Complex Response of the Chlorarachniophyte Bigelowiella natans to Iron Availability
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
PubMed
33563784
PubMed Central
PMC7883536
DOI
10.1128/msystems.00738-20
PII: 6/1/e00738-20
Knihovny.cz E-zdroje
- Klíčová slova
- Bigelowiella natans, iron, metagenomics, metatranscriptomics, photosynthesis, phytoplankton, proteomics,
- Publikační typ
- časopisecké články MeSH
The productivity of the ocean is largely dependent on iron availability, and marine phytoplankton have evolved sophisticated mechanisms to cope with chronically low iron levels in vast regions of the open ocean. By analyzing the metabarcoding data generated from the Tara Oceans expedition, we determined how the global distribution of the model marine chlorarachniophyte Bigelowiella natans varies across regions with different iron concentrations. We performed a comprehensive proteomics analysis of the molecular mechanisms underpinning the adaptation of B. natans to iron scarcity and report on the temporal response of cells to iron enrichment. Our results highlight the role of phytotransferrin in iron homeostasis and indicate the involvement of CREG1 protein in the response to iron availability. Analysis of the Tara Oceans metagenomes and metatranscriptomes also points to a similar role for CREG1, which is found to be widely distributed among marine plankton but to show a strong bias in gene and transcript abundance toward iron-deficient regions. Our analyses allowed us to define a new subfamily of the CobW domain-containing COG0523 putative metal chaperones which are involved in iron metabolism and are restricted to only a few phytoplankton lineages in addition to B. natans At the physiological level, we elucidated the mechanisms allowing a fast recovery of PSII photochemistry after resupply of iron. Collectively, our study demonstrates that B. natans is well adapted to dynamically respond to a changing iron environment and suggests that CREG1 and COG0523 are important components of iron homeostasis in B. natans and other phytoplankton.IMPORTANCE Despite low iron availability in the ocean, marine phytoplankton require considerable amounts of iron for their growth and proliferation. While there is a constantly growing knowledge of iron uptake and its role in the cellular processes of the most abundant marine photosynthetic groups, there are still largely overlooked branches of the eukaryotic tree of life, such as the chlorarachniophytes. In the present work, we focused on the model chlorarachniophyte Bigelowiella natans, integrating physiological and proteomic analyses in culture conditions with the mining of omics data generated by the Tara Oceans expedition. We provide unique insight into the complex responses of B. natans to iron availability, including novel links to iron metabolism conserved in other phytoplankton lineages.
Department of Parasitology Faculty of Science Charles University BIOCEV Vestec Czech Republic
Institute of Microbiology Academy of Sciences Centrum Algatech Trebon Czech Republic
Jacques Monod Institute UMR7592 CNRS Paris Diderot University Paris France
Zobrazit více v PubMed
Tagliabue A, Bowie AR, Boyd PW, Buck KN, Johnson KS, Saito MA. 2017. The integral role of iron in ocean biogeochemistry. Nature 543:51–59. doi:10.1038/nature21058. PubMed DOI
Schoffman H, Lis H, Shaked Y, Keren N. 2016. Iron-nutrient interactions within phytoplankton. Front Plant Sci 7:1223. doi:10.3389/fpls.2016.01223. PubMed DOI PMC
