Two mitochondrial DNA polymorphisms modulate cardiolipin binding and lead to synthetic lethality

. 2024 Jan 19 ; 15 (1) : 611. [epub] 20240119

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38242869

Grantová podpora
Wellcome Trust - United Kingdom

Odkazy

PubMed 38242869
PubMed Central PMC10799063
DOI 10.1038/s41467-024-44964-2
PII: 10.1038/s41467-024-44964-2
Knihovny.cz E-zdroje

Genetic screens have been used extensively to probe interactions between nuclear genes and their impact on phenotypes. Probing interactions between mitochondrial genes and their phenotypic outcome, however, has not been possible due to a lack of tools to map the responsible polymorphisms. Here, using a toolkit we previously established in Drosophila, we isolate over 300 recombinant mitochondrial genomes and map a naturally occurring polymorphism at the cytochrome c oxidase III residue 109 (CoIII109) that fully rescues the lethality and other defects associated with a point mutation in cytochrome c oxidase I (CoIT300I). Through lipidomics profiling, biochemical assays and phenotypic analyses, we show that the CoIII109 polymorphism modulates cardiolipin binding to prevent complex IV instability caused by the CoIT300I mutation. This study demonstrates the feasibility of genetic interaction screens in animal mitochondrial DNA. It unwraps the complex intra-genomic interplays underlying disorders linked to mitochondrial DNA and how they influence disease expression.

Zobrazit více v PubMed

Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease. Nat. Rev. Genet. 2005;6:389–402. doi: 10.1038/nrg1606. PubMed DOI PMC

Wallace DC. A mitochondrial bioenergetic etiology of disease. J. Clin. Investig. 2013;123:1405–1412. doi: 10.1172/JCI61398. PubMed DOI PMC

Stenton SL, Prokisch H. Genetics of mitochondrial diseases: Identifying mutations to help diagnosis. EBioMedicine. 2020;56:102784. doi: 10.1016/j.ebiom.2020.102784. PubMed DOI PMC

Gropman A, et al. Variable clinical manifestation of homoplasmic G14459A mitochondrial DNA mutation. Am. J. Med. Genet. A. 2004;124A:377–382. doi: 10.1002/ajmg.a.20456. PubMed DOI

Meyerson C, Van Stavern G, McClelland C. Leber hereditary optic neuropathy: current perspectives. Clin. Ophthalmol. 2015;9:1165–1176. PubMed PMC

Johnson KR, Zheng QY, Bykhovskaya Y, Spirina O, Fischel-Ghodsian N. A nuclear-mitochondrial DNA interaction affecting hearing impairment in mice. Nat. Genet. 2001;27:191–194. doi: 10.1038/84831. PubMed DOI PMC

Hudson G, et al. Identification of an X-chromosomal locus and haplotype modulating the phenotype of a mitochondrial DNA disorder. Am. J. Hum. Genet. 2005;77:1086–1091. doi: 10.1086/498176. PubMed DOI PMC

Wang F, et al. Point mutations in KAL1 and the mitochondrial gene MT-tRNAcys synergize to produce Kallmann syndrome phenotype. Sci. Rep. 2015;5:13050. doi: 10.1038/srep13050. PubMed DOI PMC

Carelli V, Giordano C, d’Amati G. Pathogenic expression of homoplasmic mtDNA mutations needs a complex nuclear-mitochondrial interaction. Trends Genet. 2003;19:257–262. doi: 10.1016/S0168-9525(03)00072-6. PubMed DOI

Queen RA, Steyn JS, Lord P, Elson JL. Mitochondrial DNA sequence context in the penetrance of mitochondrial t-RNA mutations: a study across multiple lineages with diagnostic implications. PLoS ONE. 2017;12:e0187862. doi: 10.1371/journal.pone.0187862. PubMed DOI PMC

Klink GV, O’Keefe H, Gogna A, Bazykin GA, Elson JL. A broad comparative genomics approach to understanding the pathogenicity of Complex I mutations. Sci. Rep. 2021;11:19578. doi: 10.1038/s41598-021-98360-7. PubMed DOI PMC

Swalwell H, et al. A homoplasmic mtDNA variant can influence the phenotype of the pathogenic m.7472Cins MTTS1 mutation: are two mutations better than one? Eur. J. Hum. Genet. 2008;16:1265–1274. doi: 10.1038/ejhg.2008.65. PubMed DOI

Man PYW, et al. Mitochondrial DNA haplogroup distribution within Leber hereditary optic neuropathy pedigrees. J. Med. Genet. 2004;41:e41. doi: 10.1136/jmg.2003.011247. PubMed DOI PMC

Mok BY, et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature. 2020;583:631–637. doi: 10.1038/s41586-020-2477-4. PubMed DOI PMC

Gammage PA, Moraes CT, Minczuk M. Mitochondrial genome engineering: the revolution may not be CRISPR-ized. Trends Genet. 2018;34:101–110. doi: 10.1016/j.tig.2017.11.001. PubMed DOI PMC

