Concordant inter-laboratory derived concentrations of ceramides in human plasma reference materials via authentic standards

. 2024 Oct 03 ; 15 (1) : 8562. [epub] 20241003

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid39362843

Grantová podpora
PG/2019/34923 British Heart Foundation - United Kingdom

Odkazy

PubMed 39362843
PubMed Central PMC11449902
DOI 10.1038/s41467-024-52087-x
PII: 10.1038/s41467-024-52087-x
Knihovny.cz E-zdroje

In this community effort, we compare measurements between 34 laboratories from 19 countries, utilizing mixtures of labelled authentic synthetic standards, to quantify by mass spectrometry four clinically used ceramide species in the NIST (National Institute of Standards and Technology) human blood plasma Standard Reference Material (SRM) 1950, as well as a set of candidate plasma reference materials (RM 8231). Participants either utilized a provided validated method and/or their method of choice. Mean concentration values, and intra- and inter-laboratory coefficients of variation (CV) were calculated using single-point and multi-point calibrations, respectively. These results are the most precise (intra-laboratory CVs ≤ 4.2%) and concordant (inter-laboratory CVs < 14%) community-derived absolute concentration values reported to date for four clinically used ceramides in the commonly analyzed SRM 1950. We demonstrate that calibration using authentic labelled standards dramatically reduces data variability. Furthermore, we show how the use of shared RM can correct systematic quantitative biases and help in harmonizing lipidomics. Collectively, the results from the present study provide a significant knowledge base for translation of lipidomic technologies to future clinical applications that might require the determination of reference intervals (RIs) in various human populations or might need to estimate reference change values (RCV), when analytical variability is a key factor for recall during multiple testing of individuals.

ArcticMass Reykjavik Iceland

Avanti Polar Lipids Alabaster AL USA

Babraham Institute Babraham Research Campus Cambridge MA CB22 3AT USA

Baker Department of Cardiovascular Research Translation and Implementation La Trobe University Bundoora VIC 3086 Australia

Baker Heart and Diabetes Institute Melbourne VIC 3004 Australia

Center for Biotechnology and Biomedicine University of Leipzig 04013 Leipzig Germany

Center for Proteomics and Metabolomics Leiden University Medical Center 2333ZA Leiden The Netherlands

Center of Membrane Biochemistry and Lipid Research Faculty of Medicine Carl Gustav Carus of TU Dresden 01307 Dresden Germany

Centro de Investigaciones en Bionanociencias Godoy Cruz 2390 C1425FQD Ciudad de Buenos Aires Argentina

Chemical Science Division National Institute of Standards and Technology Charleston SC 29412 USA

Chemical Science Division National Institute of Standards and Technology Gaithersburg MD 20899 USA

Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock Institute of Bioanalytics and Agro Metabolomics Department of Agrobiotechnology Konrad Lorenz Str 20 3430 Tulln Austria

College of Health and Life Sciences Hamad Bin Khalifa University Doha Qatar

Consejo Nacional de Investigaciones Científicas y Técnicas Departamento de Desarrollo Analítico y Control de Procesos Instituto Nacional de Tecnología Industrial Av General Paz 5445 B1650WAB Buenos Aires Argentina

Core Facility Mass Spectrometry Medical University of Graz 8010 Graz Austria

Departamento de Fisiología Biología Molecular y Celular Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Intendente Güiraldes 2160 C1428EGA Buenos Aires Argentina

Department of Analytical Chemistry Faculty of Chemical Technology University of Pardubice Studentská 573 532 10 Pardubice Czech Republic

Department of Analytical Chemistry University of Vienna Vienna Austria

Department of Biotechnology and Life Science Tokyo University of Agriculture and Technology Tokyo Japan

Department of Chemistry University of Turku Turku Finland

Department of Chemistry Yonsei University Seoul 03722 South Korea

Department of Integrative Genomics Tohoku Medical Megabank Organization Tohoku University 2 1 Seiryo machi Aoba ku Sendai Miyagi 980 8573 Japan

Department of Pathology and Laboratory Medicine University of British Columbia Vancouver BC Canada

Department of Physiological Sciences College of Veterinary Medicine University of Florida Gainesville FL 32610 USA

