Selective growth inhibitory effect of biochanin A against intestinal tract colonizing bacteria
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
20335979
PubMed Central
PMC6257273
DOI
10.3390/molecules15031270
PII: 15031270
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky farmakologie MeSH
- Bifidobacterium klasifikace účinky léků růst a vývoj MeSH
- Clostridium klasifikace účinky léků růst a vývoj MeSH
- druhová specificita MeSH
- genistein farmakologie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- střeva mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- biochanin A MeSH Prohlížeč
- genistein MeSH
Both bifidobacteria and clostridia are part of the natural gut microflora and while clostridia may be responsible for severe intestinal infections, bifidobacteria are probiotic microorganisms belonging to the most important prospective bacteria in the bowel. The antimicrobial activity of biochanin A was tested in vitro against six Bifidobacterium spp., and eight Clostridium spp. using the broth microdilution method. Biochanin A showed an inhibition against all clostridia in the range of minimum inhibitory concentrations (MIC) from 64 microg/mL (for Cl. clostridioforme, strains DSM 933 and I3) to 1,024 microg/mL (for Cl. perfringens, DSM 11778). No bifidobacteria were suppressed at four-fold higher concentration (MICs > 4,096) than MIC of Cl. perfringens. These results indicate selective growth inhibition of biochanin A and its potential use in antimicrobial prevention and/or protection.
Zobrazit více v PubMed
Viswanathan V.K., Hodges K., Hecht G. Enteric infection meets intestinal function: how bacterial pathogens cause diarrhea. Nat. Rev. Microbiol. 2009;7:1–10. doi: 10.1038/nrmicro2053. PubMed DOI PMC
Sullivan A., Nord C.E. The place of probiotics in human intestinal infections. Int. J. Antimicrob. Agents. 2002;20:313–319. doi: 10.1016/S0924-8579(02)00199-1. PubMed DOI
Kuijper E.J., Coignard B., Tull P. Emergence of Clostridium difficile-associated disease in North America and Europe. Clin. Microbiol. Infect. 2006;12:2–18. doi: 10.1111/j.1469-0691.2006.01580.x. PubMed DOI
Fooks L.J., Fuller R., Gibson G.R. Prebiotics, probiotics and human gut microbiology. Int. Dairy J. 1999;9:53–61. doi: 10.1016/S0958-6946(99)00044-8. DOI
Bartlett J.G. Narrative review: The new epidemic of clostridium difficile-associated enteric disease. Ann. Intern Med. 2006;145:758–764. doi: 10.7326/0003-4819-145-10-200611210-00008. PubMed DOI
Larson H.E., Price A.B., Honour P., Borriello S.P. Clostridium difficile and the aetiology of pseudomembranous colitis. Lancet. 1978;311:1063–1066. doi: 10.1016/S0140-6736(78)90912-1. PubMed DOI
Lavigne J.-P., Bouziges N., Sotto A., Leroux J.-L., Michaux-Charachon S. Spondylodiscitis Due to Clostridium ramosum Infection in an Immunocompetent Elderly Patient. J. Clin. Microbiol. 2003;41:2223–2226. doi: 10.1128/JCM.41.5.2223-2226.2003. PubMed DOI PMC
Turkoglu O.F., Solaroglu I., Tun K., Beskonakli E., Taskin Y. Secondary infection of intracranial hydatid cyst with Clostridium ramosum. Child’s Nerv. Syst. 2005;21:1004–1007. doi: 10.1007/s00381-004-1061-9. PubMed DOI
Borregagarcia P., Jimenezmejias M.E., Chinchon I., Cuellocontreras J.A. Paravertebral abscess and meningitis by Clostridium clostridioforme. Med. Clin.-Barcelona. 1994;102:279. PubMed
Spitzer R.D., Ratzan K.R. Chronic osteomyelitis due to Clostridium clostridiiforme. South. Med. J. 1991;84:671–672. PubMed
Marrie T.J., Costerton J.W. Mode of growth of bacterial pathogens in chronic polymicrobial human osteomyelitis. J. Clin. Microbiol. 1985;22:924–933. PubMed PMC
