Induced Lanthanide Circularly Polarized Luminescence as a Probe of Protein Fibrils
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
31459399
PubMed Central
PMC6648570
DOI
10.1021/acsomega.8b03175
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Protein fibrils are involved in a number of biological processes. Because their structure is very complex and not completely understood, different spectroscopic methods are used to monitor different aspects of fibril structure. We have explored circularly polarized luminescence (CPL) induced in lanthanide compounds to indicate fibril growth and discriminate among fibril types. For hen egg-white lysozyme and polyglutamic acid-specific CPL, spectral patterns were obtained and could be correlated with vibrational circular dichroism (VCD) spectra and thioflavin T fluorescence. The CPL spectra were measured on a Raman optical activity spectrometer, and its various polarization modes are discussed. The experiments indicate that the induced CPL is sensitive to more local aspects of the fibril structure than VCD. For CPL, smaller amounts of the sample are required for the analysis, and thus this method appears to be a good candidate for future spectroscopic characterization of these peptide and protein aggregates.
Department of Optics Palacký University 17 listopadu 12 77146 Olomouc Czech Republic
Faculty of Mathematics and Physics Charles University Ke Karlovu 3 12116 Prague 2 Czech Republic
See more in PubMed
Eisele Y. S.; Monteiro C.; Fearns C.; Encalada S. E.; Wiseman R. L.; Powers E. T.; Kelly J. W. Targeting protein aggregation for the treatment of degenerative diseases. Nat. Rev. Drug Discovery 2015, 14, 759.10.1038/nrd4593. PubMed DOI PMC
Chatani E.; Yamamoto N. Recent progress on understanding the mechanisms of amyloid nucleation. Biophys. Rev. 2017, 10, 527–534. 10.1007/s12551-017-0353-8. PubMed DOI PMC
Ivanova M. I.; Sievers S. A.; Sawaya M. R.; Wall J. S.; Eisenberg D. Molecular basis for insulin fibril assembly. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 18990–18995. 10.1073/pnas.0910080106. PubMed DOI PMC
Stroud J. C.; Liu C.; Teng P. K.; Eisenberg D. Toxic fibrillar oligomers of amyloid-β have cross-β structure. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 7717–7722. 10.1073/pnas.1203193109. PubMed DOI PMC
Eisenberg D. S.; Sawaya M. R. Implications for Alzheimer’s disease of an atomic resolution structure of amyloid-β(1–42) fibrils. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 9398–9400. 10.1073/pnas.1610806113. PubMed DOI PMC
Kurouski D.; Dukor R. K.; Lu X.; Nafie L. A.; Lednev I. K. Spontaneous inter-conversion of insulin fibril chirality. Chem. Commun. 2012, 48, 2837–2839. 10.1039/c2cc16895b. PubMed DOI PMC
Nafie L.Vibrational Optical Activity: Principles and Applications; Wiley: Chichester, 2011.
Berova N.; Polavarapu P. L.; Nakanishi K.; Woody R. W.. Comprehensive Chiroptical Spectroscopy, Applications in Stereochemical Analysis of Synthetic Compounds, Natural Products and Biomolecules; Wiley: New Jersey, 2012; Vol. 2.
Tobias F.; Keiderling T. A. Role of Side Chains in β-Sheet Self-Assembly into Peptide Fibrils. IR and VCD Spectroscopic Studies of Glutamic Acid-Containing Peptides. Langmuir 2016, 32, 4653–4661. 10.1021/acs.langmuir.6b00077. PubMed DOI
Ma S.; Cao X.; Mak M.; Sadik A.; Walkner C.; Freedman T. B.; Lednev I. K.; Dukor R. K.; Nafie L. A. Vibrational Circular Dichroism Shows Unusual Sensitivity to Protein Fibril Formation and Development in Solution. J. Am. Chem. Soc. 2007, 129, 12364–12365. 10.1021/ja074188z. PubMed DOI
Kurouski D.; Lombardi R. A.; Dukor R. K.; Lednev I. K.; Nafie L. A. Direct observation and pH control of reversed supramolecular chirality in insulin fibrils by vibrational circular dichroism. Chem. Commun. 2010, 46, 7154–7156. 10.1039/c0cc02423f. PubMed DOI