Department of Respiratory Medicine and Allergy Karolinska University Hospital Stockholm Sweden

Division of Metabolomics Center Medical Research Center for High Depth Omics Medical Institute of Bioregulation Kyushu University 3‑1‑1 Maidashi Higashi‑ku Fukuoka 812‑8582 Japan

Faculty of Pharmaceutical Sciences University of Iceland Reykjavik Iceland

Graduate School of Medical Life Science Yokohama City University Yokohama Japan

Heidelberg University Biochemistry Center Im Neuenheimer Feld 328 69120 Heidelberg Germany

Institute for Bio and Geosciences Forschungszentrum Jülich GmbH 52428 Jülich Germany

Institute for Stem Cell Science and Regenerative Medicine 560065 Bangalore India

Institute of Bioanalytical Chemistry Faculty of Chemistry and Mineralogy University of Leipzig 04013 Leipzig Germany

Institute of Clinical Chemistry University Zurich 8952 Schlieren Switzerland

Laboratory for Lipidomics and Lipid Biology Division of Pharmacy and Optometry School of Health Sciences Faculty of Biology Medicine and Health The University of Manchester Manchester Academic Health Science Centre Manchester M13 9NT United Kingdom

Laboratory of Biomedical and Analytical Sciences Faculty of Pharma Science Teikyo University 2 11 1 Kaga Itabashi ku Tokyo 173 8605 Japan

Lee Kong Chian School of Medicine Nanyang Technological University Singapore 636921 Singapore

LipidALL Technologies Changzhou 213000 Jiangshu China

Lipidomics Consulting Ltd Espoo Finland

Lydia Becker Institute of Immunology and Inflammation; Faculty of Biology Medicine and Health The University of Manchester Manchester Academic Health Science Centre Manchester M13 9NT United Kingdom

MetaboHUBMetaToul Facility I2MC U1297 Inserm Toulouse France

Metabolomics and Analytics Centre Leiden Academic Centre for Drug Research Leiden University Leiden The Netherlands

Metabolomics and Proteomics Core Helmholtz Zentrum München German Research Center for Environmental Health Neuherberg 85764 Germany

Metabolomics Core Facility MetCore Universidad de los Andes Bogotá 111711 Colombia

Metabolomics Platform Faculty of Biology and Medicine University of Lausanne Lausanne Switzerland

National Centre for Biological Sciences Tata Institute of Fundamental Research Bangalore Karnataka 560065 India

Neural Regeneration Laboratory Ottawa Institute of Systems Biology Ottawa Brain and Mind Research Institute Department of Biochemistry Microbiology and Immunology and Department of Chemistry Centre for Catalysis Research and Innovation University of Ottawa Ottawa K1H 8M5 Canada

Precision Medicine Translational Research Programme and Department of Biochemistry Yong Loo Lin School of Medicine National University of Singapore Singapore 119077 Singapore

RIKEN Center for Integrative Medical Sciences Yokohama Japan

RIKEN Center for Sustainable Resource Science Yokohama Japan

School of Medical Sciences Faculty of Medicine and Health Örebro University 702 81 Örebro Sweden

Signature Research Program in Cardiovascular and Metabolic Disorders Duke National University of Singapore Medical School Singapore 169857 Singapore

Singapore Lipidomics Incubator Life Sciences Institute National University of Singapore Singapore 117456 Singapore

St Paul's Hospital Department of Pathology and Laboratory Medicine Vancouver BC Canada

State Key Laboratory of Medical Proteomics CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China

State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing 100101 China

Systems Immunity Research Institute School of Medicine Cardiff University Heath Park Cardiff CF14 4XN UK

Turku Bioscience Centre University of Turku and Åbo Akademi University 20520 Turku Finland

Unit of Integrative Metabolomics Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden

Universidad de Buenos Aires Facultad de Farmacia y Bioquímica Departamento de Ciencias Químicas Buenos Aires Junin 954 Junin C1113AAD CABA Argentina

Université Paris Saclay CEA INRAE Département Médicaments et Technologies pour la Santé MetaboHUB F 91191 Gif sur Yvette France

University Hospital of Regensburg Institute of Clinical Chemistry and Laboratory Medicine Franz Josef Strauß Allee 11 93053 Regensburg Germany

