Two mitochondrial DNA polymorphisms modulate cardiolipin binding and lead to synthetic lethality
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Wellcome Trust - United Kingdom
PubMed
38242869
PubMed Central
PMC10799063
DOI
10.1038/s41467-024-44964-2
PII: 10.1038/s41467-024-44964-2
Knihovny.cz E-zdroje
- MeSH
- Drosophila genetika MeSH
- kardiolipiny * genetika metabolismus MeSH
- mitochondriální DNA * genetika metabolismus MeSH
- mitochondrie genetika metabolismus MeSH
- respirační komplex IV metabolismus MeSH
- umělé letální mutace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kardiolipiny * MeSH
- mitochondriální DNA * MeSH
- respirační komplex IV MeSH
Genetic screens have been used extensively to probe interactions between nuclear genes and their impact on phenotypes. Probing interactions between mitochondrial genes and their phenotypic outcome, however, has not been possible due to a lack of tools to map the responsible polymorphisms. Here, using a toolkit we previously established in Drosophila, we isolate over 300 recombinant mitochondrial genomes and map a naturally occurring polymorphism at the cytochrome c oxidase III residue 109 (CoIII109) that fully rescues the lethality and other defects associated with a point mutation in cytochrome c oxidase I (CoIT300I). Through lipidomics profiling, biochemical assays and phenotypic analyses, we show that the CoIII109 polymorphism modulates cardiolipin binding to prevent complex IV instability caused by the CoIT300I mutation. This study demonstrates the feasibility of genetic interaction screens in animal mitochondrial DNA. It unwraps the complex intra-genomic interplays underlying disorders linked to mitochondrial DNA and how they influence disease expression.
Cambridge Institute for Medical Research University of Cambridge Cambridge CB2 0XY UK
Department of Genetics University of Cambridge Downing Street Cambridge CB2 3EH UK
Laverock Therapeutics Stevenage Bioscience Catalyst Gunnels Wood Road Stevenage SG1 2FX UK
School of Biosciences University of Birmingham Birmingham B15 2TT UK
Wellcome Cancer Research UK Gurdon Institute Tennis Court Road Cambridge CB2 1QN UK
Zobrazit více v PubMed
Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease. Nat. Rev. Genet. 2005;6:389–402. doi: 10.1038/nrg1606. PubMed DOI PMC
Wallace DC. A mitochondrial bioenergetic etiology of disease. J. Clin. Investig. 2013;123:1405–1412. doi: 10.1172/JCI61398. PubMed DOI PMC
Stenton SL, Prokisch H. Genetics of mitochondrial diseases: Identifying mutations to help diagnosis. EBioMedicine. 2020;56:102784. doi: 10.1016/j.ebiom.2020.102784. PubMed DOI PMC
Gropman A, et al. Variable clinical manifestation of homoplasmic G14459A mitochondrial DNA mutation. Am. J. Med. Genet. A. 2004;124A:377–382. doi: 10.1002/ajmg.a.20456. PubMed DOI
Meyerson C, Van Stavern G, McClelland C. Leber hereditary optic neuropathy: current perspectives. Clin. Ophthalmol. 2015;9:1165–1176. PubMed PMC
Johnson KR, Zheng QY, Bykhovskaya Y, Spirina O, Fischel-Ghodsian N. A nuclear-mitochondrial DNA interaction affecting hearing impairment in mice. Nat. Genet. 2001;27:191–194. doi: 10.1038/84831. PubMed DOI PMC
Hudson G, et al. Identification of an X-chromosomal locus and haplotype modulating the phenotype of a mitochondrial DNA disorder. Am. J. Hum. Genet. 2005;77:1086–1091. doi: 10.1086/498176. PubMed DOI PMC