Drudy D., Harnedy N., Fanning S., Hannan M., Kyne L. Emergence and control of fluoroquinolone-resistant, toxin a-negative, toxin B-Positive Clostridium difficile. Infect. Control Hosp. Epidemiol. 2007;28:932–940. doi: 10.1086/519181. PubMed DOI
Hookman P., Barkin J.S. Clostridium difficile associated infection, diarrhea and colitis. World J. Gastroentero. 2009;15:1554–1580. doi: 10.3748/wjg.15.1554. PubMed DOI PMC
Bartlett J.G. The case for vancomycin as the preferred drug for treatment of Clostridium difficile infection. Clin. Infect. Dis. 2008;46:1489–1492. doi: 10.1086/587654. PubMed DOI
O’Horo J., Safdar N. The role of immunoglobulin for the treatment of Clostridium difficile infection: a systematic review. Int. J. Infect Dis. 2009;13:663–667. doi: 10.1016/j.ijid.2008.11.012. PubMed DOI
Huang H.H., Weintraub A., Fang H., Nord C.E. Antimicrobial resistance in Clostridium difficile. Int. J. Antimicrob. Agents. 2009;34:516–522. doi: 10.1016/j.ijantimicag.2009.09.012. PubMed DOI
Sasaki Y., Yamamoto K., Tamura Y., Takahashi T. Tetracycline-resistance genes of Clostridium perfringens, Clostridium septicum and Clostridium sordellii isolated from cattle affected with malignant edema. Vet. Microbiol. 2001;83:61–69. doi: 10.1016/S0378-1135(01)00402-3. PubMed DOI
Fekety R., Shah A.B. Diagnosis and treatment of Clostridium difficile colitis. JAMA. 1993;269:71–75. doi: 10.1001/jama.1993.03500010081036. PubMed DOI
Fekety R., Silva J., Kauffman C., Buggy B., Deery H.G. Treatment of antibiotic-associated clostridium difficile colitis with oral vancomycin - comparasion of 2 dosage regimens. Am. J. Med. 1989;86:15–19. doi: 10.1016/0002-9343(89)90223-4. PubMed DOI
Walters B.A.J., Roberts R., Stafford R., Seneviratne E. Relapse on antibiotic associated colitis - endogenous persistence of Clostridium-difficile during vancomycin therapy. Gut. 1983;24:206–212. doi: 10.1136/gut.24.3.206. PubMed DOI PMC
Neu H.C. The crisis in antibiotic-resistance. Science. 1992;257:1064–1073. doi: 10.1126/science.257.5073.1064. PubMed DOI
McFarland L.V. A randomized placebo-controlled trial of Saccharomyces-boulardii in combination with standard antibodies for Clostridium difficile disease. JAMA. 1994;272:518. PubMed
Tannock G.W. Identification of Lactobacilli and Bifidobacteria. Curr. Issues Mol. Biol. 1999;1:53–64. PubMed
Fuller R. Probiotics in human medicine. Gut. 1991;32:439–442. doi: 10.1136/gut.32.4.439. PubMed DOI PMC
Trejo F.M., Minnaard J., Perez P.F., De Antoni G.L. Inhibition of Clostridium difficile growth and adhesion to enterocytes by Bifidobacterium supernatants. Anaerobe. 2006;12:186–193. doi: 10.1016/j.anaerobe.2006.03.004. PubMed DOI
Lee Y.J., Yu W.K., Heo T.R. Identification and screening for antimicrobial activity against Clostridium difficile of Bifidobacterium and Lactobacillus species isolated from healthy infant faeces. Int. J. Antimicrob. Agents. 2003;21:340–346. doi: 10.1016/S0924-8579(02)00389-8. PubMed DOI
Cowan M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999;12:564–582. PubMed PMC
Rios J.L., Recio M.C. Medicinal plants and antimicrobial activity. J. Ethnopharmacol. 2005;100:80–84. doi: 10.1016/j.jep.2005.04.025. PubMed DOI
Cushnie T.P.T., Lamb A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents. 2005;26:343–356. doi: 10.1016/j.ijantimicag.2005.09.002. PubMed DOI PMC
Dakora F.D., Phillips D.A. Diverse functions of isoflavonoids in legumes transcend anti-microbial definitions of phytoalexins. Physiol. Mol. Plant Pathol. 1996;49:1–20. doi: 10.1006/pmpp.1996.0035. DOI