Zobrazit více v PubMed

Züllig, T., Trötzmüller, M. & Köfeler, H. C. Lipidomics from sample preparation to data analysis: a primer. Anal. Bioanal. Chem.412, 2191–2209 (2020). PubMed PMC

Köfeler, H. C. et al. Quality control requirements for the correct annotation of lipidomics data. Nat. Commun.12, 1–4 (2021). PubMed PMC

Köfeler, H. C. et al. Recommendations for good practice in MS-based lipidomics. J. Lipid Res.62, 100138 (2021). PubMed PMC

Liebisch, G. et al. Lipidomics needs more standardization. Nat. Metab.1, 745–747 (2019). PubMed

Meikle, T. G., Huynh, K., Giles, C. & Meikle, P. J. Clinical lipidomics: realizing the potential of lipid profiling. J. Lipid Res.62, 100127 (2021). PubMed PMC

Defining, Establishing and Verifying Reference Intervals in the Clinical Laboratory: Approved Guideline (Clinical and Laboratory Standards Institute, Wayne, Pa, 2010).

Harris, E. K. & Yasaka, T. On the calculation of a ‘reference change’ for comparing two consecutive measurements. Clin. Chem.29, 25–30 (1983). PubMed

Burla, B. et al. MS-based lipidomics of human blood plasma: A community-initiated position paper to develop accepted guidelines. J. Lipid Res.10.1194/jlr.S087163 (2018). PubMed PMC

Bikman, B. T. A role for sphingolipids in the pathophysiology of obesity-induced inflammation. Cell. Mol. Life Sci.69, 2135–2146 (2012). PubMed PMC

Boon, J. et al. Ceramides Contained in LDL Are Elevated in Type 2 Diabetes and Promote Inflammation and Skeletal Muscle Insulin Resistance. Diabetes62, 401–410 (2013). PubMed PMC

Haus, J. M. et al. Plasma Ceramides Are Elevated in Obese Subjects With Type 2 Diabetes and Correlate With the Severity of Insulin Resistance. Diabetes58, 337–343 (2009). PubMed PMC

Havulinna, A. S. et al. Circulating Ceramides Predict Cardiovascular Outcomes in the Population-Based FINRISK 2002 Cohort. Arteriosclerosis Thrombosis Vasc. Biol.36, 2424–2430 (2016). PubMed

Nicholson, R. J., Holland, W. L. & Summers, S. A. Ceramides and Acute Kidney Injury. Seminars Nephrol.42, 151281 (2022). PubMed PMC

Schumacher, F. et al. Ceramide levels in blood plasma correlate with major depressive disorder severity and its neutralization abrogates depressive behavior in mice. J. Biological Chem.298, 102185 (2022). PubMed PMC

Laaksonen, R. et al. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur. Heart J.37, 1967–1976 (2016). PubMed PMC

Poss, A. M. et al. Machine learning reveals serum sphingolipids as cholesterol-independent biomarkers of coronary artery disease. J. Clin. Invest130, 1363–1376 (2020). PubMed PMC

Alexandropoulou, I. et al. Ceramides in Autoimmune Rheumatic Diseases: Existing Evidence and Therapeutic Considerations for Diet as an Anticeramide Treatment. Nutrients15, 229 (2023). PubMed PMC

Carrard, J. et al. How Ceramides Orchestrate Cardiometabolic Health—An Ode to Physically Active Living. Metabolites11, 675 (2021). PubMed PMC

Skácel, J., Slusher, B. S. & Tsukamoto, T. Small Molecule Inhibitors Targeting Biosynthesis of Ceramide, the Central Hub of the Sphingolipid Network. J. Med. Chem.64, 279–297 (2021). PubMed PMC

Park, T.-S., Rosebury, W., Kindt, E. K., Kowala, M. C. & Panek, R. L. Serine palmitoyltransferase inhibitor myriocin induces the regression of atherosclerotic plaques in hyperlipidemic ApoE-deficient mice. Pharmacol. Res.58, 45–51 (2008). PubMed

