In vivo localization of iron starvation induced proteins under variable iron supplementation regimes in Phaeodactylum tricornutum
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36582220
PubMed Central
PMC9792268
DOI
10.1002/pld3.472
PII: PLD3472
Knihovny.cz E-zdroje
- Klíčová slova
- P. tricornutum, diatoms, fluorescent proteins, iron, iron starvation induced proteins, proteome, siderophores,
- Publikační typ
- časopisecké články MeSH
UNLABELLED: The model pennate diatom Phaeodactylum tricornutum is able to assimilate a range of iron sources. It therefore provides a platform to study different mechanisms of iron processing concomitantly in the same cell. In this study, we follow the localization of three iron starvation induced proteins (ISIPs) in vivo, driven by their native promoters and tagged by fluorophores in an engineered line of P. tricornutum. We find that the localization patterns of ISIPs are dynamic and variable depending on the overall iron status of the cell and the source of iron it is exposed to. Notwithstanding, a shared destination of the three ISIPs both under ferric iron and siderophore-bound iron supplementation is a globular compartment in the vicinity of the chloroplast. In a proteomic analysis, we identify that the cell engages endocytosis machinery involved in the vesicular trafficking as a response to siderophore molecules, even when these are not bound to iron. Our results suggest that there may be a direct vesicle traffic connection between the diatom cell membrane and the periplastidial compartment (PPC) that co-opts clathrin-mediated endocytosis and the "cytoplasm to vacuole" (Cvt) pathway, for proteins involved in iron assimilation. Proteomics data are available via ProteomeXchange with identifier PXD021172. HIGHLIGHT: The marine diatom P. tricornutum engages a vesicular network to traffic siderophores and phytotransferrin from the cell membrane directly to a putative iron processing site in the vicinity of the chloroplast.
CNRS Institut Jacques Monod Université de Paris Paris France
Department of Parasitology Faculty of Science Charles University Vestec Czech Republic
Microbial and Environmental Genomics J Craig Venter Institute La Jolla California USA
The Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Bremerhaven Germany
Zobrazit více v PubMed
Abbe, E. (1873). Beiträge zur Theorie des Mikroskops und der micrkoskopischen Wahrnehmung. Archiv für Mikroskopische Anatomie, 9, 413–468. 10.1007/BF02956173 DOI
Achcar, F. , Camadro, J. M. , & Mestivier, D. (2009). AutoClass@ IJM: A powerful tool for Bayesian classification of heterogeneous data in biology. Nucleic Acids Research 1;37(suppl_2):W63‐7, 37, W63–W67. 10.1093/nar/gkp430 PubMed DOI PMC
Allen, A. E. , LaRoche, J. , Maheswari, U. , Lommer, M. , Schauer, N. , Lopez, P. J. , Finazzi, G. , Fernie, A. R. , & Bowler, C. (2008). Whole‐cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proceedings of the National Academy of Sciences, 105(30), 10438–10443. 10.1073/pnas.0711370105 PubMed DOI PMC
Anderson, M. A. , & Morel, F. M. (1980). Uptake of Fe (II) by a diatom in oxic culture medium. Marine Biology Letters, 1(5), 263–268.
