Acclimation of a low iron adapted Ostreococcus strain to iron limitation through cell biomass lowering
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28336917
PubMed Central
PMC5428002
DOI
10.1038/s41598-017-00216-6
PII: 10.1038/s41598-017-00216-6
Knihovny.cz E-zdroje
- MeSH
- aklimatizace * MeSH
- biomasa MeSH
- Chlorophyta účinky léků růst a vývoj fyziologie MeSH
- stanovení celkové genové exprese MeSH
- stopové prvky metabolismus MeSH
- železo metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- stopové prvky MeSH
- železo MeSH
Iron is an essential micronutrient involved in many biological processes and is often limiting for primary production in large regions of the World Ocean. Metagenomic and physiological studies have identified clades or ecotypes of marine phytoplankton that are specialized in iron depleted ecological niches. Although less studied, eukaryotic picophytoplankton does contribute significantly to primary production and carbon transfer to higher trophic levels. In particular, metagenomic studies of the green picoalga Ostreococcus have revealed the occurrence of two main clades distributed along coast-offshore gradients, suggesting niche partitioning in different nutrient regimes. Here, we present a study of the response to iron limitation of four Ostreococcus strains isolated from contrasted environments. Whereas the strains isolated in nutrient-rich waters showed high iron requirements, the oceanic strains could cope with lower iron concentrations. The RCC802 strain, in particular, was able to maintain high growth rate at low iron levels. Together physiological and transcriptomic data indicate that the competitiveness of RCC802 under iron limitation is related to a lowering of iron needs though a reduction of the photosynthetic machinery and of protein content, rather than to cell size reduction. Our results overall suggest that iron is one of the factors driving the differentiation of physiologically specialized Ostreococcus strains in the ocean.
Zobrazit více v PubMed
Saito MA, Sigman DM, Morel FMM. The bioinorganic chemistry of the ancient ocean: The co-evolution of cyanobacterial metal requirements and biogeochemical cycles at the Archean-Proterozoic boundary? Inorganica Chim. Acta. 2003;356:308–318. doi: 10.1016/S0020-1693(03)00442-0. DOI
Morrissey J, Bowler C. Iron Utilization in Marine Cyanobacteria and Eukaryotic Algae. Front. Microbiol. 2012;3:43. doi: 10.3389/fmicb.2012.00043. PubMed DOI PMC
Sunda WG, Huntsman SA. Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature. 1997;2051:1193–1197.
Lis H, Shaked Y, Kranzler C, Keren N, Morel FMM. Iron bioavailability to phytoplankton: an empirical approach. Isme J. 2015;9:1003–1013. doi: 10.1038/ismej.2014.199. PubMed DOI PMC
Strzepek RF, Harrison PJ. Photosynthetic architecture differs in coastal and oceanic diatoms. Nature. 2004;431:689–692. doi: 10.1038/nature02954. PubMed DOI
Peers G, Price NM. Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature. 2006;441:341–4. doi: 10.1038/nature04630. PubMed DOI
Lommer M, et al. Recent transfer of an iron-regulated gene from the plastid to the nuclear genome in an oceanic diatom adapted to chronic iron limitation. BMC Genomics. 2010;11:718. doi: 10.1186/1471-2164-11-718. PubMed DOI PMC
Marchetti A, et al. Ferritin is used for iron storage in bloom-forming marine pennate diatoms. Nature. 2009;457:467–470. doi: 10.1038/nature07539. PubMed DOI
Scanlan DJ. Physiological diversity and niche adaptation in marine Synechococcus. Adv. Microb. Physiol. 2003;47:1–64. doi: 10.1016/S0065-2911(03)47001-X. PubMed DOI
