In vitro antagonistic inhibitory effects of palm seed crude oils and their main constituent, lauric acid, with oxacillin in Staphylococcus aureus
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33420288
PubMed Central
PMC7794437
DOI
10.1038/s41598-020-80481-0
PII: 10.1038/s41598-020-80481-0
Knihovny.cz E-zdroje
- MeSH
- antagonismus léků MeSH
- antibakteriální látky farmakologie MeSH
- kyseliny laurové farmakologie MeSH
- mikrobiální testy citlivosti MeSH
- oxacilin analogy a deriváty antagonisté a inhibitory farmakologie MeSH
- ropa analýza MeSH
- Staphylococcus aureus účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- kyseliny laurové MeSH
- lauric acid MeSH Prohlížeč
- oxacilin MeSH
- ropa MeSH
Infections caused by Staphylococcus aureus are a serious global threat, and with the emergence of antibiotic resistance, even more difficult to treat. One of the possible complications in antistaphylococcal therapy represents negative interactions of antibiotics with food. In this study, the in vitro interaction between oxacillin and crude palm seed oil from Astrocaryum vulgare, Cocos nucifera, and Elaeis guineensis against nine strains of S. aureus was determined using the checkerboard method. Lauric acid was identified as a major constituent of all tested oils by gas chromatography. The results showed strong concentration dependent antagonistic interactions between palm oils and oxacillin with values of fractional inhibitory concentrations indices ranging from 4.02 to 8.56 at concentrations equal or higher than 1024 µg/mL of the tested oils. Similarly, lauric acid in combination with oxacillin produced antagonistic action with fractional inhibitory concentration indices ranging from 4.01 to 4.28 at 1024 µg/mL. These findings suggest that interference between oxacillin and palm oils and their constituents can negatively affect the treatment of staphylococcal infections in humans and other animals.
Zobrazit více v PubMed
Vos P, et al. Bergey’s Manual of Systematic Bacteriology: The Firmicutes. Berlin: Springer; 2011.
WHO . Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. Geneva: WHO Press; 2017.
Rodvold KA, McConeghy KW. Methicillin-resistant Staphylococcus aureus therapy: Past, present, and future. Clin. Infect. Dis. 2014;58:S20–S27. doi: 10.1093/cid/cit614. PubMed DOI
Aldeyab MA, et al. Modelling the impact of antibiotic use and infection control practices on the incidence of hospitalacquired methicillin-resistant Staphylococcus aureus: A time-series analysis. J. Antimicrob. Chemother. 2008;62:593–600. doi: 10.1093/jac/dkn198. PubMed DOI
Qin X, et al. A randomised, double-blind, phase 3 study comparing the efficacy and safety of ceftazidime/avibactam plus metronidazole versus meropenem for complicated intra-abdominal infections in hospitalised adults in Asia. Int. J. Antimicrob. Agents. 2017;49:579–588. doi: 10.1016/j.ijantimicag.2017.01.010. PubMed DOI
Tabuchi F, et al. Synergistic effects of vancomycin and β-lactams against vancomycin highly resistant Staphylococcus aureus. J. Antibiot. 2017;70:771–774. doi: 10.1038/ja.2017.7. PubMed DOI
Ba X, et al. Old drugs to treat resistant bugs: Methicillin-resistant Staphylococcus aureus isolates with mecc are susceptible to a combination of penicillin and clavulanic acid. Antimicrob. Agents Chemother. 2015;59:7396–7404. doi: 10.1128/AAC.01469-15. PubMed DOI PMC
Ocampo PS, et al. Antagonism between bacteriostatic and bactericidal antibiotics is prevalent. Antimicrob. Agents Chemother. 2014;58:4573–4582. doi: 10.1128/AAC.02463-14. PubMed DOI PMC
Booker BM, Stahl L, Smith PF. In vitro antagonism with the combination of vancomycin and clindamycin against Staphylococcus aureus. J. Appl. Res. Clin. Exp. Ther. 2004;4:385–395.