Kurouski D.; Kar K.; Wetzel R.; Dukor R. K.; Lednev I. K.; Nafie L. A. Levels of supramolecular chirality of polyglutamine aggregates revealed by vibrational circular dichroism. FEBS Lett. 2013, 587, 1638–1643. 10.1016/j.febslet.2013.03.038. PubMed DOI PMC
Kurouski D.; Lu X.; Popova L.; Wan W.; Shanmugasundaram M.; Stubbs G.; Dukor R. K.; Lednev I. K.; Nafie L. A. Is Supramolecular Filament Chirality the Underlying Cause of Major Morphology Differences in Amyloid Fibrils?. J. Am. Chem. Soc. 2014, 136, 2302–2312. 10.1021/ja407583r. PubMed DOI PMC
Fulara A.; Lakhani A.; Wójcik S.; Nieznańska H.; Keiderling T. A.; Dzwolak W. Spiral Superstructures of Amyloid-Like Fibrils of Polyglutamic Acid: An Infrared Absorption and Vibrational Circular Dichroism Study. J. Phys. Chem. B 2011, 115, 11010–11016. 10.1021/jp206271e. PubMed DOI
Chi H.; Welch W. R. W.; Kubelka J.; Keiderling T. A. Insight into the Packing Pattern of β2 Fibrils: A Model Study of Glutamic Acid Rich Oligomers with 13C Isotopic Edited Vibrational Spectroscopy. Biomacromolecules 2013, 14, 3880–3891. 10.1021/bm401015f. PubMed DOI
Welch W. R. W.; Keiderling T. A.; Kubelka J. Structural Analyses of Experimental 13C Edited Amide I′ IR and VCD for Peptide β-Sheet Aggregates and Fibrils Using DFT-Based Spectral Simulations. J. Phys. Chem. B 2013, 117, 10359–10369. 10.1021/jp405613r. PubMed DOI
Kessler J.; Keiderling T. A.; Bouř P. Arrangement of Fibril Side Chains Studied by Molecular Dynamics and Simulated Infrared and Vibrational Circular Dichroism Spectra. J. Phys. Chem. B 2014, 118, 6937–6945. 10.1021/jp502178d. PubMed DOI
Yamamoto S.; Watarai H. Raman Optical Activity Study on Insulin Amyloid and Prefibril Intermediate. Chirality 2011, 24, 97–103. 10.1002/chir.21029. PubMed DOI
Jungwirth J.Application of Chiroptical Techniques for Exploration of Inhomogeneous Systems; Charles University: Prague, 2017.
Wu T.; Kapitán J.; Mašek V.; Bouř P. Detection of Circularly Polarized Luminescence of a Cs-EuIII Complex in Raman Optical Activity Experiments. Angew. Chem., Int. Ed. 2015, 54, 14933–14936. 10.1002/anie.201508120. PubMed DOI
Binnemans K. Interpretation of europium(III) spectra. Coord. Chem. Rev. 2015, 295, 1–45. 10.1016/j.ccr.2015.02.015. DOI
Walrand C. G.; Binnemans K.. Rationalization of Crystal-Field Parametrization. In Handbook on the Physics and Chemistry of Rare Earths; Gschneider K. A., Eyring L., Eds.; Elsevier Science B. V.: Amsterdam, 1996; pp 121–283.
Brichtová E.; Hudecová J.; Vršková N.; Šebestík J.; Bouř P.; Wu T. Binding of Lanthanide Complexes to Histidine-Containing Peptides Probed by Raman Optical Activity Spectroscopy. Chem.—Eur. J. 2018, 24, 8664–8669. 10.1002/chem.201800840. PubMed DOI
Wu T.; Průša J.; Kessler J.; Dračínský M.; Valenta J.; Bouř P. Detection of Sugars via Chirality Induced in Europium(III) Compounds. Anal. Chem. 2016, 88, 8878–8885. 10.1021/acs.analchem.6b02505. PubMed DOI
Wu T.; Kessler J.; Bouř P. Chiral sensing of amino acids and proteins chelating with EuIII complexes by Raman optical activity spectroscopy. Phys. Chem. Chem. Phys. 2016, 18, 23803–23811. 10.1039/c6cp03968e. PubMed DOI
Rybicka A.; Longhi G.; Castiglioni E.; Abbate S.; Dzwolak W.; Babenko V.; Pecul M. Thioflavin T: Electronic Circular Dichroism and Circularly Polarized Luminescence Induced by Amyloid Fibrils. ChemPhysChem 2016, 17, 2931–2937. 10.1002/cphc.201600235. PubMed DOI
Xue C.; Lin T. Y.; Chang D.; Guo Z. Thioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation. R. Soc. Open Sci. 2017, 4, 160696.10.1098/rsos.160696. PubMed DOI PMC
Barron L. D.Molecular Light Scattering and Optical Activity; Cambridge University Press: Cambridge, U.K., 2004.