Martiny AC, Huang Y, Li W. Occurrence of phosphate acquisition genes in Prochlorococcus cells from different ocean regions. Environ. Microbiol. 2009;11:1340–1347. doi: 10.1111/j.1462-2920.2009.01860.x. PubMed DOI
Venter JC, Rusch DB, Martiny AC, Dupont CL, Halpern AL. Characterization of Prochlorococcus clades from iron-depleted oceanic regions. Proc. Natl. Acad. Sci. 2010;107:16184–16189. doi: 10.1073/pnas.1009513107. PubMed DOI PMC
Huang S, et al. Novel lineages of Prochlorococcus and Synechococcus in the global oceans. ISME J. 2012;6:285–97. doi: 10.1038/ismej.2011.106. PubMed DOI PMC
Biller SJ, Berube PM, Lindell D, Chisholm SW. Prochlorococcus: the structure and function of collective diversity. Nat Rev Micro. 2015;13:13–27. doi: 10.1038/nrmicro3378. PubMed DOI
Dufresne A, et al. Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proc. Natl. Acad. Sci. USA. 2003;100:10020–10025. doi: 10.1073/pnas.1733211100. PubMed DOI PMC
Palenik B, et al. The genome of a motile marine Synechococcus. Nature. 2003;424:1037–1042. doi: 10.1038/nature01943. PubMed DOI
Mackey KRM, et al. Divergent responses of Atlantic coastal and oceanic Synechococcus to iron limitation. Proc. Natl. Acad. Sci. 2015;112:9944–9949. doi: 10.1073/pnas.1509448112. PubMed DOI PMC
Botebol H, et al. Central role for ferritin in the day/night regulation of iron homeostasis in marine phytoplankton. Proc. Natl. Acad. Sci. 2015;112:14652–14657. doi: 10.1073/pnas.1506074112. PubMed DOI PMC
Lelandais G, et al. Ostreococcus tauri is a new model green alga for studying iron metabolism in eukaryotic phytoplankton. BMC Genomics. 2016;17:1–23. doi: 10.1186/s12864-016-2666-6. PubMed DOI PMC
Vaquer A, Troussellier M, Courties C, Bibent B. Standing stock and dynamics of picophytoplankton in the Thau Lagoon (northwest Mediterranean coast) Limnol. Oceanogr. 1996;41:1821–1828. doi: 10.4319/lo.1996.41.8.1821. DOI
Bec B, Husseini-Ratrema, Collos Y, Souchu P, Vaquer A. Phytoplankton seasonal dynamics in a Mediterranean coastal lagoon: emphasis on the picoeukaryote community. J. Plankton Res. 2005;27:881–894. doi: 10.1093/plankt/fbi061. DOI
O’Kelly CJ, Sieracki ME, Thier EC, Hobson IC. A transient bloom of Ostreococcus (Chlorophyta, Prasinophyceae) in West Neck Bay, Long Island, New York. J. Phycol. 2003;39:850–854. doi: 10.1046/j.1529-8817.2003.02201.x. DOI
Collado-Fabbri S, Vaulot D, Ulloa O. Structure and seasonal dynamics of the eukaryotic picophytoplankton community in a wind-driven coastal upwelling ecosystem. Limnol. Oceanogr. 2011;56:2334–2346. doi: 10.4319/lo.2011.56.6.2334. DOI
Six C, Finkel Z, Rodríguez F, Marie D. Contrasting photoacclimation costs in ecotypes of the marine eukaryotic picoplankter Ostreococcus. Limnol. Oceanogr. 2008;53:255–265. doi: 10.4319/lo.2008.53.1.0255. DOI
Rodríguez F, et al. Ecotype diversity in the marine picoeukaryote Ostreococcus (Chlorophyta, Prasinophyceae) Environ. Microbiol. 2005;7:853–9. doi: 10.1111/j.1462-2920.2005.00758.x. PubMed DOI
Subirana L, et al. Morphology, genome plasticity, and phylogeny in the genus ostreococcus reveal a cryptic species, O. mediterraneus sp. nov. (Mamiellales, Mamiellophyceae) Protist. 2013;164:643–59. doi: 10.1016/j.protis.2013.06.002. PubMed DOI
Six C, Sherrard R, Lionard M, Roy S, Campbell DA. Photosystem II and pigment dynamics among ecotypes of the green alga Ostreococcus. Plant Physiol. 2009;151:379–390. doi: 10.1104/pp.109.140566. PubMed DOI PMC
Demir-Hilton E, et al. Global distribution patterns of distinct clades of the photosynthetic picoeukaryote Ostreococcus. ISME J. 2011;5:1095–107. doi: 10.1038/ismej.2010.209. PubMed DOI PMC
Price NM, et al. Preparation and Chemistry of the Artificial Algal Culture Medium Aquil. Biol. Oceanogr. 1989;6:443–461.