Behnke, J. , & LaRoche, J. (2020). Starvation‐induced proteins (ISIPs). European Journal of Phycology, 55(3), 339–360. 10.1080/09670262.2020.1744039 DOI
Bendtsen, J. D. , Nielsen, H. , von Heijne, G. , & Brunak, S. (2004). Improved prediction of signal peptides: SignalP 3.0. Journal of Molecular Biology, 340(4), 783–795. 10.1016/j.jmb.2004.05.028 PubMed DOI
Bhattacharya, D. , Yoon, H. S. , & Hackett, J. D. (2004). Photosynthetic eukaryotes unite: Endosymbiosis connects the dots. BioEssays, 26(1), 50–60. 10.1002/bies.10376 PubMed DOI
Borowitzka, M. A. , & Volcani, B. E. (1978). The polymorphic diatom Phaeodactylum tricornutum: Ultrastructure of ITS morphotypes. Journal of Phycology, 14(1), 10–21. 10.1111/j.1529-8817.1978.tb00625.x DOI
Bowler, C. , Allen, A. E. , Badger, J. H. , Grimwood, J. , Jabbari, K. , Kuo, A. , Maheswari, U. , Martens, C. , Maumus, F. , Otillar, R. P. , & Rayko, E. (2008). The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature, 456(7219), 239–244. 10.1038/nature07410 PubMed DOI
Boyd, P. W. , & Ellwood, M. J. (2010). The biogeochemical cycle of iron in the ocean. Nature Geoscience, 3, 675–682. 10.1038/ngeo964 DOI
Burke, D. H. , Hearst, J. E. , & Sidow, A. (1993). Early evolution of photosynthesis: Clues from nitrogenase and chlorophyll iron proteins. Proceedings of the National Academy of Sciences, 90(15), 7134–7138. 10.1073/pnas.90.15.7134 PubMed DOI PMC
Caputi, L. , Carradec, Q. , Eveillard, D. , Kirilovsky, A. , Pelletier, E. , Pierella Karlusich, J. J. , Rocha Jimenez Vieira, F. , Villar, E. , Chaffron, S. , Malviya, S. , el Scalco, E. , Acinas, S. G. , Alberti, A. , Aury, J.‐M. , Benoiston, A.‐S. , Bertrand, A. , Biard, T. , Bittner, L. , Boccara, M. … Iudicone, D. (2019). Community‐level responses to iron availability in open ocean plankton ecosystems. Global Biogeochemical Cycles, 33(3), 391–419. 10.1029/2018GB006022 DOI
Cavalier‐Smith, T. (2003). Genomic reduction and evolution of novel genetic membranes and protein‐targeting machinery in eukaryote‐eukaryote chimaeras (meta‐algae). Philosophical Transactions of the Royal Society of London B Biological Sciences, 358, 109–133. 10.1098/rstb.2002.1194 PubMed DOI PMC
Coale, T. H. , Moosburner, M. , Horák, A. , Oborník, M. , Barbeau, K. A. , & Allen, A. E. (2019). Reduction‐dependent siderophore assimilation in a model pennate diatom. Proceedings of the National Academy of Sciences, 116(47), 23609–23617. 10.1073/pnas.1907234116 PubMed DOI PMC
Eckhardt, U. , & Buckhout, T. J. (1998). Iron assimilation in Chlamydomonas reinhardtii involves ferric reduction and is similar to strategy I higher plants. Journal of Experimental Botany, 49(324), 1219–1226.
Flori, S. , Jouneau, P. H. , Finazzi, G. , Maréchal, E. , & Falconet, D. (2016). Ultrastructure of the periplastidial compartment of the diatom Phaeodactylum tricornutum . Protist, 167(3), 254–267. 10.1016/j.protis.2016.04.001 PubMed DOI
Gledhill, M. , & Buck, K. N. (2012). The organic complexation of iron in the marine environment: A review. Frontiers in Microbiology, 3, 69. PubMed PMC
Granum, E. , Raven, J. A. , & Leegood, R. C. (2005). How do marine diatoms fix 10 billion tonnes of inorganic carbon per year? Canadian Journal of Botany, 83(7), 898–908. 10.1139/b05-077 DOI
Groussman, R. D. , Parker, M. S. , & Armbrust, E. V. (2015). Diversity and evolutionary history of iron metabolism genes in diatoms. PLoS ONE, 10(6), e0129081. PubMed PMC
