Iron Uptake Mechanisms in Marine Phytoplankton
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
33250865
PubMed Central
PMC7676907
DOI
10.3389/fmicb.2020.566691
Knihovny.cz E-zdroje
- Klíčová slova
- iron, iron uptake, micro-algae, ocean, phytoplankton,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Oceanic phytoplankton species have highly efficient mechanisms of iron acquisition, as they can take up iron from environments in which it is present at subnanomolar concentrations. In eukaryotes, three main models were proposed for iron transport into the cells by first studying the kinetics of iron uptake in different algal species and then, more recently, by using modern biological techniques on the model diatom Phaeodactylum tricornutum. In the first model, the rate of uptake is dependent on the concentration of unchelated Fe species, and is thus limited thermodynamically. Iron is transported by endocytosis after carbonate-dependent binding of Fe(III)' (inorganic soluble ferric species) to phytotransferrin at the cell surface. In this strategy the cells are able to take up iron from very low iron concentration. In an alternative model, kinetically limited for iron acquisition, the extracellular reduction of all iron species (including Fe') is a prerequisite for iron acquisition. This strategy allows the cells to take up iron from a great variety of ferric species. In a third model, hydroxamate siderophores can be transported by endocytosis (dependent on ISIP1) after binding to the FBP1 protein, and iron is released from the siderophores by FRE2-dependent reduction. In prokaryotes, one mechanism of iron uptake is based on the use of siderophores excreted by the cells. Iron-loaded siderophores are transported across the cell outer membrane via a TonB-dependent transporter (TBDT), and are then transported into the cells by an ABC transporter. Open ocean cyanobacteria do not excrete siderophores but can probably use siderophores produced by other organisms. In an alternative model, inorganic ferric species are transported through the outer membrane by TBDT or by porins, and are taken up by the ABC transporter system FutABC. Alternatively, ferric iron of the periplasmic space can be reduced by the alternative respiratory terminal oxidase (ARTO) and the ferrous ions can be transported by divalent metal transporters (FeoB or ZIP). After reoxidation, iron can be taken up by the high-affinity permease Ftr1.
CNRS Institut Jacques Monod Université de Paris Paris France
Department of Parasitology Faculty of Science Charles University BIOCEV Vestec Czechia
Zobrazit více v PubMed
Ahlgren N. A., Belisle B. S., Lee M. D. (2020). Genomic mosaicism underlies the adaptation of marine Synechococcus ecotypes to distinct oceanic iron niches. Environ. Microbiol. 22 1801–1815. 10.1111/1462-2920.14893 PubMed DOI
Allen A. E., Laroche J., Maheswari U., Lommer M., Schauer N., Lopez P. J., et al. (2008). Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proc. Natl. Acad. Sci. U.S.A. 105 10438–10443. 10.1073/pnas.0711370105 PubMed DOI PMC
Allen M. D., Del Campo J. A., Kropat J., Merchant S. S. (2007). FEA1, FEA2, and FRE1, encoding two homologous secreted proteins and a candidate ferrireductase, are expressed coordinately with FOX1 and FTR1 in iron-deficient Chlamydomonas reinhardtii. Eukaryot. Cell 6 1841–1852. 10.1128/EC.00205-07 PubMed DOI PMC
Amin S. A., Green D. H., Hart M. C., Kupper F. C., Sunda W. G., Carrano C. J. (2009). Photolysis of iron-siderophore chelates promotes bacterial-algal mutualism. Proc. Natl. Acad. Sci. U.S.A. 106 17071–17076. 10.1073/pnas.0905512106 PubMed DOI PMC
