In Vitro Selective Combinatory Effect of Ciprofloxacin with Nitroxoline, Sanguinarine, and Zinc Pyrithione against Diarrhea-Causing and Gut Beneficial Bacteria
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35972279
PubMed Central
PMC9603368
DOI
10.1128/spectrum.01063-22
Knihovny.cz E-zdroje
- Klíčová slova
- antagonism, antimicrobial agents, diarrhea, gut microbiota, selectivity, synergism,
- MeSH
- antibakteriální látky farmakologie MeSH
- Bacteria MeSH
- benzylisochinoliny * MeSH
- Bifidobacterium MeSH
- ciprofloxacin farmakologie MeSH
- lidé MeSH
- nitrochinoliny * MeSH
- obstipancia MeSH
- průjem farmakoterapie MeSH
- pyridiny farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- benzylisochinoliny * MeSH
- ciprofloxacin MeSH
- nitrochinoliny * MeSH
- nitroxoline MeSH Prohlížeč
- obstipancia MeSH
- pyridiny MeSH
- pyrithione zinc MeSH Prohlížeč
- sanguinarine MeSH Prohlížeč
Antibiotic resistance in diarrhea-causing bacteria and its disruption of gut microbiota composition are health problems worldwide. The development of combinatory agents that increase the selective inhibitory effect (synergism) against diarrheagenic pathogens and, simultaneously, have a lowered impact (antagonism) or no negative action on the gut microbiota is therefore proposed as a new strategy efficient for chemotherapy against diarrheal conditions. In this study, the in vitro selective combinatory effect of ciprofloxacin with nitroxoline, sanguinarine, and zinc pyrithione, representing various classes of alkaloid-related compounds (nitroquinolines, benzylisoquinolines and metal-pyridine derivative complexes) against selected standard diarrhea-causing (Bacillus cereus, Enterococcus faecalis, Listeria monocytogenes, Shigella flexneri, and Vibrio parahaemolyticus) and gut-beneficial (Bifidobacterium adolescentis, Bifidobacterium animalis subsp. lactis, Bifidobacterium breve, Lactobacillus casei, and Lactobacillus rhamnosus) bacteria, was evaluated according to the sum of fractional inhibitory concentration indices (FICIs) obtained by the checkerboard method. The results showed that the individual combination of ciprofloxacin with nitroxoline, sanguinarine, and zinc pyrithione produced a synergistic effect against the pathogenic bacteria, with FICI values ranging from 0.071 to 0.5, whereas their antagonistic interaction toward the Bifidobacterium strains (with FICI values ranging from 4.012 to 8.023) was observed. Ciprofloxacin-zinc pyrithione produced significant synergistic action against S. flexneri, whereas a strong antagonistic interaction was observed toward B. breve for the ciprofloxacin-nitroxoline combination. These findings suggest that certain combinations of agents tested in this study can be used for the development of antidiarrheal therapeutic agents with reduced harmful action on the gastrointestinal microbiome. However, further studies focused on their pharmacological efficacy and safety are needed before they are considered for clinical trials. IMPORTANCE Diarrheal infections, which are commonly treated by antibiotics, are still responsible for over 4 to 5 million cases of human deaths annually. Moreover, the rising incidence of antibiotic resistance and its negative effect on beneficial bacteria (e.g., Bifidobacteria) of the gut microbial community are another problem. Thus, the development of selective agents able to inhibit diarrheal bacteria and, simultaneously, that have no negative impact on the gut microbiota, is important. Our results showed that individual combinations of ciprofloxacin with nitroxoline, sanguinarine, and zinc pyrithione produced synergism against the pathogenic bacteria, whereas their antagonistic interaction toward the beneficial strains was observed. The antagonism can be considered a positive effect contributing to the safety of the therapeutic agents, whereas their synergism against diarrheal bacteria significantly potentiates total antimicrobial efficacy. The certain combinations tested in this study can be used for the development of antidiarrheal agents with reduced harmful action on the gastrointestinal microbiome.