Behrenfeld MJ, Milligan AJ. 2013. Photophysiological expressions of iron stress in phytoplankton. Annu Rev Mar Sci 5:217–246. doi:10.1146/annurev-marine-121211-172356. PubMed DOI
Strzepek RF, Harrison PJ. 2004. Photosynthetic architecture differs in coastal and oceanic diatoms. Nature 431:689–692. doi:10.1038/nature02954. PubMed DOI
Allen AE, Laroche J, Maheswari U, Lommer M, Schauer N, Lopez PJ, Finazzi G, Fernie AR, Bowler C. 2008. Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proc Natl Acad Sci U S A 105:10438–10443. doi:10.1073/pnas.0711370105. PubMed DOI PMC
McQuaid JB, Kustka AB, Oborník M, Horák A, McCrow JP, Karas BJ, Zheng H, Kindeberg T, Andersson AJ, Barbeau KA, Allen AE. 2018. Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms. Nature 555:534–537. doi:10.1038/nature25982. PubMed DOI
Morrissey J, Sutak R, Paz-Yepes J, Tanaka A, Moustafa A, Veluchamy A, Thomas Y, Botebol H, Bouget F-Y, McQuaid JB, Tirichine L, Allen AE, Lesuisse E, Bowler C. 2015. A novel protein, ubiquitous in marine phytoplankton, concentrates iron at the cell surface and facilitates uptake. Curr Biol 25:364–371. doi:10.1016/j.cub.2014.12.004. PubMed DOI
Marchetti A, Parker MS, Moccia LP, Lin EO, Arrieta AL, Ribalet F, Murphy MEP, Maldonado MT, Armbrust EV. 2009. Ferritin is used for iron storage in bloom-forming marine pennate diatoms. Nature 457:467–470. doi:10.1038/nature07539. PubMed DOI
Cohen NR, Ellis KA, Lampe RH, McNair H, Twining BS, Maldonado MT, Brzezinski MA, Kuzminov FI, Thamatrakoln K, Till CP, Bruland KW, Sunda WG, Bargu S, Marchetti A. 2017. Diatom transcriptional and physiological responses to changes in iron bioavailability across ocean provinces. Front Mar Sci 4:360. doi:10.3389/fmars.2017.00360. DOI
Quigg A, Finkel ZV, Irwin AJ, Rosenthal Y, Ho T-Y, Reinfelder JR, Schofield O, Morel FMM, Falkowski PG. 2003. The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature 425:291–294. doi:10.1038/nature01953. PubMed DOI
La Roche J, Boyd PW, McKay RML, Geider RJ. 1996. Flavodoxin as an in situ marker for iron stress in phytoplankton. Nature 382:802–805. doi:10.1038/382802a0. DOI
Peers G, Price NM. 2006. Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature 441:341–344. doi:10.1038/nature04630. PubMed DOI
Pierella Karlusich JJ, Lodeyro AF, Carrillo N. 2014. The long goodbye: the rise and fall of flavodoxin during plant evolution. J Exp Bot 65:5161–5178. doi:10.1093/jxb/eru273. PubMed DOI PMC
Hutchins DA, Boyd PW. 2016. Marine phytoplankton and the changing ocean iron cycle. Nat Clim Chang 6:1072–1079. doi:10.1038/nclimate3147. DOI
Yoon J, Yoo K, Macdonald AM, Yoon H, Park K, Yang EJ, Kim H, Lee J, Il, Lee MK, Jung J, Park J, Lee J, Kim S, Kim S, Kim K, Kim I. 2018. Reviews and syntheses: ocean iron fertilization experiments–past, present, and future looking to a future Korean Iron Fertilization Experiment in the Southern Ocean (KIFES) project. Biogeosciences 15:5847–5889. doi:10.5194/bg-15-5847-2018. DOI
Burki F, Keeling PJ. 2014. Rhizaria. Curr Biol 24:103–107. doi:10.1016/j.cub.2013.12.025. PubMed DOI
Ishida K-I, Yabuki A, Ota S. 2007. The chlorarachniophytes: evolution and classification, p 171–182. In Brodie J, Lewis J (ed), Unravelling the algae—the past, present, and future of algal systematics. CRC Press, Boca Raton, FL. doi:10.1201/9780849379901. DOI
Rogers MB, Gilson PR, Su V, McFadden GI, Keeling PJ. 2007. The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. Mol Biol Evol 24:54–62. doi:10.1093/molbev/msl129. PubMed DOI