Anderson M. A., Morel F. M. M. (1982). The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thalassiosira weissflogii. Limnol. Oceanogr. 27 789–813. 10.4319/lo.1982.27.5.0789 DOI
Anderson R. F. (2020). GEOTRACES: accelerating research on the marine biogeochemical cycles of trace elements and their isotopes. Annu. Rev. Mar. Sci. 12 49s–85s. 10.1146/annurev-marine-010318-095123 PubMed DOI
Armbrust E. V., Berges J. A., Bowler C., Green B. R., Martinez D., Putnam N. H., et al. (2004). The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306 79–86. 10.1126/science.1101156 PubMed DOI
Arstol E., Hohmann-Marriott M. F. (2019). Cyanobacterial siderophores-physiology, structure, biosynthesis, and applications. Mar. Drugs 17:281. 10.3390/md17050281 PubMed DOI PMC
Babykin M. M., Obando T. S. A., Zinchenko V. V. (2018). TonB-dependent utilization of dihydroxamate xenosiderophores in Synechocystis sp. PCC 6803. Curr. Microbiol. 75 117–123. 10.1007/s00284-017-1355-2 PubMed DOI
Barbeau K., Rue E. L., Bruland K. W., Butler A. (2001). Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands. Nature 413 409–413. 10.1038/35096545 PubMed DOI
Basu S., Gledhill M., De Beer D., Prabhu Matondkar S. G., Shaked Y. (2019). Colonies of marine cyanobacteria Trichodesmium interact with associated bacteria to acquire iron from dust. Commun. Biol. 2:284. 10.1038/s42003-019-0534-z PubMed DOI PMC
Bates S. S., Hubbard K. A., Lundholm N., Montresor M., Leaw C. P. (2018). Pseudo-nitzschia, Nitzschia, and domoic acid: new research since 2011. Harmful Algae 79 3–43. 10.1016/j.hal.2018.06.001 PubMed DOI
Boiteau R. M., Mende D. R., Hawco N. J., Mcilvin M. R., Fitzsimmons J. N., Saito M. A., et al. (2016). Siderophore-based microbial adaptations to iron scarcity across the eastern Pacific Ocean. Proc. Natl. Acad. Sci. U.S.A. 113 14237–14242. 10.1073/pnas.1608594113 PubMed DOI PMC
Botebol H., Lelandais G., Six C., Lesuisse E., Meng A., Bittner L., et al. (2017). Acclimation of a low iron adapted Ostreococcus strain to iron limitation through cell biomass lowering. Sci. Rep. 7:327. 10.1038/s41598-017-00216-6 PubMed DOI PMC
Botebol H., Lesuisse E., Sutak R., Six C., Lozano J. C., Schatt P., et al. (2015). Central role for ferritin in the day/night regulation of iron homeostasis in marine phytoplankton. Proc. Natl. Acad. Sci. U.S.A. 112 14652–14657. 10.1073/pnas.1506074112 PubMed DOI PMC
Botebol H., Sutak R., Scheiber I. F., Blaiseau P. L., Bouget F. Y., Camadro J. M., et al. (2014). Different iron sources to study the physiology and biochemistry of iron metabolism in marine micro-algae. Biometals 27 75–88. 10.1007/s10534-013-9688-1 PubMed DOI PMC
Boyd P., Ellwood M. J. (2010). The biogeochemical cycle of iron in the ocean. Nat. Geosci. 3 675–682. 10.1038/ngeo964 DOI
Boyd P. W., Jickells T., Law C. S., Blain S., Boyle E. A., Buesseler K. O., et al. (2007). Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315 612–617. 10.1126/science.1131669 PubMed DOI
Buren S., Jimenez-Vicente E., Echavarri-Erasun C., Rubio L. M. (2020). Biosynthesis of nitrogenase cofactors. Chem. Rev. 120 4921–4968. 10.1021/acs.chemrev.9b00489 PubMed DOI PMC
Butler A. (1998). Acquisition and utilization of transition metals ions by marine organisms. Science 281 207–209. 10.1126/science.281.5374.207 PubMed DOI
Butler A. (2005). Marine siderophores and microbial iron mobilization. Biometals 18 369–374. 10.1007/s10534-005-3711-0 PubMed DOI
Caputi L., Carradec Q., Eveillard D., Kirilovsky A., Pelletier E., Pierella Karlusich J. J., et al. (2019). Community-level responses to iron availability in open ocean plankton ecosystems. Glob. Biogeochem. Cycles 33 391–419. 10.1029/2018GB006022 DOI