Ho JL, Klempner MS. In vitro evaluation of clindamycin in combination with oxacillin, rifampin, or vancomycin against Staphylococcus aureus. Diagn. Microbiol. Infect. Dis. 1986;4:133–138. doi: 10.1016/0732-8893(86)90147-1. PubMed DOI
Zanderigo E, et al. The well-being model a new drug interaction model for positive and negative effects. Anesthesiol. J. Am. Soc. Anesthesiol. 2006;104:742–753. doi: 10.1097/00000542-200604000-00019. PubMed DOI
Mouly S, Lloret-Linares C, Sellier P-O, Sene D, Bergmann J-F. Is the clinical relevance of drug-food and drug-herb interactions limited to grapefruit juice and saint-john’s wort? Pharmacol. Res. 2017;118:82–92. doi: 10.1016/j.phrs.2016.09.038. PubMed DOI
Boullata JI, Hudson LM. Drug–nutrient interactions: A broad view with implications for practice. J. Acad. Nutr. Diet. 2012;112:506–517. doi: 10.1016/j.jada.2011.09.002. PubMed DOI
Cheng TO. Food-drug interactions. Int. J. Cardiol. 2006;106:392–393. doi: 10.1016/j.ijcard.2004.12.083. PubMed DOI
Fugh-Berman A. Herb-drug interactions. Lancet. 2000;355:134–138. doi: 10.1016/S0140-6736(99)06457-0 . PubMed DOI
Pirmohamed M. Drug-grapefruit juice interactions. BMJ. 2013;346:f1. doi: 10.1136/bmj.f1. PubMed DOI
Bailey DG, Dresser G, Arnold JMO. Grapefruit–medication interactions: Forbidden fruit or avoidable consequences? CMAJ. 2013;185:309–316. doi: 10.1503/cmaj.120951. PubMed DOI PMC
Kanazawa S, Ohkubo T, Sugawara K. The effects of grapefruit juice on the pharmacokinetics of erythromycin. Eur. J. Clin. Pharmacol. 2001;56:799–803. doi: 10.1007/s002280000229. PubMed DOI
Genser D. Food and drug interaction: Consequences for the nutrition/health status. Ann. Nutr. Metab. 2008;52:29–32. doi: 10.1159/000115345. PubMed DOI
Braga L, et al. Synergic interaction between pomegranate extract and antibiotics against Staphylococcus aureus. Can. J. Microbiol. 2005;51:541–547. doi: 10.1139/w05-022. PubMed DOI
Pinto ME, et al. Antifungal and antioxidant activity of fatty acid methyl esters from vegetable oils. An. Acad. Bras. Cienc. 2017;89:1671–1681. doi: 10.1590/0001-3765201720160908. PubMed DOI
Chiu MC, de Morais Coutinho C, Gonçalves LAG. Carotenoids concentration of palm oil using membrane technology. Desalination. 2009;245:783–786. doi: 10.1016/j.desal.2009.03.002. DOI
de Souza Guedes L, et al. Study of the effect of the operating parameters on the separation of bioactive compounds of palm oil by ultra-high performance supercritical fluid chromatography using a design of experiments approach. Can. J. Chem. Eng. 2017;95:2306–2314. doi: 10.1002/cjce.22969. DOI
Anushree S, André M, Guillaume D, Frédéric F. Stearic sunflower oil as a sustainable and healthy alternative to palm oil. A review. Agron. Sustain. Dev. 2017;37:18. doi: 10.1007/s13593-017-0426-x. DOI
McGaw L, Jäger A, Van Staden J. Antibacterial effects of fatty acids and related compounds from plants. S. Afr. J. Bot. 2002;68:417–423. doi: 10.1016/S0254-6299(15)30367-7. DOI
Tangwatcharin P, Khopaibool P. Activity of virgin coconut oil, lauric acid or monolaurin in combination with lactic acid against Staphylococcus aureus. Southeast Asian J. Trop. Med. Public Health. 2012;43:969–985. PubMed
Lee S, Ariffin A, Son R, Ghazali H. Effect of lipase hydrolysis on the antibacterial activity of coconut oil, palm mesocarp oil and selected seed oils against several pathogenic bacteria. Int. Food Res. J. 2015;22:46.
