A comparative study of iron uptake mechanisms in marine microalgae: iron binding at the cell surface is a critical step

. 2012 Dec ; 160 (4) : 2271-84. [epub] 20121002

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23033141

We investigated iron uptake mechanisms in five marine microalgae from different ecologically important phyla: the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana, the prasinophyceae Ostreococcus tauri and Micromonas pusilla, and the coccolithophore Emiliania huxleyi. Among these species, only the two diatoms were clearly able to reduce iron, via an inducible (P. tricornutum) or constitutive (T. pseudonana) ferrireductase system displaying characteristics similar to the yeast (Saccharomyces cerevisiae) flavohemoproteins proteins. Iron uptake mechanisms probably involve very different components according to the species, but the species we studied shared common features. Regardless of the presence and/or induction of a ferrireductase system, all the species were able to take up both ferric and ferrous iron, and iron reduction was not a prerequisite for uptake. Iron uptake decreased with increasing the affinity constants of iron-ligand complexes and with increasing ligand-iron ratios. Therefore, at least one step of the iron uptake mechanism involves a thermodynamically controlled process. Another step escapes to simple thermodynamic rules and involves specific and strong binding of ferric as well as ferrous iron at the cell surface before uptake of iron. Binding was paradoxically increased in iron-rich conditions, whereas uptake per se was induced in all species only after prolonged iron deprivation. We sought cell proteins loaded with iron following iron uptake. One such protein in O. tauri may be ferritin, and in P. tricornutum, Isip1 may be involved. We conclude that the species we studied have uptake systems for both ferric and ferrous iron, both involving specific iron binding at the cell surface.

Zobrazit více v PubMed

Allen AE, Laroche J, Maheswari U, Lommer M, Schauer N, Lopez PJ, Finazzi G, Fernie AR, Bowler C. (2008) Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proc Natl Acad Sci USA 105: 10438–10443 PubMed PMC

Allen MD, del Campo JA, Kropat J, Merchant SS. (2007) FEA1, FEA2, and FRE1, encoding two homologous secreted proteins and a candidate ferrireductase, are expressed coordinately with FOX1 and FTR1 in iron-deficient Chlamydomonas reinhardtii. Eukaryot Cell 6: 1841–1852 PubMed PMC

Anderson MA, Morel FMM. (1982) The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thalassiosira weissflogii. Limnol Oceanogr 27: 789–813

Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, et al. (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306: 79–86 PubMed

Blaiseau P-L, Seguin A, Camadro JM, Lesuisse E. (2010) Iron uptake in yeasts. In P Cornelis, SC Andrews, eds, Iron Uptake and Homeostasis in Microorganisms. Caister Academic Press, Brussels, pp 265–284

Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, et al. (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456: 239–244 PubMed

Boye M, van den Berg CMG. (2000) Iron availability and the release of iron-complexing ligands by Emiliania huxleyi. Mar Chem 70: 277–287

Butler A. (1998) Acquisition and utilization of transition metal ions by marine organisms. Science 281: 207–210 PubMed

Butler A. (2005) Marine siderophores and microbial iron mobilization. Biometals 18: 369–374 PubMed

Cepicka I, Elias M, Hampl V. (2010) Řád z Chaosu. Vesmír 89: 464–469

Doussière J, Vignais PV. (1992) Diphenylene iodonium as an inhibitor of the NADPH oxidase complex of bovine neutrophils: factors controlling the inhibitory potency of diphenylene iodonium in a cell-free system of oxidase activation. Eur J Biochem 208: 61–71 PubMed

Finazzi G, Moreau H, Bowler C. (2010) Genomic insights into photosynthesis in eukaryotic phytoplankton. Trends Plant Sci 15: 565–572 PubMed

Hopkinson BM, Morel FM. (2009) The role of siderophores in iron acquisition by photosynthetic marine microorganisms. Biometals 22: 659–669 PubMed

Hudson RJM, Morel FMM. (1990) Iron transport in marine phytoplankton: kinetics of cellular and medium coordination reactions. Limnol Oceanogr 35: 1002–1020

Kosman DJ. (2003) Molecular mechanisms of iron uptake in fungi. Mol Microbiol 47: 1185–1197 PubMed

Kustka AB, Allen AE, Morel FMM. (2007) Sequence analysis and transcriptional regulation of iron acquisition genes in two marine diatoms. J Phycol 43: 715–729

Kwok EY, Severance S, Kosman DJ. (2006) Evidence for iron channeling in the Fet3p-Ftr1p high-affinity iron uptake complex in the yeast plasma membrane. Biochemistry 45: 6317–6327 PubMed

Lesuisse E, Blaiseau PL, Dancis A, Camadro JM. (2001) Siderophore uptake and use by the yeast Saccharomyces cerevisiae. Microbiology 147: 289–298 PubMed

Lesuisse E, Casteras-Simon M, Labbe P. (1996) Evidence for the Saccharomyces cerevisiae ferrireductase system being a multicomponent electron transport chain. J Biol Chem 271: 13578–13583 PubMed

Lesuisse E, Labbe P. (1989) Reductive and non-reductive mechanisms of iron assimilation by the yeast Saccharomyces cerevisiae. J Gen Microbiol 135: 257–263 PubMed

Lesuisse E, Raguzzi F, Crichton RR. (1987) Iron uptake by the yeast Saccharomyces cerevisiae: involvement of a reduction step. J Gen Microbiol 133: 3229–3236 PubMed

Maldonado MT, Allen AE, Chong JS, Lin K, Leus D, Karpenko N, Harris SL. (2006) Copper-dependent iron transport in coastal and oceanic diatoms. Limnol Oceanogr 51: 1729–1743

