Central role for ferritin in the day/night regulation of iron homeostasis in marine phytoplankton
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26553998
PubMed Central
PMC4664360
DOI
10.1073/pnas.1506074112
PII: 1506074112
Knihovny.cz E-zdroje
- Klíčová slova
- Ostreococcus, circadian, ferritin, iron, phytoplankton,
- MeSH
- chemická precipitace MeSH
- cirkadiánní rytmus * účinky léků genetika účinky záření MeSH
- ferritiny genetika metabolismus MeSH
- fytoplankton účinky léků genetika růst a vývoj metabolismus MeSH
- hmotnostní spektrometrie MeSH
- homeostáza * účinky léků genetika účinky záření MeSH
- kinetika MeSH
- mikrobiální viabilita účinky léků účinky záření MeSH
- mořská voda mikrobiologie MeSH
- proteiny vázající železo metabolismus MeSH
- regulace genové exprese účinky léků účinky záření MeSH
- světlo MeSH
- transkriptom genetika MeSH
- western blotting MeSH
- železo metabolismus farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ferritiny MeSH
- proteiny vázající železo MeSH
- železo MeSH
In large regions of the open ocean, iron is a limiting resource for phytoplankton. The reduction of iron quota and the recycling of internal iron pools are among the diverse strategies that phytoplankton have evolved to allow them to grow under chronically low ambient iron levels. Phytoplankton species also have evolved strategies to cope with sporadic iron supply such as long-term storage of iron in ferritin. In the picophytoplanktonic species Ostreococcus we report evidence from observations both in the field and in laboratory cultures that ferritin and the main iron-binding proteins involved in photosynthesis and nitrate assimilation pathways show opposite diurnal expression patterns, with ferritin being maximally expressed during the night. Biochemical and physiological experiments using a ferritin knock-out line subsequently revealed that this protein plays a central role in the diel regulation of iron uptake and recycling and that this regulation of iron homeostasis is essential for cell survival under iron limitation.
Department of Parasitology Faculty of Science Charles University 12844 Prague Czech Republic;
Institut de Biologie de l'Ecole Normale Supérieure CNRS UMR8197 Inserm U1024 75005 Paris France
Unité Mixte de Service UMS2348 F 66651 Banyuls sur Mer France;
Université Paris Diderot Paris 7 CNRS Institut Jacques Monod F 75013 Paris France;
Zobrazit více v PubMed
Lukianova OA, David SS. A role for iron-sulfur clusters in DNA repair. Curr Opin Chem Biol. 2005;9(2):145–151. PubMed
Müh F, Glöckner C, Hellmich J, Zouni A. Light-induced quinone reduction in photosystem II. Biochim Biophys Acta. 2012;1817(1):44–65. PubMed
McHugh JP, et al. Global iron-dependent gene regulation in Escherichia coli. A new mechanism for iron homeostasis. J Biol Chem. 2003;278(32):29478–29486. PubMed
Rueter JG, Ades DR. The role of iron nutrition in photosynthesis and nitrogen assimilation in Scenedesmus quadricauda (Chlorophyceae) J Phycol. 1987;23(3):452–457.
Tortell PD, Maldonado MT, Granger J, Price NM. Marine bacteria and biogeochemical cycling of iron in the oceans. FEMS Microbiol Ecol. 1999;29(1):1–11.
Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7(9):405–410. PubMed
Halliwell B, Gutteridge JM. Biologically relevant metal ion-dependent hydroxyl radical generation. An update. FEBS Lett. 1992;307(1):108–112. PubMed
Blain S, et al. Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature. 2007;446(7139):1070–1074. PubMed
Ellwood MJ, et al. Iron stable isotopes track pelagic iron cycling during a subtropical phytoplankton bloom. Proc Natl Acad Sci USA. 2015;112(1):E15–E20. PubMed PMC
Sunda WG, Huntsman SA. Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature. 1997;2051(1977):1193–1197.
Lis H, Shaked Y, Kranzler C, Keren N, Morel FMM. Iron bioavailability to phytoplankton: An empirical approach. ISME J. 2015;9(4):1003–1013. PubMed PMC
Lommer M, et al. Genome and low-iron response of an oceanic diatom adapted to chronic iron limitation. Genome Biol. 2012;13(7):R66. PubMed PMC
Nunn BL, et al. Diatom proteomics reveals unique acclimation strategies to mitigate Fe limitation. PLoS One. 2013;8(10):e75653. PubMed PMC
Strzepek RF, Harrison PJ. Photosynthetic architecture differs in coastal and oceanic diatoms. Nature. 2004;431(7009):689–692. PubMed
Peers G, Price NM. Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature. 2006;441(7091):341–344. PubMed
Castruita M. 2006. Iron storage proteins in the marine environment. PhD dissertation (Princeton University, Princeton)
Marchetti A, et al. Ferritin is used for iron storage in bloom-forming marine pennate diatoms. Nature. 2009;457(7228):467–470. PubMed
Duc C, Cellier F, Lobréaux S, Briat J-F, Gaymard F. Regulation of iron homeostasis in Arabidopsis thaliana by the clock regulator time for coffee. J Biol Chem. 2009;284(52):36271–36281. PubMed PMC
Saito MA, et al. Iron conservation by reduction of metalloenzyme inventories in the marine diazotroph Crocosphaera watsonii. Proc Natl Acad Sci USA. 2011;108(6):2184–2189. PubMed PMC
Vaquer A, Troussellier M, Courties C, Bibent B. Standing stock and dynamics of picophytoplankton in the Thau Lagoon (northwest Mediterranean coast) Limnol Oceanogr. 1996;41(8):1821–1828.