Zobrazit více v PubMed
Agunu A, Yusuf S, Andrew GO, Zezi AU, Abdurahman EM. 2005. Evaluation of five medicinal plants used in diarrhoea treatment in Nigeria. J Ethnopharmacol 101:27–30. doi:10.1016/j.jep.2005.03.025. PubMed DOI
Carvajal-Vélez L, Amouzou A, Perin J, Maïga A, Tarekegn H, Akinyemi A, Shiferaw S, Young M, Bryce J, Newby H. 2016. Diarrhea management in children under five in sub-Saharan Africa: does the source of care matter? A countdown analysis. BMC Public Health 16:830. doi:10.1186/s12889-016-3475-1. PubMed DOI PMC
Cooke ML. 2010. Causes and management of diarrhoea in children in a clinical setting. South Afr J Clin Nutr 23:42–46. doi:10.1080/16070658.2010.11734269. DOI
Njume C, Goduka NI. 2012. Treatment of diarrhoea in rural African communities: an overview of measures to maximise the medicinal potentials of indigenous plants. Int J Environ Res Public Health 9:3911–3933. doi:10.3390/ijerph9113911. PubMed DOI PMC
Diniz-Santos DR, Silva LR, Silva N. 2006. Antibiotics for the empirical treatment of acute infectious diarrhea in children. Braz J Infect Dis 10:217–227. doi:10.1590/s1413-86702006000300011. PubMed DOI
Sanhueza L, Melo R, Montero R, Maisey K, Mendoza L, Wilkens M. 2017. Synergistic interactions between phenolic compounds identified in grape pomace extract with antibiotics of different classes against Staphylococcus aureus and Escherichia coli. PLoS One 12:e0172273. doi:10.1371/journal.pone.0172273. PubMed DOI PMC
Francino MP. 2015. Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances. Front Microbiol 6:1543. doi:10.3389/fmicb.2015.01543. PubMed DOI PMC
Mousavi Khaneghah A, Abhari K, Eş I, Soares MB, Oliveira RB, Hosseini H, Rezaei M, Balthazar CF, Silva R, Cruz AG, Ranadheera CS, Sant’Ana AS. 2020. Interactions between probiotics and pathogenic microorganisms in hosts and foods: a review. Trends Food Sci Technol 95:205–218. doi:10.1016/j.tifs.2019.11.022. DOI
McFarland LV, Elmer GW. 1997. Pharmaceutical probiotics for the treatment of anaerobic and other infections. Anaerobe 3:73–78. doi:10.1006/anae.1996.0062. PubMed DOI
Gupta V, Datta P. 2019. Next-generation strategy for treating drug resistant bacteria: antibiotic hybrids. Indian J Med Res 149:97–106. doi:10.4103/ijmr.IJMR_755_18. PubMed DOI PMC
Pfizer. 2019. Unasyn (ampicillin sodium/sulbactam sodium) prescribing information. Pfizer, New York, NY.