Chen J., Guo Y., Lu Y., Wang B., Sun J., Zhang H., et al. (2019). Chemistry and biology of siderophores from marine microbes. Mar. Drugs 17:562. 10.3390/md17100562 PubMed DOI PMC
Cheng D., He Q. (2014). PfsR is a key regulator of iron homeostasis in Synechocystis PCC 6803. PLoS One 9:e101743. 10.1371/journal.pone.0101743 PubMed DOI PMC
Clarke S. E., Stuart J., Sanders-Loehr J. (1987). Induction of siderophore activity in Anabaena spp. and its moderation of copper toxicity. Appl. Environ. Microbiol. 53 917–922. 10.1128/AEM.53.5.917-922.1987 PubMed DOI PMC
Coale T. H., Moosburner M., Horak A., Obornik M., Barbeau K. A., Allen A. E. (2019). Reduction-dependent siderophore assimilation in a model pennate diatom. Proc. Natl. Acad. Sci. U.S.A. 116 23609–23617. 10.1073/pnas.1907234116 PubMed DOI PMC
de Vargas C., Audic S., Henry N., Decelle J., Mahe F., Logares R., et al. (2015). Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean. Science 348:1261605. 10.1126/science.1261605 PubMed DOI
Ehrenreich I. M., Waterbury J. B., Webb E. A. (2005). Distribution and diversity of natural product genes in marine and freshwater cyanobacterial cultures and genomes. Appl. Environ. Microbiol. 71 7401–7413. 10.1128/AEM.71.11.7401-7413.2005 PubMed DOI PMC
Eichner M., Basu S., Gledhill M., De Beer D., Shaked Y. (2019). Hydrogen dynamics in Trichodesmium colonies and their potential role in mineral iron acquisition. Front. Microbiol. 10:1565. 10.3389/fmicb.2019.01565 PubMed DOI PMC
Falkowski P. G. (2006). Evolution. Tracing oxygen’s imprint on earth’s metabolic evolution. Science 311 1724–1725. 10.1126/science.1125937 PubMed DOI
Fang H. M., Wang Y. (2002). Characterization of iron-binding motifs in Candida albicans high-affinity iron permease CaFtr1p by site-directed mutagenesis. Biochem. J. 368(Pt 2), 641–647. 10.1042/bj20021005 PubMed DOI PMC
Gledhill M., Buck K. N. (2012). The organic complexation of iron in the marine environment: a review. Front. Microbiol. 3:69. 10.3389/fmicb.2012.00069 PubMed DOI PMC
Hider R. C., Kong X. (2010). Chemistry and biology of siderophores. Nat. Prod. Rep. 27 637–657. 10.1039/b906679a PubMed DOI
Hogle S. L., Brahamsha B., Barbeau K. A. (2017). Direct heme uptake by phytoplankton-associated Roseobacter bacteria. mSystems 2:e00124-16. 10.1128/mSystems.00124-16 PubMed DOI PMC
Hogle S. L., Dupont C. L., Hopkinson B. M., King A. L., Buck K. N., Roe K. L., et al. (2018). Pervasive iron limitation at subsurface chlorophyll maxima of the California current. Proc. Natl. Acad. Sci. U.S.A. 115 13300–13305. 10.1073/pnas.1813192115 PubMed DOI PMC
Hopkinson B. M., Barbeau K. A. (2012). Iron transporters in marine prokaryotic genomes and metagenomes. Environ. Microbiol. 14 114–128. 10.1111/j.1462-2920.2011.02539.x PubMed DOI
Hopkinson B. M., Morel F. M. (2009). The role of siderophores in iron acquisition by photosynthetic marine microorganisms. Biometals 22 659–669. 10.1007/s10534-009-9235-2 PubMed DOI
Hopkinson B. M., Roe K. L., Barbeau K. A. (2008). Heme uptake by Microscilla marina and evidence for heme uptake systems in the genomes of diverse marine bacteria. Appl. Environ. Microbiol. 74 6263–6270. 10.1128/AEM.00964-08 PubMed DOI PMC
Hudson R. J. M., Morel F. M. (1993). Trace metal transport by marine microorganisms: implications of metal coordination kinetics. Deep Sea Res. I Oceanogr. Res. Pap. 40 129–150. 10.1016/0967-0637(93)90057-A DOI