Sutak R, et al. A comparative study of iron uptake mechanisms in marine microalgae: iron binding at the cell surface is a critical step. Plant Physiol. 2012;160:2271–2284. doi: 10.1104/pp.112.204156. PubMed DOI PMC
Botebol H, et al. Different iron sources to study the physiology and biochemistry of iron metabolism in marine micro-algae. Biometals. 2014;27:75–88. doi: 10.1007/s10534-013-9688-1. PubMed DOI PMC
Smith P, Krohn R, Hermanson G. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985;150:76–85. doi: 10.1016/0003-2697(85)90442-7. PubMed DOI
Moulager M, et al. Light-dependent regulation of cell division in Ostreococcus: evidence for a major transcriptional input. Plant Physiol. 2007;144:1360–1369. doi: 10.1104/pp.107.096149. PubMed DOI PMC
Grabherr MG, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011;29:644–52. doi: 10.1038/nbt.1883. PubMed DOI PMC
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25. doi: 10.1186/gb-2009-10-3-r25. PubMed DOI PMC
Quinlan AR, Hall IM. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842. doi: 10.1093/bioinformatics/btq033. PubMed DOI PMC
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106. doi: 10.1186/gb-2010-11-10-r106. PubMed DOI PMC
Camacho, C. et al. BLAST command line applications user manual. BLAST® Help. Bethesda, MD Natl. Cent. Biotechnol. Inf. (2008).
Courties C, Vaquer A, Troussellier M. Smallest eukaryotic organism. Nature. 1994;370:255. doi: 10.1038/370255a0. DOI
Claustre H, et al. Is desert dust making oligotrophic waters greener? Geophys. Res. Lett. 2002;29(107):1–4.
Partensky F, Blanchot J, Lantoine F, Neveux J, Marie D. Vertical structure of picophytoplankton at different trophic sites of the tropical northeastern Atlantic Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 1996;43:1191–1213. doi: 10.1016/0967-0637(96)00056-8. DOI
Guieu C, et al. Impact of high Saharan dust inputs on dissolved iron concentrations in the Mediterranean Sea. Geophys. Res. Lett. 2002;29:2–5. doi: 10.1029/2001GL014454. DOI
Mills MM, Ridame C, Davey M, La Roche J, Geider RJ. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature. 2004;429:292–294. doi: 10.1038/nature02550. PubMed DOI
Monnier A, et al. Orchestrated transcription of biological processes in the marine picoeukaryote Ostreococcus exposed to light/dark cycles. BMC Genomics. 2010;11:192. doi: 10.1186/1471-2164-11-192. PubMed DOI PMC
Lommer M, et al. Genome and low-iron response of an oceanic diatom adapted to chronic iron limitation. Genome Biol. 2012;13:R66. doi: 10.1186/gb-2012-13-7-r66. PubMed DOI PMC
Nunn BL, et al. Diatom proteomics reveals unique acclimation strategies to mitigate fe limitation. PLoS One. 2013;8:e75653. doi: 10.1371/journal.pone.0075653. PubMed DOI PMC
Gan L, Ladinsky MS, Jensen GJ. Organization of the smallest eukaryotic spindle. Curr. Biol. 2011;21:1578–1583. doi: 10.1016/j.cub.2011.08.021. PubMed DOI PMC
Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI. Photoinhibition of photosystem II under environmental stress. Biochim. Biophys. Acta (BBA)-Bioenergetics. 2007;1767:414–421. doi: 10.1016/j.bbabio.2006.11.019. PubMed DOI
Ling H-Q, Bauer P, Bereczky Z, Keller B, Ganal M. The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots. Proc. Natl. Acad. Sci. USA. 2002;99:13938–13943. doi: 10.1073/pnas.212448699. PubMed DOI PMC
Guillou L, et al. Diversity of picoplanktonic prasinophytes assessed by direct nuclear SSU rDNA sequencing of environmental samples and novel isolates retrieved from oceanic and coastal marine ecosystems. Protist. 2004;155:193–214. doi: 10.1078/143446104774199592. PubMed DOI
Sunda WG, Huntsman SA. Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar. Chem. 1995;50:189–206. doi: 10.1016/0304-4203(95)00035-P. DOI
Iron Uptake Mechanisms in Marine Phytoplankton