McFarland LV. 2009. Evidence-based review of probiotics for antibiotic-associated diarrhea and Clostridium difficile infections. Anaerobe 15:274–280. doi:10.1016/j.anaerobe.2009.09.002. PubMed DOI
Ericsson CD, DuPont HL, Mathewson JJ, West MS, Johnson PC, Bitsura JA. 1990. Treatment of traveler’s diarrhea with sulfamethoxazole and trimethoprim and loperamide. JAMA 263:257–261. doi:10.1001/jama.1990.03440020091039. PubMed DOI
Savoia D. 2012. Plant-derived antimicrobial compounds: alternatives to antibiotics. Future Microbiol 7:979–990. doi:10.2217/fmb.12.68. PubMed DOI
Abreu AC, McBain AJ, Simões M. 2012. Plants as sources of new antimicrobials and resistance-modifying agents. Nat Prod Rep 29:1007–1021. doi:10.1039/c2np20035j. PubMed DOI
Tallarida RJ. 2011. Quantitative methods for assessing drug synergism. Genes Cancer 2:1003–1008. doi:10.1177/1947601912440575. PubMed DOI PMC
Berenbaum MC. 1977. Synergy, additivism and antagonism in immunosuppression. a critical review. Clin Exp Immunol 28:1–18. PubMed PMC
Yilancioglu K. 2019. Antimicrobial drug interactions: systematic evaluation of protein and nucleic acid synthesis inhibitors. Antibiotics 8:114. doi:10.3390/antibiotics8030114. PubMed DOI PMC
Doldán-Martelli V, Míguez DG. 2015. Synergistic interaction between selective drugs in cell populations models. PLoS One 10:e0117558. doi:10.1371/journal.pone.0117558. PubMed DOI PMC
Novakova J, Vlkova E, Bonusova B, Rada V, Kokoska L. 2013. In vitro selective inhibitory effect of 8-hydroxyquinoline against bifidobacteria and clostridia. Anaerobe 22:134–136. doi:10.1016/j.anaerobe.2013.05.008. PubMed DOI
Novakova J, Džunková M, Musilova S, Vlkova E, Kokoska L, Moya A, D'Auria G. 2014. Selective growth-inhibitory effect of 8-hydroxyquinoline towards Clostridium difficile and Bifidobacterium longum subsp. longum in co-culture analysed by flow cytometry. J Med Microbiol 63:1663–1669. doi:10.1099/jmm.0.080796-0. PubMed DOI
Skrivanova E, Van Immerseel F, Hovorkova P, Kokoska L. 2016. In vitro selective growth-inhibitory effect of 8-hydroxyquinoline on Clostridium perfringens versus bifidobacteria in a medium containing chicken ileal digesta. PLoS One 11:e0167638. doi:10.1371/journal.pone.0167638. PubMed DOI PMC
Sklenickova O, Flesar J, Kokoska L, Vlkova E, Halamova K, Malik J. 2010. Selective growth inhibitory effect of biochanin A against intestinal tract colonizing bacteria. Molecules 15:1270–1279. doi:10.3390/molecules15031270. PubMed DOI PMC
Ericsson CD, Johnson PC, Dupont HL, Morgan DR, Bitsura JA, De La Cabada FJ. 1987. Ciprofloxacin or trimethoprim-sulfamethoxazole as initial therapy for travelers’ diarrhea. A placebo-controlled, randomized trial. Ann Intern Med 106:216–220. doi:10.7326/0003-4819-106-2-216. PubMed DOI
Heck JE, Staneck JL, Cohen MB, Weckbach LS, Giannella RA, Hawkins J, Tosiello R. 1994. Prevention of travelers’ diarrhea: ciprofloxacin versus trimethoprim/sulfamethoxazole in adult volunteers working in Latin America and the Caribbean. J Travel Med 1:136–142. doi:10.1111/j.1708-8305.1994.tb00580.x. PubMed DOI
Werk R, Schneider L. 1988. Ciprofloxacin in combination with metronidazole. Infection 16:257–260. doi:10.1007/BF01650774. PubMed DOI
Kudera T, Doskocil I, Salmonova H, Petrtyl M, Skrivanova E, Kokoska L. 2020. In vitro selective growth-inhibitory activities of phytochemicals, synthetic phytochemical analogs, and antibiotics against diarrheagenic/probiotic bacteria and cancer/normal intestinal cells. Pharmaceuticals 13:233. doi:10.3390/ph13090233. PubMed DOI PMC
Croaker A, King GJ, Pyne JH, Anoopkumar-Dukie S, Liu L. 2016. Sanguinaria canadensis: traditional medicine, phytochemical composition, biological activities and current uses. Int J Mol Sci 17:1414. doi:10.3390/ijms17091414. PubMed DOI PMC
Hamoud R, Reichling J, Wink M. 2015. Synergistic antibacterial activity of the combination of the alkaloid sanguinarine with EDTA and the antibiotic streptomycin against multidrug resistant bacteria. J Pharm Pharmacol 67:264–273. doi:10.1111/jphp.12326. PubMed DOI
National Center for Advancing Translational Sciences (NCATS). 2021. Inxight drugs. Democracy Boulevard, Bethesda, MD. https://drugs.ncats.io/drug/A8M33244M6. Accessed on 20 March 2022.