Hudson R. J. M., Morel F. M. M. (1990). Iron transport in marine phytoplankton: kinetics of cellular and medium coordination reactions. Limnol. Oceanogr. 35 1002–1020. 10.4319/lo.1990.35.5.1002 DOI
Ito Y., Butler A. (2005). Structure of synechobactins, new siderophores of the marine cyanobacterium Synechococcus sp. PCC 7002. Limnol. Oceanogr. 50 1918–1923. 10.4319/lo.2005.50.6.1918 DOI
Jiang H. B., Lou W. J., Ke W. T., Song W. Y., Price N. M., Qiu B. S. (2015). New insights into iron acquisition by cyanobacteria: an essential role for ExbB-ExbD complex in inorganic iron uptake. ISME J. 9 297–309. 10.1038/ismej.2014.123 PubMed DOI PMC
Kaplan J., O’Halloran T. V. (1996). Iron metabolism in eukaryotes: mars and Venus at it again. Science 271 1510–1512. 10.1126/science.271.5255.1510 PubMed DOI
Karas B. J., Diner R. E., Lefebvre S. C., Mcquaid J., Phillips A. P., Noddings C. M., et al. (2015). Designer diatom episomes delivered by bacterial conjugation. Nat. Commun. 6:6925. 10.1038/ncomms7925 PubMed DOI PMC
Katoh H., Hagino N., Grossman A. R., Ogawa T. (2001). Genes essential to iron transport in the cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriol. 183 2779–2784. 10.1128/JB.183.9.2779-2784.2001 PubMed DOI PMC
Kazamia E., Sutak R., Paz-Yepes J., Dorrell R. G., Vieira F. R. J., Mach J., et al. (2018). Endocytosis-mediated siderophore uptake as a strategy for Fe acquisition in diatoms. Sci. Adv. 4:eaar4536. 10.1126/sciadv.aar4536 PubMed DOI PMC
Keren N., Aurora R., Pakrasi H. B. (2004). Critical roles of bacterioferritins in iron storage and proliferation of cyanobacteria. Plant Physiol. 135 1666–1673. 10.1104/pp.104.042770 PubMed DOI PMC
Kessler N., Armoza-Zvuloni R., Wang S., Basu S., Weber P. K., Stuart R. K., et al. (2020). Selective collection of iron-rich dust particles by natural Trichodesmium colonies. ISME J. 14 91–103. 10.1038/s41396-019-0505-x PubMed DOI PMC
Kirchman D. (1996). Microbial ferrous wheel. Nature 383 303–304. 10.1038/383303a0 DOI
Kosman D. J. (2003). Molecular mechanisms of iron uptake in fungi. Mol. Microbiol. 47 1185–1197. 10.1046/j.1365-2958.2003.03368.x PubMed DOI
Kranzler C., Kessler N., Keren N., Shaked Y. (2016). Enhanced ferrihydrite dissolution by a unicellular, planktonic cyanobacterium: a biological contribution to particulate iron bioavailability. Environ. Microbiol. 18 5101–5111. 10.1111/1462-2920.13496 PubMed DOI
Kranzler C., Lis H., Finkel O. M., Schmetterer G., Shaked Y., Keren N. (2014). Coordinated transporter activity shapes high-affinity iron acquisition in cyanobacteria. ISME J. 8 409–417. 10.1038/ismej.2013.161 PubMed DOI PMC
Kranzler C., Lis H., Shaked Y., Keren N. (2011). The role of reduction in iron uptake processes in a unicellular, planktonic cyanobacterium. Environ. Microbiol. 13 2990–2999. 10.1111/j.1462-2920.2011.02572.x PubMed DOI
Kranzler C., Rudolf M., Keren N., Schleiff E. (2013). “Iron in cyanobacteria,” in Advances in Botanical Research: Genomics of Cyanobacteria, eds Franck C., Cassier C. C. (Amsterdam: Elsevier Ltd; ), 57–105. 10.1016/B978-0-12-394313-2.00003-2 DOI
Kustka A. B., Allen A. E., Morel F. M. M. (2007). Sequence analysis and transcriptional regulation of iron acquisition genes in two marine diatoms. J. Phycol. 43 715–729. 10.1111/j.1529-8817.2007.00359.x DOI
Kustka A. B., Shaked Y., Milligan A. J. (2005). Extracellular production of superoxide by marine diatoms: contrasting effects on iron redox chemistry and bioavailability. Limnol. Oceanogr. 50 1172–1180. 10.4319/lo.2005.50.4.1172 DOI
Lelandais G., Scheiber I., Paz-Yepes J., Lozano J. C., Botebol H., Pilatova J., et al. (2016). Ostreococcus tauri is a new model green alga for studying iron metabolism in eukaryotic phytoplankton. BMC Genomics 17:319. 10.1186/s12864-016-2666-6 PubMed DOI PMC
