Concordant inter-laboratory derived concentrations of ceramides in human plasma reference materials via authentic standards
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
PG/2019/34923
British Heart Foundation - United Kingdom
PubMed
39362843
PubMed Central
PMC11449902
DOI
10.1038/s41467-024-52087-x
PII: 10.1038/s41467-024-52087-x
Knihovny.cz E-zdroje
- MeSH
- ceramidy * krev MeSH
- hmotnostní spektrometrie metody MeSH
- kalibrace MeSH
- laboratoře * normy MeSH
- lidé MeSH
- lipidomika metody MeSH
- referenční standardy * MeSH
- reprodukovatelnost výsledků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ceramidy * MeSH
In this community effort, we compare measurements between 34 laboratories from 19 countries, utilizing mixtures of labelled authentic synthetic standards, to quantify by mass spectrometry four clinically used ceramide species in the NIST (National Institute of Standards and Technology) human blood plasma Standard Reference Material (SRM) 1950, as well as a set of candidate plasma reference materials (RM 8231). Participants either utilized a provided validated method and/or their method of choice. Mean concentration values, and intra- and inter-laboratory coefficients of variation (CV) were calculated using single-point and multi-point calibrations, respectively. These results are the most precise (intra-laboratory CVs ≤ 4.2%) and concordant (inter-laboratory CVs < 14%) community-derived absolute concentration values reported to date for four clinically used ceramides in the commonly analyzed SRM 1950. We demonstrate that calibration using authentic labelled standards dramatically reduces data variability. Furthermore, we show how the use of shared RM can correct systematic quantitative biases and help in harmonizing lipidomics. Collectively, the results from the present study provide a significant knowledge base for translation of lipidomic technologies to future clinical applications that might require the determination of reference intervals (RIs) in various human populations or might need to estimate reference change values (RCV), when analytical variability is a key factor for recall during multiple testing of individuals.
Avanti Polar Lipids Alabaster AL USA
Babraham Institute Babraham Research Campus Cambridge MA CB22 3AT USA
Baker Heart and Diabetes Institute Melbourne VIC 3004 Australia
Center for Biotechnology and Biomedicine University of Leipzig 04013 Leipzig Germany
Chemical Science Division National Institute of Standards and Technology Charleston SC 29412 USA
Chemical Science Division National Institute of Standards and Technology Gaithersburg MD 20899 USA
College of Health and Life Sciences Hamad Bin Khalifa University Doha Qatar
Core Facility Mass Spectrometry Medical University of Graz 8010 Graz Austria
Department of Analytical Chemistry University of Vienna Vienna Austria
Department of Chemistry University of Turku Turku Finland
Department of Chemistry Yonsei University Seoul 03722 South Korea
Department of Pathology and Laboratory Medicine University of British Columbia Vancouver BC Canada
Department of Respiratory Medicine and Allergy Karolinska University Hospital Stockholm Sweden
Faculty of Pharmaceutical Sciences University of Iceland Reykjavik Iceland
Graduate School of Medical Life Science Yokohama City University Yokohama Japan
Heidelberg University Biochemistry Center Im Neuenheimer Feld 328 69120 Heidelberg Germany
Institute for Bio and Geosciences Forschungszentrum Jülich GmbH 52428 Jülich Germany
Institute for Stem Cell Science and Regenerative Medicine 560065 Bangalore India
Institute of Clinical Chemistry University Zurich 8952 Schlieren Switzerland
Lee Kong Chian School of Medicine Nanyang Technological University Singapore 636921 Singapore
LipidALL Technologies Changzhou 213000 Jiangshu China
Lipidomics Consulting Ltd Espoo Finland
MetaboHUBMetaToul Facility I2MC U1297 Inserm Toulouse France
Metabolomics Core Facility MetCore Universidad de los Andes Bogotá 111711 Colombia
Metabolomics Platform Faculty of Biology and Medicine University of Lausanne Lausanne Switzerland
RIKEN Center for Integrative Medical Sciences Yokohama Japan
RIKEN Center for Sustainable Resource Science Yokohama Japan
School of Medical Sciences Faculty of Medicine and Health Örebro University 702 81 Örebro Sweden
St Paul's Hospital Department of Pathology and Laboratory Medicine Vancouver BC Canada
Turku Bioscience Centre University of Turku and Åbo Akademi University 20520 Turku Finland
Zobrazit více v PubMed
Züllig, T., Trötzmüller, M. & Köfeler, H. C. Lipidomics from sample preparation to data analysis: a primer. Anal. Bioanal. Chem.412, 2191–2209 (2020). PubMed PMC
Köfeler, H. C. et al. Quality control requirements for the correct annotation of lipidomics data. Nat. Commun.12, 1–4 (2021). PubMed PMC
Köfeler, H. C. et al. Recommendations for good practice in MS-based lipidomics. J. Lipid Res.62, 100138 (2021). PubMed PMC
Liebisch, G. et al. Lipidomics needs more standardization. Nat. Metab.1, 745–747 (2019). PubMed
Meikle, T. G., Huynh, K., Giles, C. & Meikle, P. J. Clinical lipidomics: realizing the potential of lipid profiling. J. Lipid Res.62, 100127 (2021). PubMed PMC
Defining, Establishing and Verifying Reference Intervals in the Clinical Laboratory: Approved Guideline (Clinical and Laboratory Standards Institute, Wayne, Pa, 2010).