Curtis BA, Tanifuji G, Maruyama S, Gile GH, Hopkins JF, Eveleigh RJM, Nakayama T, Malik SB, Onodera NT, Slamovits CH, Spencer DF, Lane CE, Gray MW, Archibald JM, Burki F, Hirakawa Y, Reyes-Prieto A, Keeling PJ, Fast NM, Green BR, Grisdale CJ, Gruber A, Kroth PG, Irimia M, Arias MC, Ball SG, Kuo A, Schmutz J, Grimwood J, Lindquist E, Lucas S, Salamov A, Grigoriev IV, Rensing SA, Symeonidi A, Elias M, Herman EK, Klute MJ, Dacks JB, Oborník M, Kořený L, Durnford DG, Neilson JAD, Armbrust EV, Rocap G, Aves SJ, Liu Y, Beiko RG, Coutinho P, Henrissat B, et al. . 2012. Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature 492:59–65. doi:10.1038/nature11681. PubMed DOI
Suzuki S, Ishida K-I, Hirakawa Y. 2016. Diurnal transcriptional regulation of endosymbiotically derived genes in the chlorarachniophyte Bigelowiella natans . Genome Biol Evol 8:2672–2682. doi:10.1093/gbe/evw188. PubMed DOI PMC
Rangsrikitphoti P, Durnford DG. 2019. Transcriptome profiling of Bigelowiella natans in response to light stress. J Eukaryot Microbiol 66:316–333. doi:10.1111/jeu.12672. PubMed DOI
Neilson JAD, Rangsrikitphoti P, Durnford DG. 2017. Evolution and regulation of Bigelowiella natans light-harvesting antenna system. J Plant Physiol 217:68–76. doi:10.1016/j.jplph.2017.05.019. PubMed DOI
Blaby-Haas CE, Merchant SS. 2017. Regulating cellular trace metal economy in algae. Curr Opin Plant Biol 39:88–96. doi:10.1016/j.pbi.2017.06.005. PubMed DOI PMC
de Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, Lara E, Berney C, Le Bescot N, Probert I, Carmichael M, Poulain J, Romac S, Colin S, Aury J-M, Bittner L, Chaffron S, Dunthorn M, Engelen S, Flegontova O, Guidi L, Horák A, Jaillon O, Lima-Mendez G, Lukeš J, Malviya S, Morard R, Mulot M, Scalco E, Siano R, Vincent F, Zingone A, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Acinas SG, Bork P, Bowler C, Gorsky G, Grimsley N, Hingamp P, Iudicone D, Not F, Ogata H, Pesant S, Raes J, Sieracki ME, Speich S, Stemmann L, Tara Oceans Coordinators, et al. 2015. Eukaryotic plankton diversity in the sunlit ocean. Science 348:1261605. doi:10.1126/science.1261605. PubMed DOI
Ibarbalz FM, Henry N, Brandão MC, Martini S, Busseni G, Byrne H, Coelho LP, Endo H, Gasol JM, Gregory AC, Mahé F, Rigonato J, Royo-Llonch M, Salazar G, Sanz-Sáez I, Scalco E, Soviadan D, Zayed AA, Zingone A, Labadie K, Ferland J, Marec C, Kandels S, Picheral M, Dimier C, Poulain J, Pisarev S, Carmichael M, Pesant S, Acinas SG, Babin M, Bork P, Boss E, Bowler C, Cochrane G, de Vargas C, Follows M, Gorsky G, Grimsley N, Guidi L, Hingamp P, Iudicone D, Jaillon O, Karp-Boss L, Karsenti E, Not F, Ogata H, Poulton N, Raes J, Sardet C, Speich S, Stemmann L, Tara Oceans Coordinators, et al. 2019. Global trends in marine plankton diversity across kingdoms of life. Cell 179:1084–1097. doi:10.1016/j.cell.2019.10.008. PubMed DOI PMC
Carradec Q, Pelletier E, Da Silva C, Alberti A, Seeleuthner Y, Blanc-Mathieu R, Lima-Mendez G, Rocha F, Tirichine L, Labadie K, Kirilovsky A, Bertrand A, Engelen S, Madoui MA, Méheust R, Poulain J, Romac S, Richter DJ, Yoshikawa G, Dimier C, Kandels-Lewis S, Picheral M, Searson S, Acinas SG, Boss E, Follows M, Gorsky G, Grimsley N, Karp-Boss L, Krzic U, Pesant S, Reynaud EG, Sardet C, Sieracki M, Speich S, Stemmann L, Velayoudon D, Weissenbach J, Jaillon O, Aury JM, Karsenti E, Sullivan MB, Sunagawa S, Bork P, Not F, Hingamp P, Raes J, Guidi L, Ogata H, De Vargas C, Tara Oceans Coordinators, et al. 2018. A global ocean atlas of eukaryotic genes. Nat Commun 9:1–13. doi:10.1038/s41467-017-02342-1. PubMed DOI PMC