Hovorková P, Laloučková K, Skřrivanová E. Determination of in vitro antibacterial activity of plant oils containing medium-chain fatty acids against gram-positive pathogenic and gut commensal bacteria. Czech J. Anim. Sci. 2018;63:119–125. doi: 10.17221/70/2017-CJAS. DOI
McGrattan CJ, Sullivan JD, Jr, Ikawa M. Inhibition of chlorella (chlorophyceae) growth by fatty acids, using the paper disc method. J. Phycol. 1976;12:129–131. doi: 10.1111/j.1529-8817.1976.tb02839.x. DOI
Era M, et al. Antifungal activity of fatty acid salts against Penicillium pinophilum. Jpn. J. Food Eng. 2015;16:99–108. doi: 10.11301/jsfe.16.99. DOI
Dohme F, Machmüller A, Sutter F, Kreuzer M. Digestive and metabolic utilization of lauric, myristic and stearic acid in cows, and associated effects on milk fat quality. Arch. Anim. Nutr. 2004;58:99–116. doi: 10.1080/00039420410001667485. PubMed DOI
Sun CQ, O’Connor CJ, Roberton AM. Antibacterial actions of fatty acids and monoglycerides against Helicobacter pylori. FEMS Immunol. Med. Microbiol. 2003;36:9–17. doi: 10.1016/S0928-8244(03)00008-7. PubMed DOI
Skrivanova E, Marounek M, Benda V, Brezina P. Susceptibility of Escherichia coli, Salmonella sp. and Clostridium perfringens to organic acids and monolaurin. Vet. Med. Praha. 2006;51:81. doi: 10.17221/5524-VETMED. DOI
Thormar H, Hilmarsson H, Bergsson G. Stable concentrated emulsions of the 1-monoglyceride of capric acid (monocaprin) with microbicidal activities against the food-borne bacteria Campylobacter jejuni, Salmonella spp., and Escherichia coli. Appl. Environ. Microbiol. 2006;72:522–526. doi: 10.1128/AEM.72.1.522-526.2006. PubMed DOI PMC
Bergsson G, Arnfinnsson J, Steingrímsson Ó, Thormar H. Killing of gram-positive cocci by fatty acids and monoglycerides note. Apmis. 2001;109:670–678. doi: 10.1034/j.1600-0463.2001.d01-131.x. PubMed DOI
Projan SJ, Brown-Skrobot S, Schlievert PM, Vandenesch F, Novick RP. Glycerol monolaurate inhibits the production of beta-lactamase, toxic shock toxin-1, and other staphylococcal exoproteins by interfering with signal transduction. J. Bacteriol. 1994;176:4204–4209. doi: 10.1128/jb.176.14.4204-4209.1994. PubMed DOI PMC
Ruzin A, Novick RP. Equivalence of lauric acid and glycerol monolaurate as inhibitors of signal transduction in Staphylococcus aureus. J. Bacteriol. 2000;182:2668–2671. doi: 10.1128/JB.182.9.26z68-2671.2000. PubMed DOI PMC
Liaw S-J, Lai H-C, Wang W-B. Modulation of swarming and virulence by fatty acids through the rsba protein in Proteus mirabilis. Infect. Immunity. 2004;72:6836–6845. doi: 10.1128/IAI.72.12.6836-6845.2004. PubMed DOI PMC
Hanczakowska E, Szewczyk A, Okon K, et al. Caprylic, capric and/or fumaric acids as antibiotic replacements in piglet feed. Ann. Anim. Sci. 2011;11:115–124.
