• This record comes from PubMed

Induced Lanthanide Circularly Polarized Luminescence as a Probe of Protein Fibrils

. 2019 Jan 31 ; 4 (1) : 1265-1271. [epub] 20190115

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

Protein fibrils are involved in a number of biological processes. Because their structure is very complex and not completely understood, different spectroscopic methods are used to monitor different aspects of fibril structure. We have explored circularly polarized luminescence (CPL) induced in lanthanide compounds to indicate fibril growth and discriminate among fibril types. For hen egg-white lysozyme and polyglutamic acid-specific CPL, spectral patterns were obtained and could be correlated with vibrational circular dichroism (VCD) spectra and thioflavin T fluorescence. The CPL spectra were measured on a Raman optical activity spectrometer, and its various polarization modes are discussed. The experiments indicate that the induced CPL is sensitive to more local aspects of the fibril structure than VCD. For CPL, smaller amounts of the sample are required for the analysis, and thus this method appears to be a good candidate for future spectroscopic characterization of these peptide and protein aggregates.

See more in PubMed

Eisele Y. S.; Monteiro C.; Fearns C.; Encalada S. E.; Wiseman R. L.; Powers E. T.; Kelly J. W. Targeting protein aggregation for the treatment of degenerative diseases. Nat. Rev. Drug Discovery 2015, 14, 759.10.1038/nrd4593. PubMed DOI PMC

Chatani E.; Yamamoto N. Recent progress on understanding the mechanisms of amyloid nucleation. Biophys. Rev. 2017, 10, 527–534. 10.1007/s12551-017-0353-8. PubMed DOI PMC

Ivanova M. I.; Sievers S. A.; Sawaya M. R.; Wall J. S.; Eisenberg D. Molecular basis for insulin fibril assembly. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 18990–18995. 10.1073/pnas.0910080106. PubMed DOI PMC

Stroud J. C.; Liu C.; Teng P. K.; Eisenberg D. Toxic fibrillar oligomers of amyloid-β have cross-β structure. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 7717–7722. 10.1073/pnas.1203193109. PubMed DOI PMC

Eisenberg D. S.; Sawaya M. R. Implications for Alzheimer’s disease of an atomic resolution structure of amyloid-β(1–42) fibrils. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 9398–9400. 10.1073/pnas.1610806113. PubMed DOI PMC

Kurouski D.; Dukor R. K.; Lu X.; Nafie L. A.; Lednev I. K. Spontaneous inter-conversion of insulin fibril chirality. Chem. Commun. 2012, 48, 2837–2839. 10.1039/c2cc16895b. PubMed DOI PMC

Nafie L.Vibrational Optical Activity: Principles and Applications; Wiley: Chichester, 2011.

Berova N.; Polavarapu P. L.; Nakanishi K.; Woody R. W.. Comprehensive Chiroptical Spectroscopy, Applications in Stereochemical Analysis of Synthetic Compounds, Natural Products and Biomolecules; Wiley: New Jersey, 2012; Vol. 2.

Tobias F.; Keiderling T. A. Role of Side Chains in β-Sheet Self-Assembly into Peptide Fibrils. IR and VCD Spectroscopic Studies of Glutamic Acid-Containing Peptides. Langmuir 2016, 32, 4653–4661. 10.1021/acs.langmuir.6b00077. PubMed DOI

Ma S.; Cao X.; Mak M.; Sadik A.; Walkner C.; Freedman T. B.; Lednev I. K.; Dukor R. K.; Nafie L. A. Vibrational Circular Dichroism Shows Unusual Sensitivity to Protein Fibril Formation and Development in Solution. J. Am. Chem. Soc. 2007, 129, 12364–12365. 10.1021/ja074188z. PubMed DOI

Kurouski D.; Lombardi R. A.; Dukor R. K.; Lednev I. K.; Nafie L. A. Direct observation and pH control of reversed supramolecular chirality in insulin fibrils by vibrational circular dichroism. Chem. Commun. 2010, 46, 7154–7156. 10.1039/c0cc02423f. PubMed DOI

Kurouski D.; Kar K.; Wetzel R.; Dukor R. K.; Lednev I. K.; Nafie L. A. Levels of supramolecular chirality of polyglutamine aggregates revealed by vibrational circular dichroism. FEBS Lett. 2013, 587, 1638–1643. 10.1016/j.febslet.2013.03.038. PubMed DOI PMC

Kurouski D.; Lu X.; Popova L.; Wan W.; Shanmugasundaram M.; Stubbs G.; Dukor R. K.; Lednev I. K.; Nafie L. A. Is Supramolecular Filament Chirality the Underlying Cause of Major Morphology Differences in Amyloid Fibrils?. J. Am. Chem. Soc. 2014, 136, 2302–2312. 10.1021/ja407583r. PubMed DOI PMC