Kresken M, Körber-Irrgang B. 2014. In vitro activity of nitroxoline against Escherichia coli urine isolates from outpatient departments in Germany. Antimicrob Agents Chemother 58:7019–7020. doi:10.1128/AAC.03946-14. PubMed DOI PMC
Vivanco JM, Bais HP, Stermitz FR, Thelen GC, Callaway RM. 2004. Biogeographical variation in community response to root allelochemistry: novel weapons and exotic invasion. Ecol Lett 7:285–292. doi:10.1111/j.1461-0248.2004.00576.x. DOI
Han G, Bingxiang X, Xiaopeng W. 1981. Studies on active principles of Polyalthia nemoralis. The isolation and identification of natural zinc compound. Acta Chim Sin 39:433–437.
Saunders CW, Scheynius A, Heitman J. 2012. Malassezia fungi are specialized to live on skin and associated with dandruff, eczema, and other skin diseases. PLoS Pathog 8:e1002701. doi:10.1371/journal.ppat.1002701. PubMed DOI PMC
Leong C, Wang J, Toi MJ, Lam YI, Goh JP, Lee SM, Dawson TL. 2021. Effect of zinc pyrithione shampoo treatment on skin commensal Malassezia. Med Mycol 59:210–213. doi:10.1093/mmy/myaa068. PubMed DOI
Jorgensen JH, Turnidge JD, Washington JA. 1999. Antimicrobial agents and susceptibility testing: dilution and disc diffusion testing methods, p 1531–1533. In Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH (ed), Manual of clinical microbiology, 7th ed. ASM Press, Washington, DC.
Rolston KV, Vaziri I, Frisbee-Hume S, Streeter H, LeBlanc B. 2004. In vitro antimicrobial activity of gatifloxacin compared with other quinolones against clinical isolates from cancer patients. Chemotherapy 50:214–220. doi:10.1159/000081708. PubMed DOI
Cohen MA, Huband MD, Mailloux GB, Yoder SL, Roland GE, Heifetz CL. 1991. In vitro antibacterial activities of the fluoroquinolones PD 117596, PD 124816, and PD 127391. Diagn Microbiol Infect Dis 14:245–258. doi:10.1016/0732-8893(91)90039-I. PubMed DOI
Cherubin CE, Stratton CW. 1994. Assessment of the bactericidal activity of sparfloxacin, ofloxacin, levofloxacin, and other fluoroquinolones compared with selected agents of proven efficacy against Listeria monocytogenes. Diagn Microbiol Infect Dis 20:21–25. doi:10.1016/0732-8893(94)90014-0. PubMed DOI
Felmingham D, Robbins MJ, Ingley K, Mathias I, Bhogal H, Leakey A, Ridgway GL, Grüneberg RN. 1997. In-vitro activity of trovafloxacin, a new fluoroquinolone, against recent clinical isolates. J Antimicrob Chemother 39:43–49. doi:10.1093/jac/39.suppl_2.43. PubMed DOI
Inagaki Y, Horiuchi S, Une T, Nakaya R. 1989. In-vitro activity of DR-3355, an optically active isomer of ofloxacin, against bacterial pathogens associated with travellers’ diarrhoea. J Antimicrob Chemother 24:547–549. doi:10.1093/jac/24.4.547. PubMed DOI
Masco L, Van Hoorde K, De Brandt E, Swings J, Huys G. 2006. Antimicrobial susceptibility of Bifidobacterium strains from humans, animals and probiotic products. J Antimicrob Chemother 58:85–94. doi:10.1093/jac/dkl197. PubMed DOI
Rozman V, Mohar Lorbeg P, Accetto T, Bogovič Matijašić B. 2020. Characterization of antimicrobial resistance in lactobacilli and bifidobacteria used as probiotics or starter cultures based on integration of phenotypic and in silico data. Int J Food Microbiol 314:108388. doi:10.1016/j.ijfoodmicro.2019.108388. PubMed DOI
Chang YC, Wang YC, Wang IK, Lin CF, Chuang HL, Wu YY, Chung TC, Chen TH. 2012. Ciprofloxacin and tetracycline susceptibility of lactobacilli isolated from indigenous children’s feces. Afr J Microbiol Res 6:245–250.