Huang CB, Alimova Y, Myers TM, Ebersole JL. Short-and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms. Arch. Oral Biol. 2011;56:650–654. doi: 10.1016/j.archoralbio.2011.01.011. PubMed DOI PMC
Kollanoor-Johny A, et al. Caprylic acid reduces Salmonella enteritidis populations in various segments of digestive tract and internal organs of 3-and 6-week-old broiler chickens, therapeutically. Poult. Sci. 2012;91:1686–1694. doi: 10.3382/ps.2011-01716. PubMed DOI
Batovska DI, Todorova T, Tsvetkova V, Najdenski HM. Antibacterial study of the medium chain fatty acids and their 1-monoglycerides: Individual effects and synergistic relationships. Pol. J. Microbiol. 2009;58:43–47. PubMed
Ubgogu O, Onyeagba R, Chigbu O. Lauric acid content and inhibitory effect of palm kernel oil on two bacterial isolates and Candida albicans. Afr. J. Biotechnol. 2006;5:1045.
Desbois AP, Smith VJ. Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 2010;85:1629–1642. doi: 10.1007/s00253-009-2355-3. PubMed DOI
Churchward CP, Alany RG, Snyder LA. Alternative antimicrobials: The properties of fatty acids and monoglycerides. Crit. Rev. Microbiol. 2018;44:561–570. doi: 10.1080/1040841X.2018.1467875. PubMed DOI
Yoon BK, Jackman JA, Kim MC, Cho N-J. Spectrum of membrane morphological responses to antibacterial fatty acids and related surfactants. Langmuir. 2015;31:10223–10232. doi: 10.1021/acs.langmuir.5b02088. PubMed DOI
Kitahara T, et al. In vitro activity of lauric acid or myristylamine in combination with six antimicrobial agents against methicillin-resistant Staphylococcus aureus (MRSA) Int. J. Antimicrob. Agents. 2006;27:51–57. doi: 10.1016/j.ijantimicag.2005.08.020. PubMed DOI
Mambrin M, Arellano DB. Characterization of palm tree fruit oils from brazilian amazonia region. Grasas Aceites. 1997;48:154–158. doi: 10.3989/gya.1997.v48.i3.783. DOI
Marina A, Che Man Y, Nazimah S, Amin I. Chemical properties of virgin coconut oil. J. Am. Oil Chem. Soc. 2009;86:301–307. doi: 10.1007/s11746-009-1351-1. DOI
Edem D. Palm oil: Biochemical, physiological, nutritional, hematological and toxicological aspects: A review. Plant Foods Hum. Nutr. 2002;57:319–341. doi: 10.1023/A:1021828132707. PubMed DOI
Nitbani FO, Jumina SD, Solikhah EN. Isolation and antibacterial activity test of lauric acid from crude coconut oil. Procedia Chem. 2016;18:132–140. doi: 10.1016/j.proche.2016.01.021. DOI
Parsons JB, Yao J, Frank MW, Jackson P, Rock CO. Membrane disruption by antimicrobial fatty acids releases low-molecular-weight proteins from Staphylococcus aureus. J. Bacteriol. 2012;194:5294–5304. doi: 10.1128/JB.00743-12. PubMed DOI PMC
Kelsey J, Bayles KW, Shafii B, McGuire M. Fatty acids and monoacylglycerols inhibit growth of Staphylococcus aureus. Lipids. 2006;41:951–961. doi: 10.1007/s11745-006-5048-z. PubMed DOI
Rossato A, et al. Evaluation in vitro of antimicrobial activity of tucumã oil (Astrocaryum vulgare) Arch. Biosci. Health. 2019;1:99–112. doi: 10.18593/abh.19701. DOI
Dierick N, Decuypere J, Molly K, Van Beek E, Vanderbeke E. The combined use of triacylglycerols containing medium-chain fatty acids (MCFAs) and exogenous lipolytic enzymes as an alternative for nutritional antibiotics in piglet nutrition: I. In vitro screening of the release of MCFAs from selected fat sources by selected exogenous lipolytic enzymes under simulated pig gastric conditions and their effects on the gut flora of piglets. Livest. Prod. Sci. 2002;75:129–142. doi: 10.1016/s0301-6226(01)00303-7. DOI
Rosenblatt J, Reitzel RA, Raad I. Caprylic acid and glyceryl trinitrate combination for eradication of biofilm. Antimicrob. Agents Chemother. 2015;59:1786–1788. doi: 10.1128/AAC.04561-14. PubMed DOI PMC
