Optimization of Mobile Phase Modifiers for Fast LC-MS-Based Untargeted Metabolomics and Lipidomics
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU20-01-00186
Ministry of Health
NU22-02-00161
Ministry of Health
20-21114S
Czech Science Foundation
21-00477S
Czech Science Foundation
LTAUSA19124
Ministry of Education Youth and Sports
LX22NPO5104
Ministry of Education Youth and Sports
PubMed
36768308
PubMed Central
PMC9916776
DOI
10.3390/ijms24031987
PII: ijms24031987
Knihovny.cz E-zdroje
- Klíčová slova
- LC-MS, additives, lipidomics, liquid chromatography, mass spectrometry, metabolomics, mobile phase, modifiers, optimization,
- MeSH
- chromatografie kapalinová metody MeSH
- formiáty MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací metody MeSH
- kyselina octová MeSH
- lipidomika * MeSH
- metabolomika metody MeSH
- tandemová hmotnostní spektrometrie * metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ammonium acetate MeSH Prohlížeč
- formiáty MeSH
- formic acid MeSH Prohlížeč
- kyselina octová MeSH
Liquid chromatography-mass spectrometry (LC-MS) is the method of choice for the untargeted profiling of biological samples. A multiplatform LC-MS-based approach is needed to screen polar metabolites and lipids comprehensively. Different mobile phase modifiers were tested to improve the electrospray ionization process during metabolomic and lipidomic profiling. For polar metabolites, hydrophilic interaction LC using a mobile phase with 10 mM ammonium formate/0.125% formic acid provided the best performance for amino acids, biogenic amines, sugars, nucleotides, acylcarnitines, and sugar phosphate, while reversed-phase LC (RPLC) with 0.1% formic acid outperformed for organic acids. For lipids, RPLC using a mobile phase with 10 mM ammonium formate or 10 mM ammonium formate with 0.1% formic acid permitted the high signal intensity of various lipid classes ionized in ESI(+) and robust retention times. For ESI(-), the mobile phase with 10 mM ammonium acetate with 0.1% acetic acid represented a reasonable compromise regarding the signal intensity of the detected lipids and the stability of retention times compared to 10 mM ammonium acetate alone or 0.02% acetic acid. Collectively, we show that untargeted methods should be evaluated not only on the total number of features but also based on common metabolites detected by a specific platform along with the long-term stability of retention times.
Zobrazit více v PubMed
Cajka T., Fiehn O. Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics. Anal. Chem. 2016;88:524–545. doi: 10.1021/acs.analchem.5b04491. PubMed DOI
Wang Z., Klipfell E., Bennett B.J., Koeth R., Levison B.S., Dugar B., Feldstein A.E., Britt E.B., Fu X., Chung Y.M., et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63. doi: 10.1038/nature09922. PubMed DOI PMC
Li X.M.S., Wang Z.N., Cajka T., Buffa J.A., Nemet I., Hurd A.G., Gu X.D., Skye S.M., Roberts A.B., Wu Y.P., et al. Untargeted metabolomics identifies trimethyllysine, a TMAO-producing nutrient precursor, as a predictor of incident cardiovascular disease risk. JCI Insight. 2018;3:e99096. doi: 10.1172/jci.insight.99096. PubMed DOI PMC
Nemet I., Saha P.P., Gupta N., Zhu W.F., Romano K.A., Skye S.M., Cajka T., Mohan M.L., Li L., Wu Y.P., et al. A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors. Cell. 2020;180:862–877. doi: 10.1016/j.cell.2020.02.016. PubMed DOI PMC
Wikoff W.R., Hanash S., DeFelice B., Miyamoto S., Barnett M., Zhao Y., Goodman G., Feng Z., Gandara D., Fiehn O., et al. Diacetylspermine is a novel prediagnostic serum biomarker for non-small-cell lung cancer and has additive performance with pro-surfactant protein B. J. Clin. Oncol. 2015;33:3880–3886. doi: 10.1200/JCO.2015.61.7779. PubMed DOI PMC
Mayers J.R., Wu C., Clish C.B., Kraft P., Torrence M.E., Fiske B.P., Yuan C., Bao Y., Townsend M.K., Tworoger S.S., et al. Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat. Med. 2014;20:1193–1198. doi: 10.1038/nm.3686. PubMed DOI PMC