Wang F, et al. Point mutations in KAL1 and the mitochondrial gene MT-tRNAcys synergize to produce Kallmann syndrome phenotype. Sci. Rep. 2015;5:13050. doi: 10.1038/srep13050. PubMed DOI PMC
Carelli V, Giordano C, d’Amati G. Pathogenic expression of homoplasmic mtDNA mutations needs a complex nuclear-mitochondrial interaction. Trends Genet. 2003;19:257–262. doi: 10.1016/S0168-9525(03)00072-6. PubMed DOI
Queen RA, Steyn JS, Lord P, Elson JL. Mitochondrial DNA sequence context in the penetrance of mitochondrial t-RNA mutations: a study across multiple lineages with diagnostic implications. PLoS ONE. 2017;12:e0187862. doi: 10.1371/journal.pone.0187862. PubMed DOI PMC
Klink GV, O’Keefe H, Gogna A, Bazykin GA, Elson JL. A broad comparative genomics approach to understanding the pathogenicity of Complex I mutations. Sci. Rep. 2021;11:19578. doi: 10.1038/s41598-021-98360-7. PubMed DOI PMC
Swalwell H, et al. A homoplasmic mtDNA variant can influence the phenotype of the pathogenic m.7472Cins MTTS1 mutation: are two mutations better than one? Eur. J. Hum. Genet. 2008;16:1265–1274. doi: 10.1038/ejhg.2008.65. PubMed DOI
Man PYW, et al. Mitochondrial DNA haplogroup distribution within Leber hereditary optic neuropathy pedigrees. J. Med. Genet. 2004;41:e41. doi: 10.1136/jmg.2003.011247. PubMed DOI PMC
Mok BY, et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature. 2020;583:631–637. doi: 10.1038/s41586-020-2477-4. PubMed DOI PMC
Gammage PA, Moraes CT, Minczuk M. Mitochondrial genome engineering: the revolution may not be CRISPR-ized. Trends Genet. 2018;34:101–110. doi: 10.1016/j.tig.2017.11.001. PubMed DOI PMC
Moraes CT. Current strategies towards therapeutic manipulation of mtDNA heteroplasmy. Front. Biosci. 2017;22:991–1010. doi: 10.2741/4529. PubMed DOI PMC
Silva-Pinheiro P, et al. In vivo mitochondrial base editing via adeno-associated viral delivery to mouse post-mitotic tissue. Nat. Commun. 2022;13:750. doi: 10.1038/s41467-022-28358-w. PubMed DOI PMC
Silva-Pinheiro P, et al. A library of base editors for the precise ablation of all protein-coding genes in the mouse mitochondrial genome. Nat. Biomed. Eng. 2023;7:692–703. doi: 10.1038/s41551-022-00968-1. PubMed DOI PMC
Cho S-I, et al. Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases. Cell. 2022;185:1764–1776.e12. doi: 10.1016/j.cell.2022.03.039. PubMed DOI
Ma H, O’Farrell PH. Selections that isolate recombinant mitochondrial genomes in animals. eLife. 2015;4:e07247. doi: 10.7554/eLife.07247. PubMed DOI PMC
Hagström, E., Freyer, C., Battersby, B. J., Stewart, J. B. & Larsson, N.-G. No recombination of mtDNA after heteroplasmy for 50 generations in the mouse maternal germline. Nucleic Acids Res. 42, 1111–1116 (2013). PubMed PMC
Ji Y, et al. Complex I mutations synergize to worsen the phenotypic expression of Leber’s hereditary optic neuropathy. J. Biol. Chem. 2020;295:13224–13238. doi: 10.1074/jbc.RA120.014603. PubMed DOI PMC
Klucnika A, Ma H. Mapping and editing animal mitochondrial genomes: can we overcome the challenges? Philos. Trans. R. Soc. B: Biol. Sci. 2020;375:20190187. doi: 10.1098/rstb.2019.0187. PubMed DOI PMC
Xu H, DeLuca SZ, O’Farrell PH. Manipulating the metazoan mitochondrial genome with targeted restriction enzymes. Science. 2008;321:575–577. doi: 10.1126/science.1160226. PubMed DOI PMC