Bec B, Husseini-Ratrema J, Collos Y, Souchu P, Vaquer A. Phytoplankton seasonal dynamics in a Mediterranean coastal lagoon: Emphasis on the picoeukaryote community. J Plankton Res. 2005;27(9):881–894.
O’Kelly CJ, Sieracki ME, Thier EC, Hobson IC. A transient bloom of Ostreococcus (Chlorophyta, Prasinophyceae) in West Neck Bay, Long Island, New York. J Phycol. 2003;39(June):850–854.
Collado-Fabbri S, Vaulot D, Ulloa O. Structure and seasonal dynamics of the eukaryotic picophytoplankton community in a wind-driven coastal upwelling ecosystem. Limnol Oceanogr. 2011;56(6):2334–2346.
Demir-Hilton E, et al. Global distribution patterns of distinct clades of the photosynthetic picoeukaryote Ostreococcus. ISME J. 2011;5(7):1095–1107. PubMed PMC
Ottesen EA, et al. Pattern and synchrony of gene expression among sympatric marine microbial populations. Proc Natl Acad Sci USA. 2013;110(6):E488–E497. PubMed PMC
Monnier A, et al. Orchestrated transcription of biological processes in the marine picoeukaryote Ostreococcus exposed to light/dark cycles. BMC Genomics. 2010;11:192. PubMed PMC
Moulager M, et al. Light-dependent regulation of cell division in Ostreococcus: Evidence for a major transcriptional input. Plant Physiol. 2007;144(3):1360–1369. PubMed PMC
Bouget F-Y, et al. Transcriptional versus non-transcriptional clocks: A case study in Ostreococcus. Mar Genomics. 2014;14:17–22. PubMed
Corellou F, et al. Clocks in the green lineage: Comparative functional analysis of the circadian architecture of the picoeukaryote ostreococcus. Plant Cell. 2009;21(11):3436–3449. PubMed PMC
Lozano JC, et al. Efficient gene targeting and removal of foreign DNA by homologous recombination in the picoeukaryote Ostreococcus. Plant J. 2014;78(6):1073–1083. PubMed
Wittig I, Braun H-P, Schägger H. Blue native PAGE. Nat Protoc. 2006;1(1):418–428. PubMed
Morrissey J, et al. A novel protein, ubiquitous in marine phytoplankton, concentrates iron at the cell surface and facilitates uptake. Curr Biol. 2015;25(3):364–371. PubMed
Botebol H, et al. Different iron sources to study the physiology and biochemistry of iron metabolism in marine micro-algae. Biometals. 2014;27(1):75–88. PubMed PMC
Sutak R, et al. A comparative study of iron uptake mechanisms in marine microalgae: Iron binding at the cell surface is a critical step. Plant Physiol. 2012;160(4):2271–2284. PubMed PMC
Aguirre JD, et al. A manganese-rich environment supports superoxide dismutase activity in a Lyme disease pathogen, Borrelia burgdorferi. J Biol Chem. 2013;288(12):8468–8478. PubMed PMC
Roschzttardtz H, et al. New insights into Fe localization in plant tissues. Front Plant Sci. 2013;4(Sep):350. PubMed PMC
Gledhill M, Buck KN. The organic complexation of iron in the marine environment: A review. Front Microbiol. 2012;3(February):69. PubMed PMC
Hassler CS, Schoemann V, Nichols CM, Butler ECV, Boyd PW. Saccharides enhance iron bioavailability to Southern Ocean phytoplankton. Proc Natl Acad Sci USA. 2011;108(3):1076–1081. PubMed PMC
Long JC, Sommer F, Allen MD, Lu S-F, Merchant SS. FER1 and FER2 encoding two ferritin complexes in Chlamydomonas reinhardtii chloroplasts are regulated by iron. Genetics. 2008;179(1):137–147. PubMed PMC
Ravet K, et al. Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis. Plant J. 2009;57(3):400–412. PubMed
Sunda WG, Price NM, Morel FMM. Algal Culturing Techniques. Elsevier; Amsterdam: 2005. Trace metal ion buffers and their use in culture studies; pp. 35–63.
Fourquez M, et al. Effects of iron limitation on growth and carbon metabolism in oceanic and coastal heterotrophic bacteria. Limnol Oceanogr. 2014;59(2):349–360.
Silva AMN, Kong X, Parkin MC, Cammack R, Hider RC. Iron(III) citrate speciation in aqueous solution. Dalton Trans. 2009;(40):8616–8625. PubMed
Tang D, Morel FMM. Distinguishing between cellular and Fe-oxide-associated trace elements in phytoplankton. Mar Chem. 2006;98(1):18–30.
Abràmoff MD, Magalhães PJ, Ram SJ. Image processing with ImageJ. Biophotonics Int. 2004;11(7):36–42.
Granger J, Price NM. The importance of siderophores in iron nutrition of heterotrophic marine bacteria. Limnol Oceanogr. 1999;44(3):541–555.
Iron Uptake Mechanisms in Marine Phytoplankton