Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
29539640
DOI
10.1038/nature25982
PII: nature25982
Knihovny.cz E-zdroje
- MeSH
- biologický transport MeSH
- endocytóza MeSH
- fytoplankton klasifikace genetika metabolismus MeSH
- genom genetika MeSH
- koncentrace vodíkových iontů MeSH
- lidé MeSH
- molekulární evoluce MeSH
- mořská voda chemie MeSH
- rozsivky genetika metabolismus MeSH
- transferin metabolismus MeSH
- uhličitany metabolismus MeSH
- vodní organismy klasifikace genetika metabolismus MeSH
- železo metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- transferin MeSH
- uhličitany MeSH
- železo MeSH
In vast areas of the ocean, the scarcity of iron controls the growth and productivity of phytoplankton. Although most dissolved iron in the marine environment is complexed with organic molecules, picomolar amounts of labile inorganic iron species (labile iron) are maintained within the euphotic zone and serve as an important source of iron for eukaryotic phytoplankton and particularly for diatoms. Genome-enabled studies of labile iron utilization by diatoms have previously revealed novel iron-responsive transcripts, including the ferric iron-concentrating protein ISIP2A, but the mechanism behind the acquisition of picomolar labile iron remains unknown. Here we show that ISIP2A is a phytotransferrin that independently and convergently evolved carbonate ion-coordinated ferric iron binding. Deletion of ISIP2A disrupts high-affinity iron uptake in the diatom Phaeodactylum tricornutum, and uptake is restored by complementation with human transferrin. ISIP2A is internalized by endocytosis, and manipulation of the seawater carbonic acid system reveals a second-order dependence on the concentrations of labile iron and carbonate ions. In P. tricornutum, the synergistic interaction of labile iron and carbonate ions occurs at environmentally relevant concentrations, revealing that carbonate availability co-limits iron uptake. Phytotransferrin sequences have a broad taxonomic distribution and are abundant in marine environmental genomic datasets, suggesting that acidification-driven declines in the concentration of seawater carbonate ions will have a negative effect on this globally important eukaryotic iron acquisition mechanism.
Biology Centre CAS Institute of Parasitology Branišovská 31 370 05 České Budějovice Czech Republic
J Craig Venter Institute Microbial and Environmental Genomics La Jolla California 92037 USA
Rutgers University Newark Earth and Environmental Sciences Newark New Jersey 07102 USA
Scripps Institution of Oceanography University of California La Jolla California 92093 USA
University of South Bohemia Faculty of Science Branišovská 31 370 05 České Budějovice Czech Republic
Zobrazit více v PubMed
Plant Cell Physiol. 1998 Feb;39(2):131-8 PubMed
Proc Biol Sci. 2006 Aug 7;273(1596):1867-72 PubMed
Nat Rev Microbiol. 2017 Jan;15(1):6-20 PubMed
Science. 2007 Feb 2;315(5812):612-7 PubMed
Eukaryot Cell. 2007 Oct;6(10):1841-52 PubMed
Mol Biol Evol. 2013 Apr;30(4):772-80 PubMed
Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10438-43 PubMed
J Biol Chem. 1975 Mar 25;250(6):2182-8 PubMed
Nature. 2001 Sep 27;413(6854):409-13 PubMed
Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13624-9 PubMed
J Mol Biol. 2000 Jul 21;300(4):1005-16 PubMed
J Cell Biol. 1983 Aug;97(2):329-39 PubMed
J Mol Biol. 2004 May 21;339(1):217-26 PubMed
J Biol Chem. 1998 Jul 10;273(28):17553-8 PubMed
Nat Methods. 2011 Sep 29;8(10):785-6 PubMed
Plant Biotechnol J. 2015 May;13(4):460-70 PubMed
Mol Biol Evol. 2010 Feb;27(2):221-4 PubMed
Mol Biol Evol. 2012 Aug;29(8):1969-73 PubMed
Genome Biol. 2012 Jul 26;13(7):R66 PubMed
PLoS One. 2012;7(9):e45799 PubMed
Bioinformatics. 2014 May 1;30(9):1312-3 PubMed
Bioinformatics. 2001 Jul;17(7):646-53 PubMed
Comp Biochem Physiol B Biochem Mol Biol. 2005 Oct;142(2):129-41 PubMed
Mar Biotechnol (NY). 1999 May;1(3):239-251 PubMed
Protein Eng. 1997 Jan;10(1):1-6 PubMed
PLoS Genet. 2016 Dec 14;12 (12 ):e1006490 PubMed
Front Microbiol. 2012 Feb 28;3:69 PubMed
Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):E317-25 PubMed
J Mol Cell Cardiol. 1998 Apr;30(4):723-31 PubMed
FEBS J. 2005 Jul;272(13):3413-23 PubMed
Ann Rev Mar Sci. 2009;1:169-92 PubMed
J Biol Chem. 1997 Jan 17;272(3):1565-70 PubMed
Nat Commun. 2015 Apr 21;6:6925 PubMed
Nat Methods. 2009 May;6(5):343-5 PubMed
J Biol Chem. 1978 Mar 25;253(6):1930-7 PubMed
Science. 2010 Feb 5;327(5966):676-9 PubMed
BMC Bioinformatics. 2008 Sep 23;9:392 PubMed
Proc Natl Acad Sci U S A. 2015 Aug 11;112(32):9938-43 PubMed
ISME J. 2015 Mar 17;9(4):1003-13 PubMed
Nat Struct Biol. 1997 Nov;4(11):919-24 PubMed
Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3579-83 PubMed
Bioinformatics. 2009 Sep 1;25(17):2286-8 PubMed
Curr Biol. 2015 Feb 2;25(3):364-71 PubMed
Complex Response of the Chlorarachniophyte Bigelowiella natans to Iron Availability
Iron Uptake Mechanisms in Marine Phytoplankton
Reduction-dependent siderophore assimilation in a model pennate diatom
Endocytosis-mediated siderophore uptake as a strategy for Fe acquisition in diatoms