Optimization of Mobile Phase Modifiers for Fast LC-MS-Based Untargeted Metabolomics and Lipidomics

. 2023 Jan 19 ; 24 (3) : . [epub] 20230119

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36768308

Grantová podpora
NU20-01-00186 Ministry of Health
NU22-02-00161 Ministry of Health
20-21114S Czech Science Foundation
21-00477S Czech Science Foundation
LTAUSA19124 Ministry of Education Youth and Sports
LX22NPO5104 Ministry of Education Youth and Sports

Liquid chromatography-mass spectrometry (LC-MS) is the method of choice for the untargeted profiling of biological samples. A multiplatform LC-MS-based approach is needed to screen polar metabolites and lipids comprehensively. Different mobile phase modifiers were tested to improve the electrospray ionization process during metabolomic and lipidomic profiling. For polar metabolites, hydrophilic interaction LC using a mobile phase with 10 mM ammonium formate/0.125% formic acid provided the best performance for amino acids, biogenic amines, sugars, nucleotides, acylcarnitines, and sugar phosphate, while reversed-phase LC (RPLC) with 0.1% formic acid outperformed for organic acids. For lipids, RPLC using a mobile phase with 10 mM ammonium formate or 10 mM ammonium formate with 0.1% formic acid permitted the high signal intensity of various lipid classes ionized in ESI(+) and robust retention times. For ESI(-), the mobile phase with 10 mM ammonium acetate with 0.1% acetic acid represented a reasonable compromise regarding the signal intensity of the detected lipids and the stability of retention times compared to 10 mM ammonium acetate alone or 0.02% acetic acid. Collectively, we show that untargeted methods should be evaluated not only on the total number of features but also based on common metabolites detected by a specific platform along with the long-term stability of retention times.

Zobrazit více v PubMed

Cajka T., Fiehn O. Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics. Anal. Chem. 2016;88:524–545. doi: 10.1021/acs.analchem.5b04491. PubMed DOI

Wang Z., Klipfell E., Bennett B.J., Koeth R., Levison B.S., Dugar B., Feldstein A.E., Britt E.B., Fu X., Chung Y.M., et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63. doi: 10.1038/nature09922. PubMed DOI PMC

Li X.M.S., Wang Z.N., Cajka T., Buffa J.A., Nemet I., Hurd A.G., Gu X.D., Skye S.M., Roberts A.B., Wu Y.P., et al. Untargeted metabolomics identifies trimethyllysine, a TMAO-producing nutrient precursor, as a predictor of incident cardiovascular disease risk. JCI Insight. 2018;3:e99096. doi: 10.1172/jci.insight.99096. PubMed DOI PMC

Nemet I., Saha P.P., Gupta N., Zhu W.F., Romano K.A., Skye S.M., Cajka T., Mohan M.L., Li L., Wu Y.P., et al. A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors. Cell. 2020;180:862–877. doi: 10.1016/j.cell.2020.02.016. PubMed DOI PMC

Wikoff W.R., Hanash S., DeFelice B., Miyamoto S., Barnett M., Zhao Y., Goodman G., Feng Z., Gandara D., Fiehn O., et al. Diacetylspermine is a novel prediagnostic serum biomarker for non-small-cell lung cancer and has additive performance with pro-surfactant protein B. J. Clin. Oncol. 2015;33:3880–3886. doi: 10.1200/JCO.2015.61.7779. PubMed DOI PMC

Mayers J.R., Wu C., Clish C.B., Kraft P., Torrence M.E., Fiske B.P., Yuan C., Bao Y., Townsend M.K., Tworoger S.S., et al. Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat. Med. 2014;20:1193–1198. doi: 10.1038/nm.3686. PubMed DOI PMC

Mihalik S.J., Goodpaster B.H., Kelley D.E., Chace D.H., Vockley J., Toledo F.G.S., DeLany J.P. Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity. 2010;18:1695–1700. doi: 10.1038/oby.2009.510. PubMed DOI PMC

Han X.L., Rozen S., Boyle S.H., Hellegers C., Cheng H., Burke J.R., Welsh-Bohmer K.A., Doraiswamy P.M., Kaddurah-Daouk R. Metabolomics in early Alzheimer’s disease: Identification of altered plasma sphingolipidome using shotgun lipidomics. PLoS ONE. 2011;6:e21643. doi: 10.1371/journal.pone.0021643. PubMed DOI PMC

Wolrab D., Jirasko R., Cifkova E., Horing M., Mei D., Chocholouskova M., Peterka O., Idkowiak J., Hrnciarova T., Kuchar L., et al. Lipidomic profiling of human serum enables detection of pancreatic cancer. Nat. Commun. 2022;13:124. doi: 10.1038/s41467-021-27765-9. PubMed DOI PMC

Tolstikov V., Moser A.J., Sarangarajan R., Narain N.R., Kiebish M.A. Current status of metabolomic biomarker discovery: Impact of study design and demographic characteristics. Metabolites. 2020;10:224. doi: 10.3390/metabo10060224. PubMed DOI PMC