Harris, E. K. & Yasaka, T. On the calculation of a ‘reference change’ for comparing two consecutive measurements. Clin. Chem.29, 25–30 (1983). PubMed
Burla, B. et al. MS-based lipidomics of human blood plasma: A community-initiated position paper to develop accepted guidelines. J. Lipid Res.10.1194/jlr.S087163 (2018). PubMed PMC
Bikman, B. T. A role for sphingolipids in the pathophysiology of obesity-induced inflammation. Cell. Mol. Life Sci.69, 2135–2146 (2012). PubMed PMC
Boon, J. et al. Ceramides Contained in LDL Are Elevated in Type 2 Diabetes and Promote Inflammation and Skeletal Muscle Insulin Resistance. Diabetes62, 401–410 (2013). PubMed PMC
Haus, J. M. et al. Plasma Ceramides Are Elevated in Obese Subjects With Type 2 Diabetes and Correlate With the Severity of Insulin Resistance. Diabetes58, 337–343 (2009). PubMed PMC
Havulinna, A. S. et al. Circulating Ceramides Predict Cardiovascular Outcomes in the Population-Based FINRISK 2002 Cohort. Arteriosclerosis Thrombosis Vasc. Biol.36, 2424–2430 (2016). PubMed
Nicholson, R. J., Holland, W. L. & Summers, S. A. Ceramides and Acute Kidney Injury. Seminars Nephrol.42, 151281 (2022). PubMed PMC
Schumacher, F. et al. Ceramide levels in blood plasma correlate with major depressive disorder severity and its neutralization abrogates depressive behavior in mice. J. Biological Chem.298, 102185 (2022). PubMed PMC
Laaksonen, R. et al. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur. Heart J.37, 1967–1976 (2016). PubMed PMC
Poss, A. M. et al. Machine learning reveals serum sphingolipids as cholesterol-independent biomarkers of coronary artery disease. J. Clin. Invest130, 1363–1376 (2020). PubMed PMC
Alexandropoulou, I. et al. Ceramides in Autoimmune Rheumatic Diseases: Existing Evidence and Therapeutic Considerations for Diet as an Anticeramide Treatment. Nutrients15, 229 (2023). PubMed PMC
Carrard, J. et al. How Ceramides Orchestrate Cardiometabolic Health—An Ode to Physically Active Living. Metabolites11, 675 (2021). PubMed PMC
Skácel, J., Slusher, B. S. & Tsukamoto, T. Small Molecule Inhibitors Targeting Biosynthesis of Ceramide, the Central Hub of the Sphingolipid Network. J. Med. Chem.64, 279–297 (2021). PubMed PMC
Park, T.-S., Rosebury, W., Kindt, E. K., Kowala, M. C. & Panek, R. L. Serine palmitoyltransferase inhibitor myriocin induces the regression of atherosclerotic plaques in hyperlipidemic ApoE-deficient mice. Pharmacol. Res.58, 45–51 (2008). PubMed
Blaho, V. A. Druggable sphingolipid pathways: Experimental models and clinical opportunities. In Druggable lipid signaling pathways (ed. Kihara, Y.) 101–135 (Springer International Publishing, Cham, 2020). 10.1007/978-3-030-50621-6_6. PubMed
McGurk, K. A. et al. Heritability and family-based GWAS analyses of the N-acyl ethanolamine and ceramide plasma lipidome. Hum. Mol. Genet.30, 500–513 (2021). PubMed PMC