Hess DJ, Henry-Stanley MJ, Wells CL. Antibacterial synergy of glycerol monolaurate and aminoglycosides in Staphylococcus aureus biofilms. Antimicrob. Agents Chemother. 2014;58:6970–6973. doi: 10.1128/AAC.03672-14. PubMed DOI PMC
Ferreira BS, et al. Comparative properties of amazonian oils obtained by different extraction methods. Molecules. 2011;16:5875–5885. doi: 10.1128/10.3390/molecules16075875. PubMed DOI PMC
Robertson JL. The lipid bilayer membrane and its protein constituents. J. Gen. Physiol. 2018;150:1472–1483. doi: 10.1085/jgp.201812153. PubMed DOI PMC
Zhang XC, Li H. Interplay between the electrostatic membrane potential and conformational changes in membrane proteins. Protein Sci. 2019;28:502–512. doi: 10.1002/pro.3563. PubMed DOI PMC
Papich MG. Saunders Handbook of Veterinary Drugs. Hoboken: Elsevier; 2007.
Roch M, et al. Thermosensitive pbp2a requires extracellular folding factors prsa and htra1 for Staphylococcus aureus MRSA β-lactam resistance. Commun. Biol. 2019;2:1–11. doi: 10.1038/s42003-019-0667-0. PubMed DOI PMC
Rad I, Croitoru M, Gyéresi Á. Improvements of oxacillin stability in a ph = 1.2 acidic environment. Acta Med. Marisiensis. 2011;57:328–330.
Kubistova L, Dvoracek L, Tkadlec J, Melter O, Licha I. Environmental stress affects the formation of Staphylococcus aureus persisters tolerant to antibiotics. Microb. Drug Resist. 2018;24:547–555. doi: 10.1089/mdr.2017.0064. PubMed DOI
Peyrusson F, et al. Intracellular Staphylococcus aureus persisters upon antibiotic exposure. Nat. Commun. 2020;11:1–14. doi: 10.1038/s41467-020-15966-7. PubMed DOI PMC
Koziolek M, et al. The mechanisms of pharmacokinetic food-drug interactions—A perspective from the ungap group. Eur. J. Pharm. Sci. 2019;134:31–59. doi: 10.1016/j.ejps.2019.04.003. PubMed DOI
Hodel M, Genné D. Antibiotics: Drug and food interactions. Rev. Med. Suisse. 2009;5:1979–1984. PubMed
Schmidt L, Dalhoff K. Food–drug interactions. Drugs. 2002;62:1481–1502. doi: 10.2165/00003495-200262100-00005. PubMed DOI
Bushra R, Aslam N, Khan AY. Food-drug interactions. Oman Med. J. 2011;26:77–83. doi: 10.5001/omj.2011.21. PubMed DOI PMC
Marcy SM, Klein JO. The isoxazolyl penicillins: Oxacillin, cloxacillin, and dicloxacillin. Med. Clin. N. Am. 1970;54:1127–1143. doi: 10.1016/S0025-7125(16)32582-2. PubMed DOI
Santos HO, Howell S, Earnest CP, Teixeira FJ. Coconut oil intake and its effects on the cardiometabolic profile—A structured literature review. Prog. Cardiovasc. Dis. 2019;62:436–443. doi: 10.1016/j.pcad.2019.11.001. PubMed DOI
Wu H, Xu L, Ballantyne CM. Dietary and pharmacological fatty acids and cardiovascular health. J. Clin. Endocrinol. Metab. 2020;105:1030–1045. doi: 10.1111/10.1210/clinem/dgz174. PubMed DOI PMC
Lenighan YM, McNulty BA, Roche HM. Dietary fat composition: Replacement of saturated fatty acids with PUFA as a public health strategy, with an emphasis on α-linolenic acid. Proc. Nutr. Soc. 2019;78:234–245. doi: 10.1017/S0029665118002793. PubMed DOI
Sera RK, McBride JH, Higgins SA, Rodgerson DO. Evaluation of reference ranges for fatty acids in serum. J. Clin. Lab. Anal. 1994;8:81–85. doi: 10.1002/jcla.1860080205. PubMed DOI
Panth N, Abbott KA, Dias CB, Wynne K, Garg ML. Differential effects of medium-and long-chain saturated fatty acids on blood lipid profile: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2018;108:675–687. doi: 10.1111/j.1529-8817.1976.tb02839.x. PubMed DOI
Panchal SK, Carnahan S, Brown L. Coconut products improve signs of diet-induced metabolic syndrome in rats. Plant Foods Hum. Nutr. 2017;72:418–424. doi: 10.1007/s11130-017-0643-0. PubMed DOI
Lewis J. Codex Nutrient Reference Values: Especially for Vitamins, Minerals and Protein. Rome: FAO and WHO; 2019.