Blaho, V. A. Druggable sphingolipid pathways: Experimental models and clinical opportunities. In Druggable lipid signaling pathways (ed. Kihara, Y.) 101–135 (Springer International Publishing, Cham, 2020). 10.1007/978-3-030-50621-6_6. PubMed

McGurk, K. A. et al. Heritability and family-based GWAS analyses of the N-acyl ethanolamine and ceramide plasma lipidome. Hum. Mol. Genet.30, 500–513 (2021). PubMed PMC

Aristizabal-Henao, J. J., Jones, C. M., Lippa, K. A. & Bowden, J. A. Nontargeted lipidomics of novel human plasma reference materials: hypertriglyceridemic, diabetic, and African-American. Anal. Bioanal. Chem.412, 7373–7380 (2020). PubMed

Bowden, J. A. et al. Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950–Metabolites in Frozen Human Plasma[S]. J. Lipid Res.58, 2275–2288 (2017). PubMed PMC

Lange, M. & Fedorova, M. Evaluation of lipid quantification accuracy using HILIC and RPLC MS on the example of NIST® SRM® 1950 metabolites in human plasma. Anal. Bioanal. Chem.412, 3573–3584 (2020). PubMed PMC

Misra, B. B. & Olivier, M. High Resolution GC-Orbitrap-MS Metabolomics Using Both Electron Ionization and Chemical Ionization for Analysis of Human Plasma. J. Proteome Res.19, 2717–2731 (2020). PubMed PMC

Quehenberger, O. et al. Lipidomics reveals a remarkable diversity of lipids in human plasma 1 [S]. J. Lipid Res.51, 3299–3305 (2010). PubMed PMC

Siskos, A. P. et al. Interlaboratory Reproducibility of a Targeted Metabolomics Platform for Analysis of Human Serum and Plasma. Anal. Chem.89, 656–665 (2017). PubMed PMC

Thompson, J. W. et al. International Ring Trial of a High Resolution Targeted Metabolomics and Lipidomics Platform for Serum and Plasma Analysis. Anal. Chem.91, 14407–14416 (2019). PubMed PMC

Triebl, A. et al. Shared reference materials harmonize lipidomics across MS-based detection platforms and laboratories. J. Lipid Res.61, 105–115 (2020). PubMed PMC

Chocholoušková, M. et al. Intra-laboratory comparison of four analytical platforms for lipidomic quantitation using hydrophilic interaction liquid chromatography or supercritical fluid chromatography coupled to quadrupole - time-of-flight mass spectrometry. Talanta231, 122367 (2021). PubMed

Lippa, K. A. et al. Reference materials for MS-based untargeted metabolomics and lipidomics: a review by the metabolomics quality assurance and quality control consortium (mQACC). Metabolomics18, 24 (2022). PubMed PMC

Ghorasaini, M. et al. Cross-Laboratory Standardization of Preclinical Lipidomics Using Differential Mobility Spectrometry and Multiple Reaction Monitoring. Anal. Chem.93, 16369–16378 (2021). PubMed PMC

Hammad, S. M. et al. Race disparity in blood sphingolipidomics associated with lupus cardiovascular comorbidity. PLOS ONE14, e0224496 (2019). PubMed PMC

Kauhanen, D. et al. Development and validation of a high-throughput LC–MS/MS assay for routine measurement of molecular ceramides. Anal. Bioanal. Chem.408, 3475–3483 (2016). PubMed

Liebisch, G. et al. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J. Lipid Res.61, 1539–1555 (2020). PubMed PMC

Tukey, J. W. Exploratory Data Analysis (Addison-Wesley Publishing Company, 1977).

Cadby, G. et al. Heritability of 596 lipid species and genetic correlation with cardiovascular traits in the Busselton Family Heart Study [S]. J. Lipid Res.61, 537–545 (2020). PubMed PMC

Tabassum, R. et al. Genetic architecture of human plasma lipidome and its link to cardiovascular disease. Nat. Commun.10, 4329 (2019). PubMed PMC

Beyene, H. B. et al. High-coverage plasma lipidomics reveals novel sex-specific lipidomic fingerprints of age and BMI: Evidence from two large population cohort studies. PLoS Biol.18, e3000870 (2020). PubMed PMC