Fulara A.; Lakhani A.; Wójcik S.; Nieznańska H.; Keiderling T. A.; Dzwolak W. Spiral Superstructures of Amyloid-Like Fibrils of Polyglutamic Acid: An Infrared Absorption and Vibrational Circular Dichroism Study. J. Phys. Chem. B 2011, 115, 11010–11016. 10.1021/jp206271e. PubMed DOI

Chi H.; Welch W. R. W.; Kubelka J.; Keiderling T. A. Insight into the Packing Pattern of β2 Fibrils: A Model Study of Glutamic Acid Rich Oligomers with 13C Isotopic Edited Vibrational Spectroscopy. Biomacromolecules 2013, 14, 3880–3891. 10.1021/bm401015f. PubMed DOI

Welch W. R. W.; Keiderling T. A.; Kubelka J. Structural Analyses of Experimental 13C Edited Amide I′ IR and VCD for Peptide β-Sheet Aggregates and Fibrils Using DFT-Based Spectral Simulations. J. Phys. Chem. B 2013, 117, 10359–10369. 10.1021/jp405613r. PubMed DOI

Kessler J.; Keiderling T. A.; Bouř P. Arrangement of Fibril Side Chains Studied by Molecular Dynamics and Simulated Infrared and Vibrational Circular Dichroism Spectra. J. Phys. Chem. B 2014, 118, 6937–6945. 10.1021/jp502178d. PubMed DOI

Yamamoto S.; Watarai H. Raman Optical Activity Study on Insulin Amyloid and Prefibril Intermediate. Chirality 2011, 24, 97–103. 10.1002/chir.21029. PubMed DOI

Jungwirth J.Application of Chiroptical Techniques for Exploration of Inhomogeneous Systems; Charles University: Prague, 2017.

Wu T.; Kapitán J.; Mašek V.; Bouř P. Detection of Circularly Polarized Luminescence of a Cs-EuIII Complex in Raman Optical Activity Experiments. Angew. Chem., Int. Ed. 2015, 54, 14933–14936. 10.1002/anie.201508120. PubMed DOI

Binnemans K. Interpretation of europium(III) spectra. Coord. Chem. Rev. 2015, 295, 1–45. 10.1016/j.ccr.2015.02.015. DOI

Walrand C. G.; Binnemans K.. Rationalization of Crystal-Field Parametrization. In Handbook on the Physics and Chemistry of Rare Earths; Gschneider K. A., Eyring L., Eds.; Elsevier Science B. V.: Amsterdam, 1996; pp 121–283.

Brichtová E.; Hudecová J.; Vršková N.; Šebestík J.; Bouř P.; Wu T. Binding of Lanthanide Complexes to Histidine-Containing Peptides Probed by Raman Optical Activity Spectroscopy. Chem.—Eur. J. 2018, 24, 8664–8669. 10.1002/chem.201800840. PubMed DOI

Wu T.; Průša J.; Kessler J.; Dračínský M.; Valenta J.; Bouř P. Detection of Sugars via Chirality Induced in Europium(III) Compounds. Anal. Chem. 2016, 88, 8878–8885. 10.1021/acs.analchem.6b02505. PubMed DOI

Wu T.; Kessler J.; Bouř P. Chiral sensing of amino acids and proteins chelating with EuIII complexes by Raman optical activity spectroscopy. Phys. Chem. Chem. Phys. 2016, 18, 23803–23811. 10.1039/c6cp03968e. PubMed DOI

Rybicka A.; Longhi G.; Castiglioni E.; Abbate S.; Dzwolak W.; Babenko V.; Pecul M. Thioflavin T: Electronic Circular Dichroism and Circularly Polarized Luminescence Induced by Amyloid Fibrils. ChemPhysChem 2016, 17, 2931–2937. 10.1002/cphc.201600235. PubMed DOI

Xue C.; Lin T. Y.; Chang D.; Guo Z. Thioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation. R. Soc. Open Sci. 2017, 4, 160696.10.1098/rsos.160696. PubMed DOI PMC

Barron L. D.Molecular Light Scattering and Optical Activity; Cambridge University Press: Cambridge, U.K., 2004.