Marchetti A, Parker MS, Moccia LP, Lin EO, Arrieta AL, Ribalet F, Murphy ME, Maldonado MT, Armbrust EV. (2009) Ferritin is used for iron storage in bloom-forming marine pennate diatoms. Nature 457: 467–470 PubMed

Marchetti A, Schruth DM, Durkin CA, Parker MS, Kodner RB, Berthiaume CT, Morales R, Allen AE, Armbrust EV. (2012) Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability. Proc Natl Acad Sci USA 109: E317–E325 PubMed PMC

Mawji E, Gledhill M, Milton JA, Tarran GA, Ussher S, Thompson A, Wolff GA, Worsfold PJ, Achterberg EP. (2008) Hydroxamate siderophores: occurrence and importance in the Atlantic Ocean. Environ Sci Technol 42: 8675–8680 PubMed

Merchant SS, Allen MD, Kropat J, Moseley JL, Long JC, Tottey S, Terauchi AM. (2006) Between a rock and a hard place: trace element nutrition in Chlamydomonas. Biochim Biophys Acta 1763: 578–594 PubMed

Mock T, Samanta MP, Iverson V, Berthiaume C, Robison M, Holtermann K, Durkin C, Bondurant SS, Richmond K, Rodesch M, et al. (2008) Whole-genome expression profiling of the marine diatom Thalassiosira pseudonana identifies genes involved in silicon bioprocesses. Proc Natl Acad Sci USA 105: 1579–1584 PubMed PMC

Monnier A, Liverani S, Bouvet R, Jesson B, Smith JQ, Mosser J, Corellou F, Bouget FY. (2010) Orchestrated transcription of biological processes in the marine picoeukaryote Ostreococcus exposed to light/dark cycles. BMC Genomics 11: 192. PubMed PMC

Morel FMM, Kustka AB, Shaked Y. (2008) The role of unchelated Fe in the iron nutrition of phytoplankton. Limnol Oceanogr 53: 400–404

Morrissey J, Bowler C. (2012) Iron utilization in marine cyanobacteria and eukaryotic algae. Front Microbiol 3: 43. PubMed PMC

Naito K, Imai I, Nakahara H. (2008) Complexation of iron by microbial siderophores and effects of iron chelates on the growth of marine microalgae causing red tides. Phycol Res 56: 58–67

Not F, Latasa M, Marie D, Cariou T, Vaulot D, Simon N. (2004) A single species, Micromonas pusilla (Prasinophyceae), dominates the eukaryotic picoplankton in the Western English Channel. Appl Environ Microbiol 70: 4064–4072 PubMed PMC

Paz Y, Katz A, Pick U. (2007) A multicopper ferroxidase involved in iron binding to transferrins in Dunaliella salina plasma membranes. J Biol Chem 282: 8658–8666 PubMed

Philpott CC. (2006) Iron uptake in fungi: a system for every source. Biochim Biophys Acta 1763: 636–645 PubMed

Philpott CC, Protchenko O. (2008) Response to iron deprivation in Saccharomyces cerevisiae. Eukaryot Cell 7: 20–27 PubMed PMC

Rue EL, Bruland KW. (1995) Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method. Mar Chem 50: 117–138

Seguin A, Sutak R, Bulteau AL, Garcia-Serres R, Oddou JL, Lefevre S, Santos R, Dancis A, Camadro JM, Latour JM, et al. 2010) Evidence that yeast frataxin is not an iron storage protein in vivo. Biochim Biophys Acta 1802: 531–538 PubMed

Shaff JE, Schultz BA, Craft EJ, Clark RT, Kochian LV. (2010) GEOCHEM-EZ: a chemical speciation program with greater power and flexibility. Plant Soil 330: 207–214

Shaked Y, Kustka AB, Morel FMM. (2005) A general kinetic model for iron acquisition by eukaryotic phytoplankton. Limnol Oceanogr 50: 872–882

Shaked Y, Lis H. (2012) Disassembling iron availability to phytoplankton. Front Microbiol 3: 123. PubMed PMC

Silva AMN, Le Kong X, Parkin MC, Cammack R, Hider RC. (2009) Iron(III) citrate speciation in aqueous solution. Dalton Trans 40: 8616–8625 PubMed

Soria-Dengg S, Horstmann U. (1995) Ferrioxamines B and E as iron sources for the marine diatom Phaeodactylum tricornutum. Mar Ecol Prog Ser 127: 269–277

Sunda W, Huntsman S. (2003) Effect of pH, light, and temperature on Fe-EDTA chelation and Fe hydrolysis in seawater. Mar Chem 84: 35–47

Sunda WG. (2001) Bioavailability and bioaccumulation of iron in the sea. In DR Turner, KA Hunter, eds, The Biogeochemistry of Iron in Seawater. John Wiley & Sons, Chichester, UK, pp 41–84

Sutak R, Slapeta J, San Roman M, Camadro JM, Lesuisse E. (2010) Nonreductive iron uptake mechanism in the marine alveolate Chromera velia. Plant Physiol 154: 991–1000 PubMed PMC

Turner DR, Hunter KA, de Baar HJW. (2001) Introduction. In DR Turner, KA Hunter, eds, The Biogeochemistry of Iron in Seawater. John Wiley & Sons, Chichester, UK, pp 1–7

Völker C, Wolf-Gladrow DA. (1999) Physical limits on iron uptake mediated by siderophores or surface reductases. Mar Chem 65: 227–244

Vukosav P, Mlakar M. (2010) Iron(III)-organic complexes dissolved in seawater: characterization of iron(III)-succinate and iron(III)-malate complexes in aqueous solution. Rapp Comm Int Mer Médit 39: 321

Wu J, Boyle E, Sunda W, Wen LS. (2001) Soluble and colloidal iron in the oligotrophic North Atlantic and North Pacific. Science 293: 847–849 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...