Moraes CT. Current strategies towards therapeutic manipulation of mtDNA heteroplasmy. Front. Biosci. 2017;22:991–1010. doi: 10.2741/4529. PubMed DOI PMC

Silva-Pinheiro P, et al. In vivo mitochondrial base editing via adeno-associated viral delivery to mouse post-mitotic tissue. Nat. Commun. 2022;13:750. doi: 10.1038/s41467-022-28358-w. PubMed DOI PMC

Silva-Pinheiro P, et al. A library of base editors for the precise ablation of all protein-coding genes in the mouse mitochondrial genome. Nat. Biomed. Eng. 2023;7:692–703. doi: 10.1038/s41551-022-00968-1. PubMed DOI PMC

Cho S-I, et al. Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases. Cell. 2022;185:1764–1776.e12. doi: 10.1016/j.cell.2022.03.039. PubMed DOI

Ma H, O’Farrell PH. Selections that isolate recombinant mitochondrial genomes in animals. eLife. 2015;4:e07247. doi: 10.7554/eLife.07247. PubMed DOI PMC

Hagström, E., Freyer, C., Battersby, B. J., Stewart, J. B. & Larsson, N.-G. No recombination of mtDNA after heteroplasmy for 50 generations in the mouse maternal germline. Nucleic Acids Res. 42, 1111–1116 (2013). PubMed PMC

Ji Y, et al. Complex I mutations synergize to worsen the phenotypic expression of Leber’s hereditary optic neuropathy. J. Biol. Chem. 2020;295:13224–13238. doi: 10.1074/jbc.RA120.014603. PubMed DOI PMC

Klucnika A, Ma H. Mapping and editing animal mitochondrial genomes: can we overcome the challenges? Philos. Trans. R. Soc. B: Biol. Sci. 2020;375:20190187. doi: 10.1098/rstb.2019.0187. PubMed DOI PMC

Xu H, DeLuca SZ, O’Farrell PH. Manipulating the metazoan mitochondrial genome with targeted restriction enzymes. Science. 2008;321:575–577. doi: 10.1126/science.1160226. PubMed DOI PMC

Hill JH, Chen Z, Xu H. Selective propagation of functional mitochondrial DNA during oogenesis restricts the transmission of a deleterious mitochondrial variant. Nat. Genet. 2014;46:389–392. doi: 10.1038/ng.2920. PubMed DOI PMC

Ma H, Xu H, O’Farrell PH. Transmission of mitochondrial mutations and action of purifying selection in Drosophila melanogaster. Nat. Genet. 2014;46:393–397. doi: 10.1038/ng.2919. PubMed DOI PMC

Chen Z, et al. Genetic mosaic analysis of a deleterious mitochondrial DNA mutation in Drosophila reveals novel aspects of mitochondrial regulation and function. Mol. Biol. Cell. 2015;26:674–684. doi: 10.1091/mbc.E14-11-1513. PubMed DOI PMC

Tennessen JM, Baker KD, Lam G, Evans J, Thummel CS. The Drosophila estrogen-related receptor directs a metabolic switch that supports developmental growth. Cell Metab. 2011;13:139–148. doi: 10.1016/j.cmet.2011.01.005. PubMed DOI PMC

Merkey AB, Wong CK, Hoshizaki DK, Gibbs AG. Energetics of metamorphosis in Drosophila melanogaster. J. Insect Physiol. 2011;57:1437–1445. doi: 10.1016/j.jinsphys.2011.07.013. PubMed DOI

Barry, W. E. & Thummel, C. S. The Drosophila HNF4 nuclear receptor promotes glucose-stimulated insulin secretion and mitochondrial function in adults. eLife5, e11183 (2016). PubMed PMC

Beebe K, et al. Drosophila estrogen-related receptor directs a transcriptional switch that supports adult glycolysis and lipogenesis. Genes Dev. 2020;34:701–714. doi: 10.1101/gad.335281.119. PubMed DOI PMC

Nishimura T. Feedforward regulation of glucose metabolism by steroid hormones drives a developmental transition in Drosophila. Curr. Biol. 2020;30:3624–3632.e5. doi: 10.1016/j.cub.2020.06.043. PubMed DOI

Wolff JN, et al. Evolutionary implications of mitochondrial genetic variation: mitochondrial genetic effects on OXPHOS respiration and mitochondrial quantity change with age and sex in fruit flies. J. Evol. Biol. 2016;29:736–747. doi: 10.1111/jeb.12822. PubMed DOI

Bevers RPJ, et al. Mitochondrial haplotypes affect metabolic phenotypes in the Drosophila Genetic Reference Panel. Nat. Metab. 2019;1:1226–1242. doi: 10.1038/s42255-019-0147-3. PubMed DOI

Zong S, et al. Structure of the intact 14-subunit human cytochrome c oxidase. Cell Res. 2018;28:1026–1034. doi: 10.1038/s41422-018-0071-1. PubMed DOI PMC