Mihalik S.J., Goodpaster B.H., Kelley D.E., Chace D.H., Vockley J., Toledo F.G.S., DeLany J.P. Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity. 2010;18:1695–1700. doi: 10.1038/oby.2009.510. PubMed DOI PMC
Han X.L., Rozen S., Boyle S.H., Hellegers C., Cheng H., Burke J.R., Welsh-Bohmer K.A., Doraiswamy P.M., Kaddurah-Daouk R. Metabolomics in early Alzheimer’s disease: Identification of altered plasma sphingolipidome using shotgun lipidomics. PLoS ONE. 2011;6:e21643. doi: 10.1371/journal.pone.0021643. PubMed DOI PMC
Wolrab D., Jirasko R., Cifkova E., Horing M., Mei D., Chocholouskova M., Peterka O., Idkowiak J., Hrnciarova T., Kuchar L., et al. Lipidomic profiling of human serum enables detection of pancreatic cancer. Nat. Commun. 2022;13:124. doi: 10.1038/s41467-021-27765-9. PubMed DOI PMC
Tolstikov V., Moser A.J., Sarangarajan R., Narain N.R., Kiebish M.A. Current status of metabolomic biomarker discovery: Impact of study design and demographic characteristics. Metabolites. 2020;10:224. doi: 10.3390/metabo10060224. PubMed DOI PMC
Hornemann T. Lipidomics in Biomarker Research. In: von Eckardstein A., Binder C.J., editors. Prevention and Treatment of Atherosclerosis: Improving State-of-the-Art Management and Search for Novel Targets. Springer; Cham, Switzerland: 2022. pp. 493–510. PubMed
Fiehn O., Bloszies C.S. Using untargeted metabolomics for detecting exposome compounds. Curr. Opin. Toxicol. 2018;8:87–92. doi: 10.1016/j.cotox.2018.03.002. DOI
Rampler E., El Abiead Y., Schoeny H., Rusz M., Hildebrand F., Fitz V., Koellensperger G. Recurrent topics in mass spectrometry-based metabolomics and lipidomics-standardization, coverage, and throughput. Anal. Chem. 2021;93:519–545. doi: 10.1021/acs.analchem.0c04698. PubMed DOI PMC
Tang D.Q., Zou L., Yin X.X., Ong C.N. HILIC-MS for metabolomics: An attractive and complementary approach to RPLC-MS. Mass Spectrom. Rev. 2016;35:574–600. doi: 10.1002/mas.21445. PubMed DOI
Medina J., van der Velpen V., Teav T., Guitton Y., Gallart-Ayala H., Ivanisevic J. Single-step extraction coupled with targeted HILIC-MS/MS approach for comprehensive analysis of human plasma lipidome and polar metabolome. Metabolites. 2020;10:495. doi: 10.3390/metabo10120495. PubMed DOI PMC
Lange M., Ni Z.X., Criscuolo A., Fedorova M. Liquid chromatography techniques in lipidomics research. Chromatographia. 2019;82:77–100. doi: 10.1007/s10337-018-3656-4. DOI
Cajka T., Fiehn O. Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. TrAC-Trend Anal. Chem. 2014;61:192–206. doi: 10.1016/j.trac.2014.04.017. PubMed DOI PMC
Rakusanova S., Fiehn O., Cajka T. Toward building mass spectrometry-based metabolomics and lipidomics atlases for biological and clinical research. TrAC-Trend Anal. Chem. 2023;158:116825. doi: 10.1016/j.trac.2022.116825. DOI
Hosseinkhani F., Huang L.J., Dubbelman A.C., Guled F., Harms A.C., Hankemeier T. Systematic evaluation of HILIC stationary phases for global metabolomics of human plasma. Metabolites. 2022;12:165. doi: 10.3390/metabo12020165. PubMed DOI PMC
Contrepois K., Jiang L., Snyder M. Optimized analytical procedures for the untargeted metabolomic profiling of human urine and plasma by combining hydrophilic interaction (HILIC) and reverse-phase liquid chromatography (RPLC)-mass spectrometry. Mol. Cell. Proteom. 2015;14:1684–1695. doi: 10.1074/mcp.M114.046508. PubMed DOI PMC
Ding J., Ji J., Rabow Z., Shen T., Folz J., Brydges C.R., Fan S.L., Lu X.C., Mehta S., Showalter M.R., et al. A metabolome atlas of the aging mouse brain. Nat. Commun. 2021;12:6021. doi: 10.1038/s41467-021-26310-y. PubMed DOI PMC
Bonini P., Kind T., Tsugawa H., Barupal D.K., Fiehn O. Retip: Retention time prediction for compound annotation in untargeted metabolomics. Anal. Chem. 2020;92:7515–7522. doi: 10.1021/acs.analchem.9b05765. PubMed DOI PMC