Lelandais G, Scheiber I, Paz-Yepes J, Lozano J-C, Botebol H, Pilátová J, Žárský V, Léger T, Blaiseau P-L, Bowler C, Bouget F-Y, Camadro J-M, Sutak R, Lesuisse E. 2016. Ostreococcus tauri is a new model green alga for studying iron metabolism in eukaryotic phytoplankton. BMC Genomics 17:319. doi:10.1186/s12864-016-2666-6. PubMed DOI PMC
Scheiber IF, Pilátová J, Malych R, Kotabova E, Krijt M, Vyoral D, Mach J, Léger T, Camadro JM, Prášil O, Lesuisse E, Sutak R. 2019. Copper and iron metabolism in Ostreococcus tauri—the role of phytotransferrin, plastocyanin and a chloroplast copper-transporting ATPase. Metallomics 11:1657–1666. doi:10.1039/c9mt00078j. PubMed DOI
Haas CE, Rodionov DA, Kropat J, Malasarn D, Merchant SS, de Crécy-Lagard V. 2009. A subset of the diverse COG0523 family of putative metal chaperones is linked to zinc homeostasis in all kingdoms of life. BMC Genomics 10:470. doi:10.1186/1471-2164-10-470. PubMed DOI PMC
Hsieh SI, Castruita M, Malasarn D, Urzica E, Erde J, Page MD, Yamasaki H, Casero D, Pellegrini M, Merchant SS, Loo JA. 2013. The proteome of copper, iron, zinc, and manganese micronutrient deficiency in Chlamydomonas reinhardtii . Mol Cell Proteomics 12:65–86. doi:10.1074/mcp.M112.021840. PubMed DOI PMC
Ghobrial G, Araujo L, Jinwala F, Li S, Lee LY. 2018. The structure and biological function of CREG. Front Cell Dev Biol 6:136. doi:10.3389/fcell.2018.00136. PubMed DOI PMC
Caputi L, Carradec Q, Eveillard D, Kirilovsky A, Pelletier E, Pierella Karlusich JJ, Rocha Jimenez Vieira F, Villar E, Chaffron S, Malviya S, Scalco E, Acinas SG, Alberti A, Aury J‐M, Benoiston A‐S, Bertrand A, Biard T, Bittner L, Boccara M, Brum JR, Brunet C, Busseni G, Carratalà A, Claustre H, Coelho LP, Colin S, D'Aniello S, Da Silva C, Del Core M, Doré H, Gasparini S, Kokoszka F, Jamet J‐L, Lejeusne C, Lepoivre C, Lescot M, Lima‐Mendez G, Lombard F, Lukeš J, Maillet N, Madoui M‐A, Martinez E, Mazzocchi MG, Néou MB, Paz‐Yepes J, Poulain J, Ramondenc S, Romagnan J‐B, Roux S, Salvagio Manta D, Tara Oceans Coordinators, et al. 2019. Community-level responses to iron availability in open ocean plankton ecosystems. Global Biogeochem Cycles 33:391–419., doi:10.1029/2018GB006022. DOI
Kazamia E, Sutak R, Paz-Yepes J, Dorrell RG, Vieira FRJ, Mach J, Morrissey J, Leon S, Lam F, Pelletier E, Camadro J-M, Bowler C, Lesuisse E. 2018. Endocytosis-mediated siderophore uptake as a strategy for Fe acquisition in diatoms. Sci Adv 4:eaar4536. doi:10.1126/sciadv.aar4536. PubMed DOI PMC
Kalaji HM, Schansker G, Ladle RJ, Goltsev V, Bosa K, Allakhverdiev SI, Brestic M, Bussotti F, Calatayud A, Dąbrowski P, Elsheery NI, Ferroni L, Guidi L, Hogewoning SW, Jajoo A, Misra AN, Nebauer SG, Pancaldi S, Penella C, Poli D, Pollastrini M, Romanowska-Duda ZB, Rutkowska B, Serôdio J, Suresh K, Szulc W, Tambussi E, Yanniccari M, Zivcak M. 2014. Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth Res 122:121–158. doi:10.1007/s11120-014-0024-6. PubMed DOI PMC
Kustka AB, Allen AE, Morel FMM. 2007. Sequence analysis and transcriptional regulation of iron acquisition genes in two marine diatoms. J Phycol 43:715–729. doi:10.1111/j.1529-8817.2007.00359.x. DOI
Lampe RH, Mann EL, Cohen NR, Till CP, Thamatrakoln K, Brzezinski MA, Bruland KW, Twining BS, Marchetti A. 2018. Different iron storage strategies among bloom-forming diatoms. Proc Natl Acad Sci U S A 115:12275–12284. doi:10.1073/pnas.1805243115. PubMed DOI PMC
Turnšek J, Brunson JK, Deerinck TJ, Oborník M, Horák A, Bielinski VA, Allen AE. 2019. Phytotransferrin endocytosis mediates a direct cell surface-to-chloroplast iron trafficking axis in marine diatoms. bioRxiv doi:10.1101/806539. PubMed DOI PMC