Lesuisse E., Casteras-Simon M., Labbe P. (1996). Evidence for the Saccharomyces cerevisiae ferrireductase system being a multicomponent electron transport chain. J. Biol. Chem. 271 13578–13583. 10.1074/jbc.271.23.13578 PubMed DOI
Lesuisse E., Labbe P. (1989). Reductive and non-reductive mechanisms of iron assimilation by the yeast Saccharomyces cerevisiae. J. Gen. Microbiol. 135 257–263. 10.1099/00221287-135-2-257 PubMed DOI
Li X., Roevros N., Dehairs F., Chou L. (2017). Biological responses of the marine diatom Chaetoceros socialis to changing environmental conditions: a laboratory experiment. PLoS One 12:e0188615. 10.1371/journal.pone.0188615 PubMed DOI PMC
Lis H., Kranzler C., Keren N., Shaked Y. (2015a). A comparative study of iron uptake rates and mechanisms amongst marine and fresh water cyanobacteria: prevalence of reductive iron uptake. Life 5 841–860. 10.3390/life5010841 PubMed DOI PMC
Lis H., Shaked Y., Kranzler C., Keren N., Morel F. M. (2015b). Iron bioavailability to phytoplankton: an empirical approach. ISME J. 9 1003–1013. 10.1038/ismej.2014.199 PubMed DOI PMC
Lozano J. C., Schatt P., Botebol H., Verge V., Lesuisse E., Blain S., et al. (2014). Efficient gene targeting and removal of foreign DNA by homologous recombination in the picoeukaryote Ostreococcus. Plant J. 78 1073–1083. 10.1111/tpj.12530 PubMed DOI
Maldonado M. T., Allen A. E., Chong J. S., Lin K., Leus D., Karpenko N., et al. (2006). Copper-dependent iron transport in coastal and oceanic diatoms. Limnol. Oceanogr. 51 1729–1743. 10.4319/lo.2006.51.4.1729 DOI
Maldonado M. T., Price N. M. (2000). Nitrate regulation of Fe reduction and transport by Fe-limited Thalassiosira oceanica. Limnol. Oceanogr. 45 814–826. 10.4319/lo.2000.45.4.0814 DOI
Maldonado M. T., Price N. M. (2001). Reduction and transport of organically bound iron by Thalassiosira oceanica (Bacillariophyceae). J. Phycol. 37 298–309. 10.1046/j.1529-8817.2001.037002298.x DOI
Maldonado M. T., Strzepek R., Sander S., Boyd P. W. (2005). Acquisition of iron bound to strong organic complexes, with different Fe binding groups and photochemical reactivities, by plankton communities in Fe-limited subantarctic waters. Glob. Biogeochem. Cycles 19:GB4S23 10.1029/2005GB002481 DOI
Malmstrom R. R., Rodrigue S., Huang K. H., Kelly L., Kern S. E., Thompson A., et al. (2013). Ecology of uncultured Prochlorococcus clades revealed through single-cell genomics and biogeographic analysis. ISME J. 7 184–198. 10.1038/ismej.2012.89 PubMed DOI PMC
Marchetti A., Schruth D. M., Durkin C. A., Parker M. S., Kodner R. B., Berthiaume C. T., et al. (2012). Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability. Proc. Natl. Acad. Sci. U.S.A. 109 E317–E325. 10.1073/pnas.1118408109 PubMed DOI PMC
Mawji E., Gledhill M., Milton J. A., Tarran G. A., Ussher S., Thompson A., et al. (2008). Hydroxamate siderophores: occurrence and importance in the Atlantic Ocean. Environ. Sci. Technol. 42 8675–8680. 10.1021/es801884r PubMed DOI
McQuaid J. B., Kustka A. B., Obornik M., Horak A., Mccrow J. P., Karas B. J., et al. (2018). Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms. Nature 555 534–537. 10.1038/nature25982 PubMed DOI
Morel F. M. M., Kustka A. B., Shaked Y. (2008). The role of unchelated Fe in the iron nutrition of phytoplankton. Limnol. Oceanogr. 53 400–404. 10.4319/lo.2008.53.1.0400 DOI
Morrissey J., Bowler C. (2012). Iron utilization in marine cyanobacteria and eukaryotic algae. Front. Microbiol. 3:43. 10.3389/fmicb.2012.00043 PubMed DOI PMC
