chem. 2017;89:1516–1522. PubMed PMC
Shi H., Tan Z., Guo X., Ren H., Wang S., Xia Y. Visible-light paternò-büchi reaction for lipidomic profiling at detailed structure levels. Anal. Chem. 2023;95:5117–5125. PubMed
Pauling J.K., Hermansson M., Hartler J., Christiansen K., Gallego S.F., Peng B., et al. Proposal for a common nomenclature for fragment ions in mass spectra of lipids. PLoS One. 2017;12 PubMed PMC
Peng B., Kopczynski D., Pratt B.S., Ejsing C.S., Burla B., Hermansson M., et al. LipidCreator workbench to probe the lipidomic landscape. Nat. Commun. 2020;11:2057. PubMed PMC
Zhang W., Jian R., Zhao J., Liu Y., Xia Y. Deep-lipidotyping by mass spectrometry: recent technical advances and applications. J. Lipid Res. 2022;63 PubMed PMC
Vankova Z., Peterka O., Chocholouskova M., Wolrab D., Jirasko R., Holcapek M. Retention dependences support highly confident identification of lipid species in human plasma by reversed-phase UHPLC/MS. Anal. Bioanal. Chem. 2022;414:319–331. PubMed
O'Donnell V.B., Schebb N.H., Milne G.L., Murphy M.P., Thomas C.P., Steinhilber D., et al. Failure to apply standard limit-of-detection or limit-of-quantitation criteria to specialized pro-resolving mediator analysis incorrectly characterizes their presence in biological samples. Nat. Commun. 2023;14:7172. PubMed PMC
Höring M., Ejsing C.S., Hermansson M., Liebisch G. Quantification of cholesterol and cholesteryl ester by direct flow injection high-resolution fourier transform mass spectrometry utilizing species-specific response factors. Anal. Chem. 2019;91:3459–3466. PubMed
Troppmair N., Kopczynski D., Assinger A., Lehmann R., Coman C., Ahrends R. Accurate sphingolipid quantification reducing fragmentation bias by Nonlinear models. Anal. Chem. 2023;95:15227–15235. PubMed PMC
Liebisch G., Lieser B., Rathenberg J., Drobnik W., Schmitz G. High-throughput quantification of phosphatidylcholine and sphingomyelin by electrospray ionization tandem mass spectrometry coupled with isotope correction algorithm. Biochim. Biophys. Acta. 2004;1686:108–117. PubMed
Schuhmann K., Moon H., Thomas H., Ackerman J.M., Groessl M., Wagner N., et al. Quantitative fragmentation model for bottom-up shotgun lipidomics. Anal. Chem. 2019;91:12085–12093. PubMed PMC
Canez C.R., Li L. Studies of labware contamination during lipid extraction in mass spectrometry-based lipidome analysis. Anal. Chem. 2024;96:3544–3552. PubMed
Heiskanen L.A., Suoniemi M., Ta H.X., Tarasov K., Ekroos K. Long-term performance and stability of molecular shotgun lipidomic analysis of human plasma samples. Anal. Chem. 2013;85:8757–8763. PubMed
Haug K., Salek R.M., Conesa P., Hastings J., de Matos P., Rijnbeek M., et al. MetaboLights—an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res. 2012;41:D781–D786. PubMed PMC
Sud M., Fahy E., Cotter D., Azam K., Vadivelu I., Burant C., et al. Metabolomics Workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res. 2016;44:D463–D470. PubMed PMC
Hermjakob H., Apweiler R. The proteomics identifications database (PRIDE) and the ProteomExchange consortium: making proteomics data accessible. Expert Rev. Proteomics. 2006;3:1–3. PubMed
Hoffmann N., Rein J., Sachsenberg T., Hartler J., Haug K., Mayer G., et al. mzTab-M: a data standard for sharing quantitative results in mass spectrometry metabolomics. Anal. Chem. 2019;91:3302–3310. PubMed PMC
Deutsch E.W., Vizcaíno J.A., Jones A.R., Binz P.A., Lam H., Klein J., et al. Proteomics standards initiative at twenty years: current activities and future work. J. Proteome Res. 2023;22:287–301. PubMed PMC
Field D., Sterk P., Kottmann R., De Smet J.W., Amaral-Zettler L., Cochrane G., et al. Genomic standards consortium projects. Stand Genomic Sci. 2014;9:599–601. PubMed PMC
Sud M., Fahy E., Cotter D., Brown A., Dennis E.A., Glass C.K., et al. LMSD: LIPID MAPS structure database. Nucleic Acids Res. 2007;35:D527–D532. PubMed PMC