Lommer M, Specht M, Roy AS, Kraemer L, Andreson R, Gutowska MA, Wolf J, Bergner SV, Schilhabel MB, Klostermeier UC, Beiko RG, Rosenstiel P, Hippler M, LaRoche J. 2012. Genome and low-iron response of an oceanic diatom adapted to chronic iron limitation. Genome Biol 13:R66. doi:10.1186/gb-2012-13-7-r66. PubMed DOI PMC
Huang J, Xue C, Wang H, Wang L, Schmidt W, Shen R, Lan P. 2017. Genes of ACYL CARRIER PROTEIN family show different expression profiles and overexpression of ACYL CARRIER PROTEIN 5 modulates fatty acid composition and enhances salt stress tolerance in Arabidopsis . Front Plant Sci 8:987. doi:10.3389/fpls.2017.00987. PubMed DOI PMC
Van Vranken JG, Jeong MY, Wei P, Chen YC, Gygi SP, Winge DR, Rutter J. 2016. The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis. Elife 5:e17828. doi:10.7554/eLife.17828. PubMed DOI PMC
Naumann B, Busch A, Allmer J, Ostendorf E, Zeller M, Kirchhoff H, Hippler M. 2007. Comparative quantitative proteomics to investigate the remodeling of bioenergetic pathways under iron deficiency in Chlamydomonas reinhardtii . Proteomics 7:3964–3979. doi:10.1002/pmic.200700407. PubMed DOI
Moseley JL, Allinger T, Herzog S, Hoerth P, Wehinger E, Merchant S, Hippler M. 2002. Adaptation to Fe-deficiency requires remodeling of the photosynthetic apparatus. EMBO J 21:6709–6720. doi:10.1093/emboj/cdf666. PubMed DOI PMC
Greene RM, Geider RJ, Falkowski PG. 1991. Effect of iron limitation on photosynthesis in a marine diatom. Limnol Oceanogr 36:1772–1782. doi:10.4319/lo.1991.36.8.1772. DOI
McDonald AE, Ivanov AG, Bode R, Maxwell DP, Rodermel SR, Hüner NPA. 2011. Flexibility in photosynthetic electron transport: the physiological role of plastoquinol terminal oxidase (PTOX). Biochim Biophys Acta 1807:954–967. doi:10.1016/j.bbabio.2010.10.024. PubMed DOI
Mackey KRM, Paytan A, Grossman AR, Bailey S. 2008. A photosynthetic strategy for coping in a high-light, low-nutrient environment. Limnol Oceanogr 53:900–913. doi:10.4319/lo.2008.53.3.0900. DOI
Mach J, Bíla J, Ženíšková K, Arbon D, Malych R, Glavanakovová M, Nývltová E, Sutak R. 2018. Iron economy in Naegleria gruberi reflects its metabolic flexibility. Int J Parasitol 48:719–727. doi:10.1016/j.ijpara.2018.03.005. PubMed DOI
Wickham H. 2009. ggplot2: elegant graphics for data analysis. Springer-Verlag, New York, NY. doi:10.1007/978-0-387-98141-3-3. DOI
Picheral M, Searson S, Taillandier V, Bricaud A, Boss E, Ras J, Claustre H, Ouhssain M, Morin P, Coppola L, Gattuso J-P, Metzl N, Thuillier D, Gorsky G, Tara Oceans Consortium, Coordinators, Tara Oceans Expedition, Participants. 2014. Vertical profiles of environmental parameters measured on discrete water samples collected with Niskin bottles at station TARA_151 during the Tara Oceans expedition 2009–2013. PANGAEA doi:10.1594/PANGAEA.839240. DOI
Ras J, Claustre H, Uitz J. 2008. Spatial variability of phytoplankton pigment distributions in the subtropical South Pacific Ocean: comparison between in situ and predicted data. Biogeosciences 5:353–369. doi:10.5194/bg-5-353-2008. DOI
Van Heukelem L, Thomas CS. 2001. Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J Chromatogr A 910:31–49. doi:10.1016/S0378-4347(00)00603-4. PubMed DOI
Aminot A, Kérouel R, Coverly SC. 2009. Nutrients in seawater using segmented flow analysis, p 143–178. In Wurl O (ed), Practical guidelines for the analysis of seawater. CRC Press, Boca Raton, FL. doi:10.1201/9781420073072. DOI
Menemenlis D, Campin J-M, Heimbach P, Hill C, Lee T, Nguyen A, Schodlok M, Zhang H. 2008. ECCO2: high resolution global ocean and sea ice data synthesis. Mercat Ocean Q Newsl 31:13–21.