Morrissey J., Sutak R., Paz-Yepes J., Tanaka A., Moustafa A., Veluchamy A., et al. (2015). A novel protein, ubiquitous in marine phytoplankton, concentrates iron at the cell surface and facilitates uptake. Curr. Biol. 25 364–371. 10.1016/j.cub.2014.12.004 PubMed DOI
Narayanan N. N., Ihemere U., Chiu W. T., Siritunga D., Rajamani S., Singh S., et al. (2011). The iron assimilatory protein, FEA1, from Chlamydomonas reinhardtii facilitates iron-specific metal uptake in yeast and plants. Front. Plant Sci. 2:67. 10.3389/fpls.2011.00067 PubMed DOI PMC
Nicolaisen K., Hahn A., Valdebenito M., Moslavac S., Samborski A., Maldener I., et al. (2010). The interplay between siderophore secretion and coupled iron and copper transport in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. Biochim. Biophys. Acta 1798 2131–2140. 10.1016/j.bbamem.2010.07.008 PubMed DOI
Noinaj N., Guillier M., Barnard T. J., Buchanan S. K. (2010). TonB-dependent transporters: regulation, structure, and function. Annu. Rev. Microbiol. 64 43–60. 10.1146/annurev.micro.112408.134247 PubMed DOI PMC
Nymark M., Sharma A. K., Sparstad T., Bones A. M., Winge P. (2016). A CRISPR/Cas9 system adapted for gene editing in marine algae. Sci. Rep. 6:24951. 10.1038/srep24951 PubMed DOI PMC
Obando S. T., Babykin M. M., Zinchenko V. V. (2018). A cluster of five genes essential for the utilization of dihydroxamate xenosiderophores in Synechocystis sp. PCC 6803. Curr. Microbiol. 75 1165–1173. 10.1007/s00284-018-1505-1 PubMed DOI
Palenik B., Grimwood J., Aerts A., Rouze P., Salamov A., Putnam N., et al. (2007). The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc. Natl. Acad. Sci. U.S.A. 104 7705–7710. 10.1073/pnas.0611046104 PubMed DOI PMC
Paz Y., Katz A., Pick U. (2007). A multicopper ferroxidase involved in iron binding to transferrins in Dunaliella salina plasma membranes. J. Biol. Chem. 282 8658–8666. 10.1074/jbc.M609756200 PubMed DOI
Philpott C. C. (2006). Iron uptake in fungi: a system for every source. Biochim. Biophys. Acta 1763 636–645. 10.1016/j.bbamcr.2006.05.008 PubMed DOI
Polyviou D., Baylay A. J., Hitchcock A., Robidart J., Moore C. M., Bibby T. S. (2017). Desert dust as a source of iron to the globally important diazotroph Trichodesmium. Front. Microbiol. 8:2683. 10.3389/fmicb.2017.02683 PubMed DOI PMC
Polyviou D., Machelett M. M., Hitchcock A., Baylay A. J., Macmillan F., Moore C. M., et al. (2018). Structural and functional characterization of IdiA/FutA (Tery_3377), an iron-binding protein from the ocean diazotroph Trichodesmium erythraeum. J. Biol. Chem. 293 18099–18109. 10.1074/jbc.RA118.001929 PubMed DOI PMC
Qiu G. W., Lou W. J., Sun C. Y., Yang N., Li Z. K., Li D. L., et al. (2018). Outer membrane iron uptake pathways in the model cyanobacterium Synechocystis sp. Strain PCC 6803. Appl. Environ. Microbiol. 84:e01512-18. 10.1128/AEM.01512-18 PubMed DOI PMC
Raven J. A. (2013). Iron acquisition and allocation in stramenopile algae. J. Exp. Bot. 64 2119–2127. 10.1093/jxb/ert121 PubMed DOI
Roe K. L., Barbeau K. A. (2014). Uptake mechanisms for inorganic iron and ferric citrate in Trichodesmium erythraeum IMS101. Metallomics 6 2042–2051. 10.1039/C4MT00026A PubMed DOI
Rubin M., Berman-Frank I., Shaked Y. (2011). Dust- and mineral-iron utilization by the marine dinitrogen-fixer Trichodesmium. Nat. Geosci. 4 529–534. 10.1038/ngeo1181 DOI
Rudolf M., Kranzler C., Lis H., Margulis K., Stevanovic M., Keren N., et al. (2015). Multiple modes of iron uptake by the filamentous, siderophore-producing cyanobacterium, Anabaena sp. PCC 7120. Mol. Microbiol. 97 577–588. 10.1111/mmi.13049 PubMed DOI