Vesper, H. W., Myers, G. L. & Miller, W. G. Current practices and challenges in the standardization and harmonization of clinical laboratory tests1223. Am. J. Clin. Nutr.104, 907S–912S (2016). PubMed PMC

Myers, G. L. & Miller, W. G. The International Consortium for Harmonization of Clinical Laboratory Results (ICHCLR) - A Pathway for Harmonization. EJIFCC27, 30–36 (2016). PubMed PMC

Diepeveen, L. E. et al. Provisional standardization of hepcidin assays: creating a traceability chain with a primary reference material, candidate reference method and a commutable secondary reference material. Clin. Chem. Lab. Med.57, 864–872 (2019). PubMed

Pickens, C. A. et al. Harmonizing Newborn Screening Laboratory Proficiency Test Results Using the CDC NSQAP Reference Materials. Int. J. Neonatal Screen.6, 75 (2020). PubMed PMC

Harmonization.net. The International Consortium for Harmonization of Clinical Laboratory Results,https://www.harmonization.net/. PubMed PMC

Schoeny, H. et al. A combined flow injection/reversed-phase chromatography–high-resolution mass spectrometry workflow for accurate absolute lipid quantification with 13 C internal standards. Analyst146, 2591–2599 (2021). PubMed

Lehmann, W. D. A timeline of stable isotopes and mass spectrometry in the life sciences. Mass Spectrom. Rev.36, 58–85 (2017). PubMed

Höring, M., Ejsing, C. S., Hermansson, M. & Liebisch, G. Quantification of Cholesterol and Cholesteryl Ester by Direct Flow Injection High-Resolution Fourier Transform Mass Spectrometry Utilizing Species-Specific Response Factors. Anal. Chem.91, 3459–3466 (2019). PubMed

Hickman, P. E. et al. Choice of Statistical Tools for Outlier Removal Causes Substantial Changes in Analyte Reference Intervals in Healthy Populations. Clin. Chem.66, 1558–1561 (2020). PubMed

Berg, T. & Strand, D. H. 13C labelled internal standards—A solution to minimize ion suppression effects in liquid chromatography–tandem mass spectrometry analyses of drugs in biological samples? J. Chromatogr. A1218, 9366–9374 (2011). PubMed

Vesper, H. W., Miller, W. G. & Myers, G. L. Reference materials and commutability. Clin. Biochem. Rev.28, 139–147 (2007). PubMed PMC

Ramos, P. et al. The Biological Variability of Plasma Ceramides in Healthy Subjects. J. Appl. Lab. Med.7, 863–870 (2022). PubMed

Phinney, K. W. et al. Development of a Standard Reference Material for Metabolomics Research. Anal. Chem.85, 11732–11738 (2013). PubMed PMC

Simón-Manso, Y. et al. Metabolite Profiling of a NIST Standard Reference Material for Human Plasma (SRM 1950): GC-MS, LC-MS, NMR, and Clinical Laboratory Analyses, Libraries, and Web-Based Resources. Anal. Chem.85, 11725–11731 (2013). PubMed

Wolrab, D., Chocholoušková, M., Jirásko, R., Peterka, O. & Holčapek, M. Validation of lipidomic analysis of human plasma and serum by supercritical fluid chromatography–mass spectrometry and hydrophilic interaction liquid chromatography–mass spectrometry. Anal. Bioanal. Chem.412, 2375–2388 (2020). PubMed

Wolrab, D. et al. Determination of one year stability of lipid plasma profile and comparison of blood collection tubes using UHPSFC/MS and HILIC-UHPLC/MS. Analytica Chim. Acta1137, 74–84 (2020). PubMed

Currie, L. A. Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995). Pure Appl. Chem.67, 1699–1723 (1995).

Magnusson, B. & Örnemark, U. The Fitness for Purpose of Analytical Methods - A Laboratory Guide to Method Validation and Related Topics (Eurachem, 2014).

Clarke, E., Sherrill-Mix, S. & Dawson, C. Ggbeeswarm: Categorical Scatter (Violin Point) Plots. https://CRAN.R-project.org/package=ggbeeswarm (2023).

van den Brand, T. Ggh4x: Hacks for ‘Ggplot2’. https://CRAN.R-project.org/package=ggh4x (2023).

Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw.4, 1686 (2019).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...