Hornemann T. Lipidomics in Biomarker Research. In: von Eckardstein A., Binder C.J., editors. Prevention and Treatment of Atherosclerosis: Improving State-of-the-Art Management and Search for Novel Targets. Springer; Cham, Switzerland: 2022. pp. 493–510. PubMed

Fiehn O., Bloszies C.S. Using untargeted metabolomics for detecting exposome compounds. Curr. Opin. Toxicol. 2018;8:87–92. doi: 10.1016/j.cotox.2018.03.002. DOI

Rampler E., El Abiead Y., Schoeny H., Rusz M., Hildebrand F., Fitz V., Koellensperger G. Recurrent topics in mass spectrometry-based metabolomics and lipidomics-standardization, coverage, and throughput. Anal. Chem. 2021;93:519–545. doi: 10.1021/acs.analchem.0c04698. PubMed DOI PMC

Tang D.Q., Zou L., Yin X.X., Ong C.N. HILIC-MS for metabolomics: An attractive and complementary approach to RPLC-MS. Mass Spectrom. Rev. 2016;35:574–600. doi: 10.1002/mas.21445. PubMed DOI

Medina J., van der Velpen V., Teav T., Guitton Y., Gallart-Ayala H., Ivanisevic J. Single-step extraction coupled with targeted HILIC-MS/MS approach for comprehensive analysis of human plasma lipidome and polar metabolome. Metabolites. 2020;10:495. doi: 10.3390/metabo10120495. PubMed DOI PMC

Lange M., Ni Z.X., Criscuolo A., Fedorova M. Liquid chromatography techniques in lipidomics research. Chromatographia. 2019;82:77–100. doi: 10.1007/s10337-018-3656-4. DOI

Cajka T., Fiehn O. Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. TrAC-Trend Anal. Chem. 2014;61:192–206. doi: 10.1016/j.trac.2014.04.017. PubMed DOI PMC

Rakusanova S., Fiehn O., Cajka T. Toward building mass spectrometry-based metabolomics and lipidomics atlases for biological and clinical research. TrAC-Trend Anal. Chem. 2023;158:116825. doi: 10.1016/j.trac.2022.116825. DOI

Hosseinkhani F., Huang L.J., Dubbelman A.C., Guled F., Harms A.C., Hankemeier T. Systematic evaluation of HILIC stationary phases for global metabolomics of human plasma. Metabolites. 2022;12:165. doi: 10.3390/metabo12020165. PubMed DOI PMC

Contrepois K., Jiang L., Snyder M. Optimized analytical procedures for the untargeted metabolomic profiling of human urine and plasma by combining hydrophilic interaction (HILIC) and reverse-phase liquid chromatography (RPLC)-mass spectrometry. Mol. Cell. Proteom. 2015;14:1684–1695. doi: 10.1074/mcp.M114.046508. PubMed DOI PMC

Ding J., Ji J., Rabow Z., Shen T., Folz J., Brydges C.R., Fan S.L., Lu X.C., Mehta S., Showalter M.R., et al. A metabolome atlas of the aging mouse brain. Nat. Commun. 2021;12:6021. doi: 10.1038/s41467-021-26310-y. PubMed DOI PMC

Bonini P., Kind T., Tsugawa H., Barupal D.K., Fiehn O. Retip: Retention time prediction for compound annotation in untargeted metabolomics. Anal. Chem. 2020;92:7515–7522. doi: 10.1021/acs.analchem.9b05765. PubMed DOI PMC

Defossez E., Bourquin J., Reuss S., Rasmann S., Glauser G. Eight key rules for successful data-dependent acquisition in mass spectrometry-based metabolomics. Mass Spectrom. Rev. 2021;42:131–143. doi: 10.1002/mas.21715. PubMed DOI PMC

Birkler R.I.D., Stottrup N.B., Hermannson S., Nielsen T.T., Gregersen N., Botker H.E., Andreasen M.F., Johannsen M. A UPLC-MS/MS application for profiling of intermediary energy metabolites in microdialysis samples-A method for high-throughput. J. Pharmaceut. Biomed. Anal. 2010;53:983–990. doi: 10.1016/j.jpba.2010.06.005. PubMed DOI

Bojic L.A., McLaren D.G., Shah V., Previs S.F., Johns D.G., Castro-Perez J.M. Lipidome of atherosclerotic plaques from hypercholesterolemic rabbits. Int. J. Mol. Sci. 2014;15:23283–23293. doi: 10.3390/ijms151223283. PubMed DOI PMC

Bird S.S., Marur V.R., Stavrovskaya I.G., Kristal B.S. Qualitative characterization of the rat liver mitochondrial lipidome using LC–MS profiling and high energy collisional dissociation (HCD) all ion fragmentation. Metabolomics. 2013;9:S67–S83. doi: 10.1007/s11306-012-0400-1. PubMed DOI PMC