Rue E., Bruland K. W. (2001). Domoic acid binds iron and copper: a possible role for the toxin produced by the marine diatom Pseudo-nitzschia. Mar. Chem. 76 127–134. 10.1016/S0304-4203(01)00053-6 DOI
Scheiber I. F., Pilatova J., Malych R., Kotabova E., Krijt M., Vyoral D., et al. (2019). Copper and iron metabolism in Ostreococcus tauri – the role of phytotransferrin, plastocyanin and a chloroplast copper-transporting ATPase. Metallomics 11 1657–1666. 10.1039/C9MT00078J PubMed DOI
Shaked Y., Buck K. N., Mellett T., Maldonado M. T. (2020). Insights into the bioavailability of oceanic dissolved Fe from phytoplankton uptake kinetics. ISME J. 14 1182–1193. 10.1038/s41396-020-0597-3 PubMed DOI PMC
Shaked Y., Kustka A. B., Morel F. M. M. (2005). A general kinetic model for iron acquisition by eukaryotic phytoplankton. Limnol. Oceanogr. 50 872–882. 10.4319/lo.2005.50.3.0872 DOI
Shaked Y., Lis H. (2012). Disassembling iron availability to phytoplankton. Front. Microbiol. 3:123. 10.3389/fmicb.2012.00123 PubMed DOI PMC
Shi D., Xu Y., Hopkinson B. M., Morel F. M. (2010). Effect of ocean acidification on iron availability to marine phytoplankton. Science 327 676–679. 10.1126/science.1183517 PubMed DOI
Soria-Dengg S., Horstmann U. (1995). Ferrioxamines B and E as iron sources for the marine diatom Phaeodactylum tricornutum. Mar. Ecol. Prog. Ser. 127 269–277. 10.3354/meps127269 DOI
Staunton J., Weissman K. J. (2001). Polyketide biosynthesis: a millennium review. Nat. Prod. Rep. 18 380–416. 10.1039/a909079g PubMed DOI
Sunda W. G. (2001). “Bioavailability and bioaccumulation of iron in the sea,” in The Biogeochemistry of Iron in Seawater, eds Turner D. R., Hunter K. A. (Chichester: John Wiley & Sons Ltd; ), 41–84.
Sunda W. G., Huntsman S. A. (1995). Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar. Chem. 50 189–206. 10.1016/0304-4203(95)00035-P DOI
Sutak R., Botebol H., Blaiseau P. L., Leger T., Bouget F. Y., Camadro J. M., et al. (2012). A comparative study of iron uptake mechanisms in marine microalgae: iron binding at the cell surface is a critical step. Plant Physiol. 160 2271–2284. 10.1104/pp.112.204156 PubMed DOI PMC
Sutak R., Lesuisse E., Tachezy J., Richardson D. R. (2008). Crusade for iron: iron uptake in unicellular eukaryotes and its significance for virulence. Trends Microbiol. 16 261–268. 10.1016/j.tim.2008.03.005 PubMed DOI
Sutak R., Slapeta J., San Roman M., Camadro J. M., Lesuisse E. (2010). Nonreductive iron uptake mechanism in the marine alveolate Chromera velia. Plant Physiol. 154 991–1000. 10.1104/pp.110.159947 PubMed DOI PMC
Völker C., Wolf-Gladrow D. A. (1999). Physical limits on iron uptake mediated by siderophores or surface reductases. Mar. Chem. 65 227–244. 10.1016/S0304-4203(99)00004-3 DOI
Wells M. L., Trick C. G., Cochlan W. P., Hughes M. P., Trainer V. L. (2005). Domoic acid: the synergy of iron, copper, and the toxicity of diatoms. Limnol. Oceanogr. 50 1908–1917. 10.4319/lo.2005.50.6.1908 DOI
Wilhelm S. W., Trick C. G. (1994). Iron-limited growth of cyanobacteria: multiple siderophore production is a common response. Limnol. Oceanogr. 39 1979–1984. 10.4319/lo.1994.39.8.1979 DOI
Worden A. Z., Nolan J. K., Palenik B. (2004). Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component. Limnol. Oceanogr. 49 168–179. 10.4319/lo.2004.49.1.0168 DOI
Xu N., Qiu G. W., Lou W. J., Li Z. K., Jiang H. B., Price N. M., et al. (2016). Identification of an iron permease, cFTR1, in cyanobacteria involved in the iron reduction/re-oxidation uptake pathway. Environ. Microbiol. 18 5005–5017. 10.1111/1462-2920.13464 PubMed DOI