Pierella Karlusich JJ, Ceccoli RD, Graña M, Romero H, Carrillo N. 2015. Environmental selection pressures related to iron utilization are involved in the loss of the flavodoxin gene from the plant genome. Genome Biol Evol 7:750–767. doi:10.1093/gbe/evv031. PubMed DOI PMC
Katoh K, Toh H. 2008. Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinformatics 9:212. doi:10.1186/1471-2105-9-212. PubMed DOI PMC
Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. doi:10.1093/sysbio/syq010. PubMed DOI
Aumont O, Ethé C, Tagliabue A, Bopp L, Gehlen M. 2015. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geosci Model Dev 8:2465–2513. doi:10.5194/gmd-8-2465-2015. DOI
Chen I-MA, Chu K, Palaniappan K, Pillay M, Ratner A, Huang J, Huntemann M, Varghese N, White JR, Seshadri R, Smirnova T, Kirton E, Jungbluth SP, Woyke T, Eloe-Fadrosh EA, Ivanova NN, Kyrpides NC. 2018. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res 47:666–677. doi:10.1093/nar/gky901. PubMed DOI PMC
Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, Armbrust EV, Archibald JM, Bharti AK, Bell CJ, Beszteri B, Bidle KD, Cameron CT, Campbell L, Caron DA, Cattolico RA, Collier JL, Coyne K, Davy SK, Deschamps P, Dyhrman ST, Edvardsen B, Gates RD, Gobler CJ, Greenwood SJ, Guida SM, Jacobi JL, Jakobsen KS, James ER, Jenkins B, John U, Johnson MD, Juhl AR, Kamp A, Katz LA, Kiene R, Kudryavtsev A, Leander BS, Lin S, Lovejoy C, Lynn D, Marchetti A, McManus G, Nedelcu AM, Menden-Deuer S, Miceli C, Mock T, Montresor M, Moran MA, Murray S, Nadathur G, Nagai S, Ngam PB, Palenik B, Pawlowski J, et al. . 2014. The Marine Microbial Eukaryote Transcriptome Sequencing project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol 12:e1001889. doi:10.1371/journal.pbio.1001889. PubMed DOI PMC
Zallot R, Oberg N, Gerlt JA. 2019. The EFI web resource for genomic enzymology tools: leveraging protein, genome, and metagenome databases to discover novel enzymes and metabolic pathways. Biochemistry 58:4169–4182. doi:10.1021/acs.biochem.9b00735. PubMed DOI PMC
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. doi:10.1101/gr.1239303. PubMed DOI PMC
Pesant S, Not F, Picheral M, Kandels-Lewis S, Le Bescot N, Gorsky G, Iudicone D, Karsenti E, Speich S, Troublé R, Dimier C, Searson S, Tara Oceans Consortium Coordinators. 2015. Open science resources for the discovery and analysis of Tara Oceans data. Sci Data 2:150023. doi:10.1038/sdata.2015.23. PubMed DOI PMC
Li W, Godzik A. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659. doi:10.1093/bioinformatics/btl158. PubMed DOI
Jeffrey SW, Humphrey GF. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Und Physiol Der Pflanz 167:191–194. doi:10.1016/S0015-3796(17)30778-3. DOI
Lewis M, Smith J. 1983. A small volume, short-incubation-time method for measurement of photosynthesis as a function of incident irradiance. Mar Ecol Prog Ser 13:99–102. doi:10.3354/meps013099. DOI
Butler JN. 1982. Carbon dioxide equilibria and their applications. Addison-Wesley, Reading, MA.
Eilers PHC, Peeters JCH. 1988. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol Modell 42:199–215. doi:10.1016/0304-3800(88)90057-9. DOI