Aristizabal-Henao, J. J., Jones, C. M., Lippa, K. A. & Bowden, J. A. Nontargeted lipidomics of novel human plasma reference materials: hypertriglyceridemic, diabetic, and African-American. Anal. Bioanal. Chem.412, 7373–7380 (2020). PubMed
Bowden, J. A. et al. Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950–Metabolites in Frozen Human Plasma[S]. J. Lipid Res.58, 2275–2288 (2017). PubMed PMC
Lange, M. & Fedorova, M. Evaluation of lipid quantification accuracy using HILIC and RPLC MS on the example of NIST® SRM® 1950 metabolites in human plasma. Anal. Bioanal. Chem.412, 3573–3584 (2020). PubMed PMC
Misra, B. B. & Olivier, M. High Resolution GC-Orbitrap-MS Metabolomics Using Both Electron Ionization and Chemical Ionization for Analysis of Human Plasma. J. Proteome Res.19, 2717–2731 (2020). PubMed PMC
Quehenberger, O. et al. Lipidomics reveals a remarkable diversity of lipids in human plasma 1 [S]. J. Lipid Res.51, 3299–3305 (2010). PubMed PMC
Siskos, A. P. et al. Interlaboratory Reproducibility of a Targeted Metabolomics Platform for Analysis of Human Serum and Plasma. Anal. Chem.89, 656–665 (2017). PubMed PMC
Thompson, J. W. et al. International Ring Trial of a High Resolution Targeted Metabolomics and Lipidomics Platform for Serum and Plasma Analysis. Anal. Chem.91, 14407–14416 (2019). PubMed PMC
Triebl, A. et al. Shared reference materials harmonize lipidomics across MS-based detection platforms and laboratories. J. Lipid Res.61, 105–115 (2020). PubMed PMC
Chocholoušková, M. et al. Intra-laboratory comparison of four analytical platforms for lipidomic quantitation using hydrophilic interaction liquid chromatography or supercritical fluid chromatography coupled to quadrupole - time-of-flight mass spectrometry. Talanta231, 122367 (2021). PubMed
Lippa, K. A. et al. Reference materials for MS-based untargeted metabolomics and lipidomics: a review by the metabolomics quality assurance and quality control consortium (mQACC). Metabolomics18, 24 (2022). PubMed PMC
Ghorasaini, M. et al. Cross-Laboratory Standardization of Preclinical Lipidomics Using Differential Mobility Spectrometry and Multiple Reaction Monitoring. Anal. Chem.93, 16369–16378 (2021). PubMed PMC
Hammad, S. M. et al. Race disparity in blood sphingolipidomics associated with lupus cardiovascular comorbidity. PLOS ONE14, e0224496 (2019). PubMed PMC
Kauhanen, D. et al. Development and validation of a high-throughput LC–MS/MS assay for routine measurement of molecular ceramides. Anal. Bioanal. Chem.408, 3475–3483 (2016). PubMed
Liebisch, G. et al. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J. Lipid Res.61, 1539–1555 (2020). PubMed PMC
Tukey, J. W. Exploratory Data Analysis (Addison-Wesley Publishing Company, 1977).