Choi J.M., Kim T.E., Cho J.Y., Lee H.J., Jung B.H. Development of lipidomic platform and phosphatidylcholine retention time index for lipid profiling of rosuvastatin treated human plasma. J. Chromatogr. B. 2014;944C:157–165. doi: 10.1016/j.jchromb.2013.10.029. PubMed DOI

Gallart-Ayala H., Courant F., Severe S., Antignac J.P., Morio F., Abadie J., Le Bizec B. Versatile lipid profiling by liquid chromatography-high resolution mass spectrometry using all ion fragmentation and polarity switching. Preliminary application for serum samples phenotyping related to canine mammary cancer. Anal. Chim. Acta. 2013;796:75–83. doi: 10.1016/j.aca.2013.08.006. PubMed DOI

Cajka T., Fiehn O. Increasing lipidomic coverage by selecting optimal mobile-phase modifiers in LC–MS of blood plasma. Metabolomics. 2016;12:34. doi: 10.1007/s11306-015-0929-x. DOI

Monnin C., Ramrup P., Daigle-Young C., Vuckovic D. Improving negative liquid chromatography/electrospray ionization mass spectrometry lipidomic analysis of human plasma using acetic acid as a mobile-phase additive. Rapid Commun. Mass. Spectrom. 2018;32:201–211. doi: 10.1002/rcm.8024. PubMed DOI

Creydt M., Fischer M. Plant metabolomics: Maximizing metabolome coverage by optimizing mobile phase additives for nontargeted mass spectrometry in positive and negative electrospray ionization mode. Anal. Chem. 2017;89:10474–10486. doi: 10.1021/acs.analchem.7b02592. PubMed DOI

Tsugawa H., Cajka T., Kind T., Ma Y., Higgins B., Ikeda K., Kanazawa M., VanderGheynst J., Fiehn O., Arita M. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods. 2015;12:523–526. doi: 10.1038/nmeth.3393. PubMed DOI PMC

Tsugawa H., Ikeda K., Takahashi M., Satoh A., Mori Y., Uchino H., Okahashi N., Yamada Y., Tada I., Bonini P., et al. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol. 2020;38:1159–1163. doi: 10.1038/s41587-020-0531-2. PubMed DOI

Lopes M., Brejchova K., Riecan M., Novakova M., Rossmeisl M., Cajka T., Kuda O. Metabolomics atlas of oral 13C-glucose tolerance test in mice. Cell Rep. 2021;37:109833. doi: 10.1016/j.celrep.2021.109833. PubMed DOI

Sistilli G., Kalendova V., Cajka T., Irodenko I., Bardova K., Oseeva M., Zacek P., Kroupova P., Horakova O., Lackner K., et al. Krill oil supplementation reduces exacerbated hepatic steatosis induced by thermoneutral housing in mice with diet-induced obesity. Nutrients. 2021;13:437. doi: 10.3390/nu13020437. PubMed DOI PMC

Matyash V., Liebisch G., Kurzchalia T.V., Shevchenko A., Schwudke D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid Res. 2008;49:1137–1146. doi: 10.1194/jlr.D700041-JLR200. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Haplotype variability in mitochondrial rRNA predisposes to metabolic syndrome

. 2024 Sep 11 ; 7 (1) : 1116. [epub] 20240911

Metabolomics and Lipidomics for Studying Metabolic Syndrome: Insights into Cardiovascular Diseases, Type 1 & 2 Diabetes, and Metabolic Dysfunction-Associated Steatotic Liver Disease

. 2024 Aug 30 ; 73 (S1) : S165-S183.

Exploring contrast-enhancing staining agents for studying adipose tissue through contrast-enhanced computed tomography

. 2024 Jul ; 65 (7) : 100572. [epub] 20240530

Hydrophilic Interaction Liquid Chromatography-Hydrogen/Deuterium Exchange-Mass Spectrometry (HILIC-HDX-MS) for Untargeted Metabolomics

. 2024 Mar 01 ; 25 (5) : . [epub] 20240301

Two mitochondrial DNA polymorphisms modulate cardiolipin binding and lead to synthetic lethality

. 2024 Jan 19 ; 15 (1) : 611. [epub] 20240119

Epitranscriptomic regulation in fasting hearts: implications for cardiac health

. 2024 Jan ; 21 (1) : 1-14. [epub] 20240207

Exploring the Impact of Organic Solvent Quality and Unusual Adduct Formation during LC-MS-Based Lipidomic Profiling

. 2023 Aug 22 ; 13 (9) : . [epub] 20230822

Short-Term Stability of Serum and Liver Extracts for Untargeted Metabolomics and Lipidomics

. 2023 Apr 24 ; 12 (5) : . [epub] 20230424

Chemistry towards Biology

. 2023 Feb 16 ; 24 (4) : . [epub] 20230216

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...