Defossez E., Bourquin J., Reuss S., Rasmann S., Glauser G. Eight key rules for successful data-dependent acquisition in mass spectrometry-based metabolomics. Mass Spectrom. Rev. 2021;42:131–143. doi: 10.1002/mas.21715. PubMed DOI PMC
Birkler R.I.D., Stottrup N.B., Hermannson S., Nielsen T.T., Gregersen N., Botker H.E., Andreasen M.F., Johannsen M. A UPLC-MS/MS application for profiling of intermediary energy metabolites in microdialysis samples-A method for high-throughput. J. Pharmaceut. Biomed. Anal. 2010;53:983–990. doi: 10.1016/j.jpba.2010.06.005. PubMed DOI
Bojic L.A., McLaren D.G., Shah V., Previs S.F., Johns D.G., Castro-Perez J.M. Lipidome of atherosclerotic plaques from hypercholesterolemic rabbits. Int. J. Mol. Sci. 2014;15:23283–23293. doi: 10.3390/ijms151223283. PubMed DOI PMC
Bird S.S., Marur V.R., Stavrovskaya I.G., Kristal B.S. Qualitative characterization of the rat liver mitochondrial lipidome using LC–MS profiling and high energy collisional dissociation (HCD) all ion fragmentation. Metabolomics. 2013;9:S67–S83. doi: 10.1007/s11306-012-0400-1. PubMed DOI PMC
Choi J.M., Kim T.E., Cho J.Y., Lee H.J., Jung B.H. Development of lipidomic platform and phosphatidylcholine retention time index for lipid profiling of rosuvastatin treated human plasma. J. Chromatogr. B. 2014;944C:157–165. doi: 10.1016/j.jchromb.2013.10.029. PubMed DOI
Gallart-Ayala H., Courant F., Severe S., Antignac J.P., Morio F., Abadie J., Le Bizec B. Versatile lipid profiling by liquid chromatography-high resolution mass spectrometry using all ion fragmentation and polarity switching. Preliminary application for serum samples phenotyping related to canine mammary cancer. Anal. Chim. Acta. 2013;796:75–83. doi: 10.1016/j.aca.2013.08.006. PubMed DOI
Cajka T., Fiehn O. Increasing lipidomic coverage by selecting optimal mobile-phase modifiers in LC–MS of blood plasma. Metabolomics. 2016;12:34. doi: 10.1007/s11306-015-0929-x. DOI
Monnin C., Ramrup P., Daigle-Young C., Vuckovic D. Improving negative liquid chromatography/electrospray ionization mass spectrometry lipidomic analysis of human plasma using acetic acid as a mobile-phase additive. Rapid Commun. Mass. Spectrom. 2018;32:201–211. doi: 10.1002/rcm.8024. PubMed DOI
Creydt M., Fischer M. Plant metabolomics: Maximizing metabolome coverage by optimizing mobile phase additives for nontargeted mass spectrometry in positive and negative electrospray ionization mode. Anal. Chem. 2017;89:10474–10486. doi: 10.1021/acs.analchem.7b02592. PubMed DOI
Tsugawa H., Cajka T., Kind T., Ma Y., Higgins B., Ikeda K., Kanazawa M., VanderGheynst J., Fiehn O., Arita M. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods. 2015;12:523–526. doi: 10.1038/nmeth.3393. PubMed DOI PMC
Tsugawa H., Ikeda K., Takahashi M., Satoh A., Mori Y., Uchino H., Okahashi N., Yamada Y., Tada I., Bonini P., et al. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol. 2020;38:1159–1163. doi: 10.1038/s41587-020-0531-2. PubMed DOI
Lopes M., Brejchova K., Riecan M., Novakova M., Rossmeisl M., Cajka T., Kuda O. Metabolomics atlas of oral 13C-glucose tolerance test in mice. Cell Rep. 2021;37:109833. doi: 10.1016/j.celrep.2021.109833. PubMed DOI
Sistilli G., Kalendova V., Cajka T., Irodenko I., Bardova K., Oseeva M., Zacek P., Kroupova P., Horakova O., Lackner K., et al. Krill oil supplementation reduces exacerbated hepatic steatosis induced by thermoneutral housing in mice with diet-induced obesity. Nutrients. 2021;13:437. doi: 10.3390/nu13020437. PubMed DOI PMC
Matyash V., Liebisch G., Kurzchalia T.V., Shevchenko A., Schwudke D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid Res. 2008;49:1137–1146. doi: 10.1194/jlr.D700041-JLR200. PubMed DOI PMC
Haplotype variability in mitochondrial rRNA predisposes to metabolic syndrome
Two mitochondrial DNA polymorphisms modulate cardiolipin binding and lead to synthetic lethality
Epitranscriptomic regulation in fasting hearts: implications for cardiac health
Short-Term Stability of Serum and Liver Extracts for Untargeted Metabolomics and Lipidomics