Cadby, G. et al. Heritability of 596 lipid species and genetic correlation with cardiovascular traits in the Busselton Family Heart Study [S]. J. Lipid Res.61, 537–545 (2020). PubMed PMC
Tabassum, R. et al. Genetic architecture of human plasma lipidome and its link to cardiovascular disease. Nat. Commun.10, 4329 (2019). PubMed PMC
Beyene, H. B. et al. High-coverage plasma lipidomics reveals novel sex-specific lipidomic fingerprints of age and BMI: Evidence from two large population cohort studies. PLoS Biol.18, e3000870 (2020). PubMed PMC
Vesper, H. W., Myers, G. L. & Miller, W. G. Current practices and challenges in the standardization and harmonization of clinical laboratory tests1223. Am. J. Clin. Nutr.104, 907S–912S (2016). PubMed PMC
Myers, G. L. & Miller, W. G. The International Consortium for Harmonization of Clinical Laboratory Results (ICHCLR) - A Pathway for Harmonization. EJIFCC27, 30–36 (2016). PubMed PMC
Diepeveen, L. E. et al. Provisional standardization of hepcidin assays: creating a traceability chain with a primary reference material, candidate reference method and a commutable secondary reference material. Clin. Chem. Lab. Med.57, 864–872 (2019). PubMed
Pickens, C. A. et al. Harmonizing Newborn Screening Laboratory Proficiency Test Results Using the CDC NSQAP Reference Materials. Int. J. Neonatal Screen.6, 75 (2020). PubMed PMC
Harmonization.net. The International Consortium for Harmonization of Clinical Laboratory Results,https://www.harmonization.net/. PubMed PMC
Schoeny, H. et al. A combined flow injection/reversed-phase chromatography–high-resolution mass spectrometry workflow for accurate absolute lipid quantification with 13 C internal standards. Analyst146, 2591–2599 (2021). PubMed
Lehmann, W. D. A timeline of stable isotopes and mass spectrometry in the life sciences. Mass Spectrom. Rev.36, 58–85 (2017). PubMed
Höring, M., Ejsing, C. S., Hermansson, M. & Liebisch, G. Quantification of Cholesterol and Cholesteryl Ester by Direct Flow Injection High-Resolution Fourier Transform Mass Spectrometry Utilizing Species-Specific Response Factors. Anal. Chem.91, 3459–3466 (2019). PubMed
Hickman, P. E. et al. Choice of Statistical Tools for Outlier Removal Causes Substantial Changes in Analyte Reference Intervals in Healthy Populations. Clin. Chem.66, 1558–1561 (2020). PubMed
Berg, T. & Strand, D. H. 13C labelled internal standards—A solution to minimize ion suppression effects in liquid chromatography–tandem mass spectrometry analyses of drugs in biological samples? J. Chromatogr. A1218, 9366–9374 (2011). PubMed
Vesper, H. W., Miller, W. G. & Myers, G. L. Reference materials and commutability. Clin. Biochem. Rev.28, 139–147 (2007). PubMed PMC
Ramos, P. et al. The Biological Variability of Plasma Ceramides in Healthy Subjects. J. Appl. Lab. Med.7, 863–870 (2022). PubMed
Phinney, K. W. et al. Development of a Standard Reference Material for Metabolomics Research. Anal. Chem.85, 11732–11738 (2013). PubMed PMC
Simón-Manso, Y. et al. Metabolite Profiling of a NIST Standard Reference Material for Human Plasma (SRM 1950): GC-MS, LC-MS, NMR, and Clinical Laboratory Analyses, Libraries, and Web-Based Resources. Anal. Chem.85, 11725–11731 (2013). PubMed
Wolrab, D., Chocholoušková, M., Jirásko, R., Peterka, O. & Holčapek, M. Validation of lipidomic analysis of human plasma and serum by supercritical fluid chromatography–mass spectrometry and hydrophilic interaction liquid chromatography–mass spectrometry. Anal. Bioanal. Chem.412, 2375–2388 (2020). PubMed
Wolrab, D. et al. Determination of one year stability of lipid plasma profile and comparison of blood collection tubes using UHPSFC/MS and HILIC-UHPLC/MS. Analytica Chim. Acta1137, 74–84 (2020). PubMed
Currie, L. A. Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995). Pure Appl. Chem.67, 1699–1723 (1995).
Magnusson, B. & Örnemark, U. The Fitness for Purpose of Analytical Methods - A Laboratory Guide to Method Validation and Related Topics (Eurachem, 2014).
Clarke, E., Sherrill-Mix, S. & Dawson, C. Ggbeeswarm: Categorical Scatter (Violin Point) Plots. https://CRAN.R-project.org/package=ggbeeswarm (2023).
van den Brand, T. Ggh4x: Hacks for ‘Ggplot2’. https://CRAN.R-project.org/package=ggh4x (2023).
Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw.4, 1686 (2019).