FAO . Human Energy Requirements: Report of a Joint FAO/WHO/UNU Expert Consultation: Rome, 17–24 October 2001. Rome: FAO; 2004.
Korrapati D, et al. Coconut oil consumption improves fat-free mass, plasma hdl-cholesterol and insulin sensitivity in healthy men with normal bmi compared to peanut oil. Clin. Nutr. 2019;38:2889–2899. doi: 10.1016/j.clnu.2018.12.026. PubMed DOI
Harris M, Hutchins A, Fryda L. The impact of virgin coconut oil and high-oleic safflower oil on body composition, lipids, and inflammatory markers in postmenopausal women. J. Med. Food. 2017;20:345–351. doi: 10.1089/jmf.2016.0114. PubMed DOI
Khaw K-T, et al. Randomised trial of coconut oil, olive oil or butter on blood lipids and other cardiovascular risk factors in healthy men and women. BMJ Open. 2018 doi: 10.1136/bmjopen-2017-020167. PubMed DOI PMC
Reiser R, et al. Plasma lipid and lipoprotein response of humans to beef fat, coconut oil and safflower oil. Am. J. Clin. Nutr. 1985;42:190–197. doi: 10.1093/ajcn/42.2.190. PubMed DOI
Ng T, Hassan K, Lim J, Lye M, Ishak R. Nonhypercholesterolemic effects of a palm-oil diet in Malaysian volunteers. Am. J. Clin. Nutr. 1991;53:1015S–1020S. doi: 10.1093/ajcn/53.4.1015S. PubMed DOI
Maki KC, et al. Corn oil lowers plasma cholesterol compared with coconut oil in adults with above-desirable levels of cholesterol in a randomized crossover trial. J. Nutr. 2018;148:1556–1563. doi: 10.1093/jn/nxy156. PubMed DOI PMC
Verallo-Rowell VM, Dillague KM, Syah-Tjundawan BS. Novel antibacterial and emollient effects of coconut and virgin olive oils in adult atopic dermatitis. Dermatitis. 2008;19:308–315. doi: 10.2310/6620.2008.08052. PubMed DOI
Kwaszewska A, Sobis-Glinkowska M, Szewczyk EM. Cohabitation—Relationships of corynebacteria and staphylococci on human skin. Folia Microbiol. 2014;59:495–502. doi: 10.1007/s12223-014-0326-2. PubMed DOI PMC
Nakatsuji T, et al. Antimicrobial property of lauric acid against Propionibacterium acnes: Its therapeutic potential for inflammatory acne vulgaris. J. Investig. Dermatol. 2009;129:2480–2488. doi: 10.1038/jid.2009.93. PubMed DOI PMC
Balakin KV, et al. In silico estimation of DMSO solubility of organic compounds for bioscreening. J. Biomol. Screen. 2004;9:22–31. doi: 10.1177/1087057103260006. PubMed DOI
Yang D, et al. The antimicrobial activity of liposomal lauric acids against Propionibacterium acnes. Biomaterials. 2009;30:6035–6040. doi: 10.1016/j.biomaterials.2009.07.033. PubMed DOI PMC
Salhin A, Ali M, Abdurrhman A. Determination of free fatty acids in palm oil samples by non-aqueous flow injection using colorimetric reagent. Chem. Mater. Eng. 2013;1:96–103. doi: 10.13189/cme.2013.010306. DOI
Deng L-L, Taxipalati M, Que F, Zhang H. Physical characterization and antioxidant activity of thymol solubilized tween 80 micelles. Sci. Rep. 2016;6:38160. doi: 10.1038/srep38160. PubMed DOI PMC