Wu T.; Kessler J.; Kaminský J.; Bouř P. Recognition of Oligosaccharides by Chirality Induced in Europium (III) Compounds. Chem.–Asian J. 2018, 13, 3865–3870. 10.1002/asia.201801157. PubMed DOI

Zinna F.; Resta C.; Abbate S.; Castiglioni E.; Longhi G.; Mineo P.; Di Bari L. Circularly polarized luminescence under near-UV excitation and structural elucidation of a Eu complex. Chem. Commun. 2015, 51, 11903–11906. 10.1039/c5cc04283f. PubMed DOI

Keith H. D.; Giannoni G.; Padden F. J. Single crystal of poly(L-glutamic acid). Biopolymers 1969, 7, 775–792. 10.1002/bip.1969.360070512. DOI

Itoh K.; Foxman B. M.; Fasman G. D. The two β forms of poly(L-glutamic acid). Biopolymers 1976, 15, 419–455. 10.1002/bip.1976.360150302. PubMed DOI

Yamaoki Y.; Imamura H.; Fulara A.; Wójcik S.; Bożycki Ł.; Kato M.; Keiderling T. A.; Dzwolak W. An FT-IR Study on Packing Defects in Mixed β-Aggregates of Poly(Lglutamic acid) and Poly(D-glutamic acid): A High-Pressure Rescue from a Kinetic Trap. J. Phys. Chem. B 2012, 116, 5172–5178. 10.1021/jp2125685. PubMed DOI

Vijay R.; Polavarapu P. L. Molecular Structural Transformations Induced by Spatial Confinement in Barium Fluoride Cells. J. Phys. Chem. A 2013, 117, 14086–14094. 10.1021/jp409770w. PubMed DOI

Průša J.; Bouř P. Transition dipole coupling modeling of optical activity enhancements in macromolecular protein systems. Chirality 2017, 30, 55–64. 10.1002/chir.22778. PubMed DOI

Weiss M. S.; Palm G. J.; Hilgenfeld R. Crystallization, structure solution and refinement of hen egg-white lysozyme at pH 8.0 in the presence of MPD. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2000, 56, 952–958. 10.1107/s0907444900006685. PubMed DOI

Job P. Formation and Stability of Inorganic Complexes in Solution. Ann. Chim. Appl. 1928, 9, 113–203.

Andrushchenko V.; Bouř P. Circular Dichroism Enhancement in Large DNA Aggregates Simulated by a Generalized Oscillator Model. J. Comput. Chem. 2008, 29, 2693–2703. 10.1002/jcc.21015. PubMed DOI

Li H.; Nafie L. A. Simultaneous acquisition of all four forms of circular polarization Raman optical activity: results for α-pinene and lysozyme. J. Raman Spectrosc. 2011, 43, 89–94. 10.1002/jrs.3000. DOI

Castiglioni E.; Abbate S.; Lebon F.; Longhi G. Chiroptical spectroscopic techniques based on fluorescence. Methods Appl. Fluoresc. 2014, 2, 024006.10.1088/2050-6120/2/2/024006. PubMed DOI

Wu T.; Kapitán J.; Andrushchenko V.; Bouř P. Identification of Lanthanide(III) Luminophores in Magnetic Circularly Polarized Luminescence Using Raman Optical Activity Instrumentation. Anal. Chem. 2017, 89, 5043–5049. 10.1021/acs.analchem.7b00435. PubMed DOI

Turner D. H.; Tinoco I.; Maestre M. Fluorescence detected circular dichroism. J. Am. Chem. Soc. 1974, 96, 4340–4342. 10.1021/ja00820a057. DOI

Kapitán J.; Barron L. D.; Hecht L. A novel Raman optical activity instrument operating in the deep ultraviolet spectral region. J. Raman Spectrosc. 2015, 46, 392–399. 10.1002/jrs.4665. DOI

Haraguchi S.; Shingae T.; Fujisawa T.; Kasai N.; Kumauchi M.; Hanamoto T.; Hoff W. D.; Unno M. Spectroscopic ruler for measuring active-site distortions based on Raman optical activity of a hydrogen out-of-plane vibration. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 8671–8675. 10.1073/pnas.1806491115. PubMed DOI PMC

Zhang Y.; Wang P.; Jia G.; Cheng F.; Feng Z.; Li C. A Short-Wavelength Raman Optical Activity Spectrometer with Laser Source at 457nm for the Characterization of Chiral Molecules. Appl. Spectrosc. 2017, 71, 2211–2217. 10.1177/0003702817712260. PubMed DOI

Fulara A.; Dzwolak W. Bifurcated Hydrogen Bonds Stabilize Fibrils of Poly(L-glutamic) Acid. J. Phys. Chem. B 2010, 114, 8278–8283. 10.1021/jp102440n. PubMed DOI

Hug W.; Hangartner G. A novel high-throughput Raman spectrometer for polarization difference measurements. J. Raman Spectrosc. 1999, 30, 841–852. 10.1002/(sici)1097-4555(199909)30:9<841::aid-jrs456>3.3.co;2-t. DOI

Nafie L. A. Vibrational optical activity. Appl. Spectrosc. 1996, 50, 14A–26A. 10.1366/0003702963905952. PubMed DOI

Hug W. Virtual enantiomers as the solution of optical activity’s deterministic offset problem. Appl. Spectrosc. 2003, 57, 1–13. 10.1366/000370203321165142. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...