Saric A, Andreau K, Armand A-S, Møller IM, Petit PX. Barth syndrome: from mitochondrial dysfunctions associated with aberrant production of reactive oxygen species to pluripotent stem cell studies. Front. Genet. 2015;6:359. PubMed PMC

Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Role of cardiolipin in mitochondrial function and dynamics in health and disease: molecular and pharmacological aspects. Cells. 2019;8:728. doi: 10.3390/cells8070728. PubMed DOI PMC

Musatov, A. & Sedlák, E. Role of cardiolipin in stability of integral membrane proteins. Biochimie142, 102–111 (2017). PubMed

Schlame M. Thematic Review Series: Glycerolipids. Cardiolipin synthesis for the assembly of bacterial and mitochondrial membranes. J. Lipid Res. 2008;49:1607–1620. doi: 10.1194/jlr.R700018-JLR200. PubMed DOI PMC

Sedlák E, Robinson NC. Phospholipase A2 digestion of cardiolipin bound to bovine cytochrome c oxidase alters both activity and quaternary structure. Biochemistry. 1999;38:14966–14972. doi: 10.1021/bi9914053. PubMed DOI

Sedlák E, Robinson NC. Destabilization of the quaternary structure of bovine heart cytochrome c oxidase upon removal of tightly bound cardiolipin. Biochemistry. 2015;54:5569–5577. doi: 10.1021/acs.biochem.5b00540. PubMed DOI

Shinzawa-Itoh K, et al. Structures and physiological roles of 13 integral lipids of bovine heart cytochrome c oxidase. EMBO J. 2007;26:1713–1725. doi: 10.1038/sj.emboj.7601618. PubMed DOI PMC

Pettersen EF, et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 2021;30:70–82. doi: 10.1002/pro.3943. PubMed DOI PMC

Goddard TD, et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 2018;27:14–25. doi: 10.1002/pro.3235. PubMed DOI PMC

Xu Y, et al. A Drosophila model of Barth syndrome. Proc. Natl. Acad. Sci. USA. 2006;103:11584–11588. doi: 10.1073/pnas.0603242103. PubMed DOI PMC

Xu Y, et al. Characterization of tafazzin splice variants from humans and fruit flies. J. Biol. Chem. 2009;284:29230–29239. doi: 10.1074/jbc.M109.016642. PubMed DOI PMC

Průchová, P. et al. Antioxidant role and cardiolipin remodeling by redox-activated mitochondrial Ca2+-independent phospholipase A2γ in the brain. Antioxidants11, 198 (2022). PubMed PMC

Kiebish MA, et al. Dysfunctional cardiac mitochondrial bioenergetic, lipidomic, and signaling in a murine model of Barth syndrome. J. Lipid Res. 2013;54:1312–1325. doi: 10.1194/jlr.M034728. PubMed DOI PMC

van der Veen JN, et al. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim. Biophys. Acta. 2017;1859:1558–1572. doi: 10.1016/j.bbamem.2017.04.006. PubMed DOI

Pennington ER, Funai K, Brown DA, Shaikh SR. The role of cardiolipin concentration and acyl chain composition on mitochondrial inner membrane molecular organization and function. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2019;1864:1039–1052. doi: 10.1016/j.bbalip.2019.03.012. PubMed DOI PMC

Luévano-Martínez LA, Pinto IFD, Yoshinaga MY, Miyamoto S. In yeast, cardiolipin unsaturation level plays a key role in mitochondrial function and inner membrane integrity. Biochim. Biophys. Acta Bioenerg. 2022;1863:148587. doi: 10.1016/j.bbabio.2022.148587. PubMed DOI

Betts, M. J. & Russell, R. B. Amino-Acid Properties and Consequences of Substitutions, in Bioinformatics for Geneticists: A Bioinformatics Primer for the Analysis of Genetic Data, 2nd Edition (ed. Barnes, M. R.), (John Wiley & Sons Ltd, England, 2007).

Bahadir A, Erduran E, Değer O, Birinci Y, Ayar A. Augmented mitochondrial cytochrome c oxidase activity in children with iron deficiency: a tandem between iron and copper? Arch. Med. Sci. 2018;1:151–156. doi: 10.5114/aoms.2016.59602. PubMed DOI PMC

Klucnika, A. et al. REC drives recombination to repair double-strand breaks in animal mtDNA. J. Cell Biol. 222, e202201137 (2023). PubMed PMC

Lopes M, et al. Metabolomics atlas of oral 13C-glucose tolerance test in mice. Cell Rep. 2021;37:109833. doi: 10.1016/j.celrep.2021.109833. PubMed DOI

Cajka T, et al. Optimization of mobile phase modifiers for fast LC-MS-based untargeted metabolomics and lipidomics. Int. J. Mol. Sci. 2023;24:1987. doi: 10.3390/ijms24031987. PubMed DOI PMC

Tsugawa H, et al. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol. 2020;38:1159–1163. doi: 10.1038/s41587-020-0531-2. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Mitochondria to plasma membrane redox signaling is essential for fatty acid β-oxidation-driven insulin secretion

. 2024 Sep ; 75 () : 103283. [epub] 20240723

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...