Gruber, A. , Rocap, G. , Kroth, P. G. , Armbrust, E. V. , & Mock, T. (2015). Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. The Plant Journal, 81(3), 519–528. 10.1111/tpj.12734 PubMed DOI PMC
Gruber, A. , Vugrinec, S. , Hempel, F. , Gould, S. B. , Maier, U. G. , & Kroth, P. G. (2007). Protein targeting into complex diatom plastids: Functional characterisation of a specific targeting motif. Plant Molecular Biology, 64, 519–530. 10.1007/s11103-007-9171-x PubMed DOI
Karas, B. J. , Diner, R. E. , Lefebvre, S. C. , McQuaid, J. , Phillips, A. P. R. , Noddings, C. M. , Brunson, J. K. , Valas, R. E. , Deerinck, T. J. , Jablanovic, J. , & Gillard, J. T. (2015). Designer diatom episomes delivered by bacterial conjugation. Nature Communications, 6(1), 1–10, 6925. 10.1038/ncomms7925 PubMed DOI PMC
Kazamia, E. , Sutak, R. , Paz‐Yepes, J. , Dorrell, R. G. , Vieira, F. R. J. , Mach, J. , Morrissey, J. , Leon, S. , Lam, F. , Pelletier, E. , Camadro, J. M. , Bowler, C. , & Lessuisse, E. (2018). Endocytosis‐mediated siderophore uptake as a strategy for Fe acquisition in diatoms. Science Advances, 4(5), eaar4536. PubMed PMC
Kilian, O. , & Kroth, P. G. (2005). Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids. Plant Journal, 41, 175–183. 10.1111/j.1365-313X.2004.02294.x PubMed DOI
La Roche, J. , Boyd, P. W. , McKay, R. M. L. , & Geider, R. J. (1996). Flavodoxin as an in situ marker for iron stress in phytoplankton. Nature, 382, 802–805. 10.1038/382802a0 DOI
Lis, H. , Shaked, Y. , Kranzler, C. , Keren, N. , & Morel, F. M. (2015). Iron bioavailability to phytoplankton: An empirical approach. The ISME Journal, 9(4), 1003–1013. 10.1038/ismej.2014.199 PubMed DOI PMC
Lommer, M. , Roy, A. S. , Schilhabel, M. , Schreiber, S. , Rosenstiel, P. , & LaRoche, J. (2010). Recent transfer of an iron‐regulated gene from the plastid to the nuclear genome in an oceanic diatom adapted to chronic iron limitation. BMC Genomics, 11(1), 718. 10.1186/1471-2164-11-718 PubMed DOI PMC
Maher, B. A. , Prospero, J. M. , Mackie, D. , Gaiero, D. , Hesse, P. P. , & Balkanski, Y. (2010). Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth‐Science Reviews, 99(1–2), 61–97. 10.1016/j.earscirev.2009.12.001 DOI
Marchetti, A. , Schruth, D. M. , Durkin, C. A. , Parker, M. S. , Kodner, R. B. , Berthiaume, C. T. , Morales, R. , Allen, A. E. , & Armbrust, V. E. (2012). Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability. Proceedings of the National Academy of Sciences, 109(6), E317–E325. PubMed PMC
McQuaid, J. B. , Kustka, A. B. , Oborník, M. , Horák, A. , McCrow, J. P. , Karas, B. J. , Zheng, H. , Kindeberg, T. , Andersson, A. J. , Barbeau, K. A. , & Allen, A. E. (2018). Carbonate‐sensitive phytotransferrin controls high‐affinity iron uptake in diatoms. Nature, 555(7697), 534–5377. 10.1038/nature25982 PubMed DOI
Moog, D. , Stork, S. , Zauner, S. , & Maier, U. G. (2011). In silico and in vivo investigations of proteins of a minimized eukaryotic cyto‐plasm. Genome Biology and Evolution, 3, 375–382. 10.1093/gbe/evr031 PubMed DOI PMC
Morel, F. M. , Rueter, J. G. , Anderson, D. M. , & Guillard, R. R. (1979). Aquil: A chemically defined phytoplankton culture medium for trace metal studies. Journal of Phycology, 15(2), 135–141. 10.1111/j.1529-8817.1979.tb02976.x DOI
Morrissey, J. , & Bowler, C. (2012). Iron utilization in marine cyanobacteria and eukaryotic algae. Frontiers in Microbiology, 3, 43. PubMed PMC