Pankey GA, Sabath LD. 2004. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin Infect Dis 38:864–870. doi:10.1086/381972. PubMed DOI
Mandal S, Mandal MD, Pal NK. 2003. Combination effect of ciprofloxacin and gentamicin against clinical isolates of Salmonella enterica serovar typhi with reduced susceptibility to ciprofloxacin. Jpn J Infect Dis 56:156–157. PubMed
Huovinen P, Wolfson JS, Hooper DC. 1992. Synergism of trimethoprim and ciprofloxacin in vitro against clinical bacterial isolates. Eur J Clin Microbiol Infect Dis 11:255–257. doi:10.1007/BF02098092. PubMed DOI
Shi C, Li M, Muhammad I, Ma X, Chang Y, Li R, Li C, He J, Liu F. 2018. Combination of berberine and ciprofloxacin reduces multi-resistant Salmonella strain biofilm formation by depressing mRNA expressions of luxS, rpoE, and ompR. J Vet Sci 19:808–816. doi:10.4142/jvs.2018.19.6.808. PubMed DOI PMC
Drlica K, Zhao X. 1997. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev 61:377–392. doi:10.1128/mmbr.61.3.377-392.1997. PubMed DOI PMC
Sissi C, Palumbo M. 2009. Effects of magnesium and related divalent metal ions in topoisomerase structure and function. Nucleic Acids Res 37:702–711. doi:10.1093/nar/gkp024. PubMed DOI PMC
Marshall AJ, Piddock LJ. 1994. Interaction of divalent cations, quinolones and bacteria. J Antimicrob Chemother 34:465–483. doi:10.1093/jac/34.4.465. PubMed DOI
Pelletier C, Prognon P, Bourlioux P. 1995. Roles of divalent cations and pH in mechanism of action of nitroxoline against Escherichia coli strains. Antimicrob Agents Chemother 39:707–713. doi:10.1128/AAC.39.3.707. PubMed DOI PMC
Dinning AJ, Al-Adham IS, Austin P, Charlton M, Collier PJ. 1998. Pyrithione biocide interactions with bacterial phospholipid head groups. J Appl Microbiol 85:132–140. doi:10.1046/j.1365-2672.1998.00477.x. PubMed DOI
Kot E, Bezkorovainy A. 1991. Uptake of iron by Bifidobacterium thermophilum depends on the metal content of its growth medium. J Dairy Sci 74:2920–2926. doi:10.3168/jds.S0022-0302(91)78475-0. DOI
Zawadzka K, Nowak M, Piwoński I, Lisowska K. 2019. The synergy of ciprofloxacin and carvedilol against Staphylococcus aureus—prospects of a new treatment strategy? Molecules 24:4104. doi:10.3390/molecules24224104. PubMed DOI PMC
Beuria TK, Santra MK, Panda D. 2005. Sanguinarine blocks cytokinesis in bacteria by inhibiting FtsZ assembly and bundling. Biochemistry 44:16584–16593. doi:10.1021/bi050767+. PubMed DOI
Zhang Q, Lyu Y, Huang J, Zhang X, Yu N, Wen Z, Chen S. 2020. Antibacterial activity and mechanism of sanguinarine against Providencia rettgeri in vitro. PeerJ 8:e9543. doi:10.7717/peerj.9543. PubMed DOI PMC
Obiang-Obounou BW, Kang OH, Choi JG, Keum JH, Kim SB, Mun SH, Shin DW, Kim KW, Park CB, Kim YG, Han SH, Kwon DY. 2011. The mechanism of action of sanguinarine against methicillin-resistant Staphylococcus aureus. J Toxicol Sci 36:277–283. doi:10.2131/jts.36.277. PubMed DOI
Chen J, Kang B, Zhao Y, Yao K, Fu C. 2018. Effects of natural dietary supplementation with Macleaya cordata extract containing sanguinarine on growth performance and gut health of early-weaned piglets. J Anim Physiol Anim Nutr 102:1666–1674. doi:10.1111/jpn.12976. PubMed DOI