Hill JH, Chen Z, Xu H. Selective propagation of functional mitochondrial DNA during oogenesis restricts the transmission of a deleterious mitochondrial variant. Nat. Genet. 2014;46:389–392. doi: 10.1038/ng.2920. PubMed DOI PMC
Ma H, Xu H, O’Farrell PH. Transmission of mitochondrial mutations and action of purifying selection in Drosophila melanogaster. Nat. Genet. 2014;46:393–397. doi: 10.1038/ng.2919. PubMed DOI PMC
Chen Z, et al. Genetic mosaic analysis of a deleterious mitochondrial DNA mutation in Drosophila reveals novel aspects of mitochondrial regulation and function. Mol. Biol. Cell. 2015;26:674–684. doi: 10.1091/mbc.E14-11-1513. PubMed DOI PMC
Tennessen JM, Baker KD, Lam G, Evans J, Thummel CS. The Drosophila estrogen-related receptor directs a metabolic switch that supports developmental growth. Cell Metab. 2011;13:139–148. doi: 10.1016/j.cmet.2011.01.005. PubMed DOI PMC
Merkey AB, Wong CK, Hoshizaki DK, Gibbs AG. Energetics of metamorphosis in Drosophila melanogaster. J. Insect Physiol. 2011;57:1437–1445. doi: 10.1016/j.jinsphys.2011.07.013. PubMed DOI
Barry, W. E. & Thummel, C. S. The Drosophila HNF4 nuclear receptor promotes glucose-stimulated insulin secretion and mitochondrial function in adults. eLife5, e11183 (2016). PubMed PMC
Beebe K, et al. Drosophila estrogen-related receptor directs a transcriptional switch that supports adult glycolysis and lipogenesis. Genes Dev. 2020;34:701–714. doi: 10.1101/gad.335281.119. PubMed DOI PMC
Nishimura T. Feedforward regulation of glucose metabolism by steroid hormones drives a developmental transition in Drosophila. Curr. Biol. 2020;30:3624–3632.e5. doi: 10.1016/j.cub.2020.06.043. PubMed DOI
Wolff JN, et al. Evolutionary implications of mitochondrial genetic variation: mitochondrial genetic effects on OXPHOS respiration and mitochondrial quantity change with age and sex in fruit flies. J. Evol. Biol. 2016;29:736–747. doi: 10.1111/jeb.12822. PubMed DOI
Bevers RPJ, et al. Mitochondrial haplotypes affect metabolic phenotypes in the Drosophila Genetic Reference Panel. Nat. Metab. 2019;1:1226–1242. doi: 10.1038/s42255-019-0147-3. PubMed DOI
Zong S, et al. Structure of the intact 14-subunit human cytochrome c oxidase. Cell Res. 2018;28:1026–1034. doi: 10.1038/s41422-018-0071-1. PubMed DOI PMC
Saric A, Andreau K, Armand A-S, Møller IM, Petit PX. Barth syndrome: from mitochondrial dysfunctions associated with aberrant production of reactive oxygen species to pluripotent stem cell studies. Front. Genet. 2015;6:359. PubMed PMC
Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Role of cardiolipin in mitochondrial function and dynamics in health and disease: molecular and pharmacological aspects. Cells. 2019;8:728. doi: 10.3390/cells8070728. PubMed DOI PMC
Musatov, A. & Sedlák, E. Role of cardiolipin in stability of integral membrane proteins. Biochimie142, 102–111 (2017). PubMed
Schlame M. Thematic Review Series: Glycerolipids. Cardiolipin synthesis for the assembly of bacterial and mitochondrial membranes. J. Lipid Res. 2008;49:1607–1620. doi: 10.1194/jlr.R700018-JLR200. PubMed DOI PMC
Sedlák E, Robinson NC. Phospholipase A2 digestion of cardiolipin bound to bovine cytochrome c oxidase alters both activity and quaternary structure. Biochemistry. 1999;38:14966–14972. doi: 10.1021/bi9914053. PubMed DOI