Morrissey, J. , Sutak, R. , Paz‐Yepes, J. , Tanaka, A. , Moustafa, A. , Veluchamy, A. , Thomas, Y. , Botebol, H. , Bouget, F. Y. , McQuaid, J. B. , Tirichine, L. , & Bowler, C. (2015). A novel protein, ubiquitous in marine phytoplankton, concentrates iron at the cell surface and facilitates uptake. Current Biology, 25(3), 364–371. 10.1016/j.cub.2014.12.004 PubMed DOI
Paz, Y. , Katz, A. , & Pick, U. (2007). A multicopper ferroxidase involved in iron binding to transferrins in Dunaliella salina plasma membranes. Journal of Biological Chemistry, 282(12), 8658–8666. 10.1074/jbc.M609756200 PubMed DOI
Peers, G. , & Price, N. M. (2006). Copper‐containing plastocyanin used for electron transport by an oceanic diatom. Nature, 441(7091), 341–344. 10.1038/nature04630 PubMed DOI
Perez‐Riverol, Y. , Csordas, A. , Bai, J. , Bernal‐Llinares, M. , Hewapathirana, S. , Kundu, D. J. , Inuganti, A. , Griss, J. , Mayer, G. , Eisenacher, M. , Pérez, E. , Uszkoreit, J. , Pfeuffer, J. , Sachsenberg, T. , Yilmaz, S. , Tiwary, S. , Cox, J. , Audain, E. , Walzer, M. , … Vizcaíno, J. A. (2019). The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Research, 47(D1), D442–D450. 10.1093/nar/gky1106 PubMed DOI PMC
Rastogi, A. , Maheswari, U. , Dorrell, R. G. , Vieira, F. R. , Maumus, F. , Kustka, A. , McCarthy, J. , Allen, A. E. , Kersey, P. , Bowler, C. , & Tirichine, L. (2018). Integrative analysis of large‐scale transcriptome data draws a comprehensive landscape of Phaeodactylum tricornutum genome and evolutionary origin of diatoms. Scientific Reports, 8(1), 1–4, 4834. 10.1038/s41598-018-23106-x PubMed DOI PMC
Reggiori, F. , Tucker, K. A. , Stromhaug, P. E. , & Klionsky, D. J. (2004). The Atg1‐Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre‐autophagosomal structure. Developmental Cell, 6, 79–90. 10.1016/S1534-5807(03)00402-7 PubMed DOI
Reggiori, F. , Wang, C. W. , Nair, U. , Shintani, T. , Abeliovich, H. , & Klionsky, D. J. (2004). Early stages of the secretory pathway, but not endosomes, are required for Cvt vesicle and autophagosome assembly in Saccharomyces cerevisiae . Molecular Biology of the Cell, 15, 2189–2204. 10.1091/mbc.e03-07-0479 PubMed DOI PMC
Schallenberg, C. , Davidson, A. B. , Simpson, K. G. , Miller, L. A. , & Cullen, J. T. (2015). Iron (II) variability in the northeast subarctic Pacific Ocean. Marine Chemistry, 177, 33–44. 10.1016/j.marchem.2015.04.004 DOI
Shaked, Y. , Kustka, A. B. , Morel, F. M. , & Erel, Y. (2004). Simultaneous determination of iron reduction and uptake by phytoplankton. Limnology and Oceanography: Methods, 2(5), 137–145.
Smith, S. R. , Gillard, J. T. , Kustka, A. B. , McCrow, J. P. , Badger, J. H. , Zheng, H. , New, A. M. , Dupont, C. L. , Obata, T. , Fernie, A. R. , & Allen, A. E. (2016). Transcriptional orchestration of the global cellular response of a model pennate diatom to diel light cycling under iron limitation. PLoS Genetics, 12(12), e1006490. 10.1371/journal.pgen.1006490 PubMed DOI PMC
Sutak, R. , Šlapeta, J. , Roman, M. S. , Camadro, J. M. , & Lesuisse, E. (2010). Nonreductive iron uptake mechanism in the marine alveolate Chromera velia . Plant Physiology, 154(2010), 991–1000. 10.1104/pp.110.159947 PubMed DOI PMC
Turnšek, J. , Brunson, J. K. , Martinez Viedma, M. d. P. , Deerinck, T. J. , Horák, A. , Oborník, M. , Bielinski, V. A. , & Allen, A. E. (2021). Proximity proteomics in a marine diatom reveals a putative cell surface‐to‐chloroplast iron trafficking pathway. eLife, 10, e52770. 10.7554/eLife.52770 PubMed DOI PMC