Hood JR, Wilkinson JM, Cavanagh HM. Evaluation of common antibacterial screening methods utilized in essential oil research. J. Essent. Oil Res. 2003;15:428–433. doi: 10.1080/10412905.2003.9698631. DOI
Castro CA, Hogan JB, Benson KA, Shehata CW, Landauer MR. Behavioral effects of vehicles: DMSO, ethanol, tween-20, tween-80, and emulphor-620. Pharmacol. Biochem. Behav. 1995;50:521–526. doi: 10.1016/0091-3057(94)00331-9. PubMed DOI
McCarty MF, DiNicolantonio JJ. Lauric acid-rich medium-chain triglycerides can substitute for other oils in cooking applications and may have limited pathogenicity. Open Heart. 2016 doi: 10.1136/openhrt-2016-000467. PubMed DOI PMC
Harwood JL, Woodfield HK, Chen G, Weselake RJ, et al. Modification of oil crops to produce fatty acids for industrial applications. In: Harwood JL, et al., editors. Fatty Acids. Amsterdam: Elsevier; 2017. pp. 187–236.
Didonet AA, et al. Characterization of amount and quality of tucuman kernel oil as a potential biomass. J. Am. Oil Chem. Soc. 2020;97:955–962. doi: 10.1002/aocs.12374. DOI
Rondevaldova J, Novy P, Urban J, Kokoska L. Determination of anti-staphylococcal activity of thymoquinone in combinations with antibiotics by checkerboard method using EVA capmat as a vapor barrier. Arab. J. Chem. 2017;10:566–572. doi: 10.1016/j.arabjc.2015.04.021. DOI
Rondevaldova J, Hummelova J, Tauchen J, Kokoska L. In vitro antistaphylococcal synergistic effect of isoflavone metabolite demethyltexasin with amoxicillin and oxacillin. Microb. Drug Resist. 2018;24:24–29. doi: 10.1089/mdr.2017.0033. PubMed DOI
Frankova A, et al. In vitro antibacterial activity of extracts from samoan medicinal plants and their effect on proliferation and migration of human fibroblasts. J. Ethnopharmacol. 2020;264:113220. doi: 10.1016/j.jep.2020.113220. PubMed DOI
Raes K, De Smet S, Balcaen A, Claeys E, Demeyer D. Effect of diets rich in n-3 polyunsatured fatty acids on muscle lipids and fatty acids in belgian blue double-muscled young bulls. Reprod. Nutr. Dev. 2003;43:331–345. doi: 10.1051/rnd:2003029. PubMed DOI
CLSI . Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard M07. 11. Wayne: CLSI; 2018.
Cos P, Vlietinck AJ, Berghe D, Maes L. Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol. 2006;106:290–302. doi: 10.1016/j.jep.2006.04.003. PubMed DOI
Leber A. Synergism Testing: Broth Microdilution Checkerboard and Broth Macrodilution Methods Clinical Microbiology Procedures Handbook. Washington, DC: ASM Press; 2016. pp. 1–23.
Odds FC. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 2003;52:1–1. doi: 10.1093/jac/dkg301. PubMed DOI
CLSI . Methods for Determining Bactericidal Activity of Antimicrobial Agents: Approved Guideline. Wayne: CLSI; 1999.