Lalouckova K, Skrivanova E, Rondevaldova J, Frankova A, Soukup J, Kokoska L. 2021. In vitro antagonistic inhibitory effects of palm seed crude oils and their main constituent, lauric acid, with oxacillin in Staphylococcus aureus. Sci Rep 11:177. doi:10.1038/s41598-020-80481-0. PubMed DOI PMC
Louie TJ. 1994. Ciprofloxacin: an oral quinolone for the treatment of infections with gram-negative pathogens. CMAJ 150:669–676. PubMed PMC
Naber KG, Niggemann H, Stein G, Stein G. 2014. Review of the literature and individual patients' data meta-analysis on efficacy and tolerance of nitroxoline in the treatment of uncomplicated urinary tract infections. BMC Infect Dis 14:628. doi:10.1186/s12879-014-0628-7. PubMed DOI PMC
Taneja N. 2007. Changing epidemiology of shigellosis and emergence of ciprofloxacin resistant Shigellae in India. J Clin Microbiol 45:678–679. doi:10.1128/JCM.02247-06. PubMed DOI PMC
Becci PJ, Schwartz H, Barnes HH, Southard GL. 1987. Short-term toxicity studies of sanguinarine and of two alkaloid extracts of Sanguinaria canadensis L. J Toxicol Environ Health 20:199–208. doi:10.1080/15287398709530972. PubMed DOI
Scientific Committee on Consumer Safety (SCCS). 2019. Opinion on zinc pyrithione (ZPT) (P81) CAS N° 13463–41-7 submission III, Regulation 1223/2009, CAS 13463–41–7, preliminary version of 13 December 2019, final version of 03–04 March 2020, SCCS/1614/19. European Commission. Brussels.
Clinical and Laboratory Standards Institute. 2015. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, approved standard, 3rd ed. Clinical and Laboratory Standards Institute, Wayne, PA.
Hecht DW. 1999. Antimicrobial agents and susceptibility testing: susceptibility testing of anaerobic bacteria, p 1555–1562. In Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH (ed), Manual of clinical microbiology, 7th ed. ASM Press, Washington, DC.
White RL, Burgess DS, Manduru M, Bosso JA. 1996. Comparison of three different in vitro methods of detecting synergy: time-kill, checkerboard, and E test. Antimicrob Agents Chemother 40:1914–1918. doi:10.1128/AAC.40.8.1914. PubMed DOI PMC
Cos P, Vlietinck AJ, Vanden Berghe D, Maes L. 2006. Anti-infective potential of natural products: how to develop a stronger in vitro “proof-of-concept.” J Ethnopharmacol 106:290–302. doi:10.1016/j.jep.2006.04.003. PubMed DOI
Jorgensen JH, Turnidge JD, Washington JA. 1999. Antibacterial susceptibility tests: dilution and disk diffusion methods, p 1526–1543. In Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH (ed), Manual of clinical microbiology, 7th ed. ASM Press, Washington, DC.
Okoliegbe IN, Hijazi K, Cooper K, Ironside C, Gould IM. 2021. Antimicrobial synergy testing: comparing the tobramycin and ceftazidime gradient diffusion methodology used in assessing synergy in cystic fibrosis-derived multidrug-resistant Pseudomonas aeruginosa. Antibiotics 10:967. doi:10.3390/antibiotics10080967. PubMed DOI PMC
Odds FC. 2003. Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 52:1. doi:10.1093/jac/dkg301. PubMed DOI