Wu T.; Kessler J.; Kaminský J.; Bouř P. Recognition of Oligosaccharides by Chirality Induced in Europium (III) Compounds. Chem.–Asian J. 2018, 13, 3865–3870. 10.1002/asia.201801157. PubMed DOI
Zinna F.; Resta C.; Abbate S.; Castiglioni E.; Longhi G.; Mineo P.; Di Bari L. Circularly polarized luminescence under near-UV excitation and structural elucidation of a Eu complex. Chem. Commun. 2015, 51, 11903–11906. 10.1039/c5cc04283f. PubMed DOI
Keith H. D.; Giannoni G.; Padden F. J. Single crystal of poly(L-glutamic acid). Biopolymers 1969, 7, 775–792. 10.1002/bip.1969.360070512. DOI
Itoh K.; Foxman B. M.; Fasman G. D. The two β forms of poly(L-glutamic acid). Biopolymers 1976, 15, 419–455. 10.1002/bip.1976.360150302. PubMed DOI
Yamaoki Y.; Imamura H.; Fulara A.; Wójcik S.; Bożycki Ł.; Kato M.; Keiderling T. A.; Dzwolak W. An FT-IR Study on Packing Defects in Mixed β-Aggregates of Poly(Lglutamic acid) and Poly(D-glutamic acid): A High-Pressure Rescue from a Kinetic Trap. J. Phys. Chem. B 2012, 116, 5172–5178. 10.1021/jp2125685. PubMed DOI
Vijay R.; Polavarapu P. L. Molecular Structural Transformations Induced by Spatial Confinement in Barium Fluoride Cells. J. Phys. Chem. A 2013, 117, 14086–14094. 10.1021/jp409770w. PubMed DOI
Průša J.; Bouř P. Transition dipole coupling modeling of optical activity enhancements in macromolecular protein systems. Chirality 2017, 30, 55–64. 10.1002/chir.22778. PubMed DOI
Weiss M. S.; Palm G. J.; Hilgenfeld R. Crystallization, structure solution and refinement of hen egg-white lysozyme at pH 8.0 in the presence of MPD. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2000, 56, 952–958. 10.1107/s0907444900006685. PubMed DOI
Job P. Formation and Stability of Inorganic Complexes in Solution. Ann. Chim. Appl. 1928, 9, 113–203.
Andrushchenko V.; Bouř P. Circular Dichroism Enhancement in Large DNA Aggregates Simulated by a Generalized Oscillator Model. J. Comput. Chem. 2008, 29, 2693–2703. 10.1002/jcc.21015. PubMed DOI
Li H.; Nafie L. A. Simultaneous acquisition of all four forms of circular polarization Raman optical activity: results for α-pinene and lysozyme. J. Raman Spectrosc. 2011, 43, 89–94. 10.1002/jrs.3000. DOI
Castiglioni E.; Abbate S.; Lebon F.; Longhi G. Chiroptical spectroscopic techniques based on fluorescence. Methods Appl. Fluoresc. 2014, 2, 024006.10.1088/2050-6120/2/2/024006. PubMed DOI
Wu T.; Kapitán J.; Andrushchenko V.; Bouř P. Identification of Lanthanide(III) Luminophores in Magnetic Circularly Polarized Luminescence Using Raman Optical Activity Instrumentation. Anal. Chem. 2017, 89, 5043–5049. 10.1021/acs.analchem.7b00435. PubMed DOI
Turner D. H.; Tinoco I.; Maestre M. Fluorescence detected circular dichroism. J. Am. Chem. Soc. 1974, 96, 4340–4342. 10.1021/ja00820a057. DOI
Kapitán J.; Barron L. D.; Hecht L. A novel Raman optical activity instrument operating in the deep ultraviolet spectral region. J. Raman Spectrosc. 2015, 46, 392–399. 10.1002/jrs.4665. DOI
Haraguchi S.; Shingae T.; Fujisawa T.; Kasai N.; Kumauchi M.; Hanamoto T.; Hoff W. D.; Unno M. Spectroscopic ruler for measuring active-site distortions based on Raman optical activity of a hydrogen out-of-plane vibration. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 8671–8675. 10.1073/pnas.1806491115. PubMed DOI PMC
Zhang Y.; Wang P.; Jia G.; Cheng F.; Feng Z.; Li C. A Short-Wavelength Raman Optical Activity Spectrometer with Laser Source at 457nm for the Characterization of Chiral Molecules. Appl. Spectrosc. 2017, 71, 2211–2217. 10.1177/0003702817712260. PubMed DOI
Fulara A.; Dzwolak W. Bifurcated Hydrogen Bonds Stabilize Fibrils of Poly(L-glutamic) Acid. J. Phys. Chem. B 2010, 114, 8278–8283. 10.1021/jp102440n. PubMed DOI
Hug W.; Hangartner G. A novel high-throughput Raman spectrometer for polarization difference measurements. J. Raman Spectrosc. 1999, 30, 841–852. 10.1002/(sici)1097-4555(199909)30:9<841::aid-jrs456>3.3.co;2-t. DOI
Nafie L. A. Vibrational optical activity. Appl. Spectrosc. 1996, 50, 14A–26A. 10.1366/0003702963905952. PubMed DOI
Hug W. Virtual enantiomers as the solution of optical activity’s deterministic offset problem. Appl. Spectrosc. 2003, 57, 1–13. 10.1366/000370203321165142. PubMed DOI