Sedlák E, Robinson NC. Destabilization of the quaternary structure of bovine heart cytochrome c oxidase upon removal of tightly bound cardiolipin. Biochemistry. 2015;54:5569–5577. doi: 10.1021/acs.biochem.5b00540. PubMed DOI
Shinzawa-Itoh K, et al. Structures and physiological roles of 13 integral lipids of bovine heart cytochrome c oxidase. EMBO J. 2007;26:1713–1725. doi: 10.1038/sj.emboj.7601618. PubMed DOI PMC
Pettersen EF, et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 2021;30:70–82. doi: 10.1002/pro.3943. PubMed DOI PMC
Goddard TD, et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 2018;27:14–25. doi: 10.1002/pro.3235. PubMed DOI PMC
Xu Y, et al. A Drosophila model of Barth syndrome. Proc. Natl. Acad. Sci. USA. 2006;103:11584–11588. doi: 10.1073/pnas.0603242103. PubMed DOI PMC
Xu Y, et al. Characterization of tafazzin splice variants from humans and fruit flies. J. Biol. Chem. 2009;284:29230–29239. doi: 10.1074/jbc.M109.016642. PubMed DOI PMC
Průchová, P. et al. Antioxidant role and cardiolipin remodeling by redox-activated mitochondrial Ca2+-independent phospholipase A2γ in the brain. Antioxidants11, 198 (2022). PubMed PMC
Kiebish MA, et al. Dysfunctional cardiac mitochondrial bioenergetic, lipidomic, and signaling in a murine model of Barth syndrome. J. Lipid Res. 2013;54:1312–1325. doi: 10.1194/jlr.M034728. PubMed DOI PMC
van der Veen JN, et al. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim. Biophys. Acta. 2017;1859:1558–1572. doi: 10.1016/j.bbamem.2017.04.006. PubMed DOI
Pennington ER, Funai K, Brown DA, Shaikh SR. The role of cardiolipin concentration and acyl chain composition on mitochondrial inner membrane molecular organization and function. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2019;1864:1039–1052. doi: 10.1016/j.bbalip.2019.03.012. PubMed DOI PMC
Luévano-Martínez LA, Pinto IFD, Yoshinaga MY, Miyamoto S. In yeast, cardiolipin unsaturation level plays a key role in mitochondrial function and inner membrane integrity. Biochim. Biophys. Acta Bioenerg. 2022;1863:148587. doi: 10.1016/j.bbabio.2022.148587. PubMed DOI
Betts, M. J. & Russell, R. B. Amino-Acid Properties and Consequences of Substitutions, in Bioinformatics for Geneticists: A Bioinformatics Primer for the Analysis of Genetic Data, 2nd Edition (ed. Barnes, M. R.), (John Wiley & Sons Ltd, England, 2007).
Bahadir A, Erduran E, Değer O, Birinci Y, Ayar A. Augmented mitochondrial cytochrome c oxidase activity in children with iron deficiency: a tandem between iron and copper? Arch. Med. Sci. 2018;1:151–156. doi: 10.5114/aoms.2016.59602. PubMed DOI PMC
Klucnika, A. et al. REC drives recombination to repair double-strand breaks in animal mtDNA. J. Cell Biol. 222, e202201137 (2023). PubMed PMC
Lopes M, et al. Metabolomics atlas of oral 13C-glucose tolerance test in mice. Cell Rep. 2021;37:109833. doi: 10.1016/j.celrep.2021.109833. PubMed DOI
Cajka T, et al. Optimization of mobile phase modifiers for fast LC-MS-based untargeted metabolomics and lipidomics. Int. J. Mol. Sci. 2023;24:1987. doi: 10.3390/ijms24031987. PubMed DOI PMC
Tsugawa H, et al. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol. 2020;38:1159–1163. doi: 10.1038/s41587-020-0531-2. PubMed DOI