Johnson G., Maag D.D., Johnson D.K., Thomas R.D. Possible role of phytoalexins in resistance of sugarbeet (Beta vulgaris) to Cercospora beticola. Physiol. Plant Pathol. 1976;8:225–230. doi: 10.1016/0048-4059(76)90017-5. DOI
Dastidar S.G., Manna A., Kumar K.A., Mazumdar K., Dutta N.K., Chakrabarty A.N., Motohashi N., Shirataki Y. Studies on the antibacterial potentiality of isoflavones. Int. J. Antimicrob. Agents. 2004;23:99–102. doi: 10.1016/j.ijantimicag.2003.06.003. PubMed DOI
Gnanamanickam S.S., Smith D.A. Selective toxicity of isoflavonoid phytoalexins to Gram-positive bacteria. Phytopathology. 1980;70:894–896. doi: 10.1094/Phyto-70-894. DOI
Hong H.K., Landauer M.R., Foriska M.A., Ledney G.D. Antibacterial activity of the soy isoflavone genistein. J. Basic Microbiol. 2006;46:329–335. doi: 10.1002/jobm.200510073. PubMed DOI
Verdrengh M., Collins L.V., Bergin P., Tarkowski A. Phytoestrogen genistein as an anti-staphylococcal agent. Microbes Infect. 2004;6:86–92. doi: 10.1016/j.micinf.2003.10.005. PubMed DOI
Sato M., Tanaka H., Fujiwara S., Hirata M., Yamaguchi R., Etoh H., Tokuda C. Antibacterial property of isoflavonoids isolated from Erythrina variegata against cariogenic oral bacteria. Phytomedicine. 2003;10:427–433. doi: 10.1078/0944-7113-00225. PubMed DOI
Weidenborner M., Hindorf H., Jha H.C., Tsotsonos P., Egge H. Antifungal activity of isoflavonoids in different reduced stages on Rhizoctonia solani and Sclerotium rolfsii. Phytochemistry. 1990;29:801–803. doi: 10.1016/0031-9422(90)80022-9. DOI
Kramer R.P., Hindorf H., Jha H.C., Kallage J., Zilliken F. Antifungal activity of soybean and chickpea isoflavonec and their reduced derivatives. Phytochemistry. 1984;23:2203–2205. doi: 10.1016/S0031-9422(00)80520-8. DOI
Rojas R., Bustamante B., Ventosilla P., Fernadez I., Caviedes L., Gilman R.H., Lock O., Hammond G.B. Larvicidal, antimycobacterial and antifungal compounds from the bark of the Peruvian plant Swartzia polyphylla DC. Chem. Pharm. Bull. 2006;54:278–279. doi: 10.1248/cpb.54.278. PubMed DOI
Lechner D., Gibbons S., Bucar F. Plant phenolic compounds as ethidium bromide efflux inhibitors in Mycobacterium smegmatis. J. Antimicrob. Chemother. 2008;62:345–348. doi: 10.1093/jac/dkn178. PubMed DOI
Sklenickova O., Flesar J., Kokoska L. Selective antimicrobial activity of isoflavonoids. Ann. Nutr. Metab. 2009;55:391.
Paredes C.J., Alsaker K.V., Papoutsakis E.T. A Comparative Genomic View of Clostridial Sporulation and Physiology. Nat. Rev. Microbiol. 2005;3:969–978. doi: 10.1038/nrmicro1288. PubMed DOI
Yuli S., Chengxu L., Sydney F.M. Multiplex PCR for rapid differentiation of three species in the “Clostridium clostridioforme group”. FEMS Microbiol. Lett. 2005;244:391–395. doi: 10.1016/j.femsle.2005.02.017. PubMed DOI
Brook I. Clostridial infection in children. J. Med. Microbiol. 1995;42:78–82. doi: 10.1099/00222615-42-2-78. PubMed DOI
Mattoo J., van Hoek A., Domig K.J., Saarela M., Florez A.B., Brockmann E., Amtmann E., Mayo B., Aarts H.J.M., Danielsen M. Susceptibility of human and probiotic Bifidobacterium spp. to selected antibiotics as determined by the Etest method. Int. Dairy J. 2007;17:1123–1131. doi: 10.1016/j.idairyj.2007.01.008. DOI
Kiwaki M., Sato T. Antimicrobial susceptibility of Bifidobacterium breve strains and genetic analysis of streptomycin resistance of probiotic B. breve strain Yakult. Int. J. Food Microbiol. 2009;134:211–215. doi: 10.1016/j.ijfoodmicro.2009.06.011. PubMed DOI
Morel C., Stermitz F.R., Tegos G., Lewis K. Isoflavones as potentiators of antibacterial activity. Int. J. Food Microbiol. 2003;51:5677–5679. doi: 10.1021/jf0302714. PubMed DOI
Sato M., Tanaka H., Tani N., Nagayama M., Yamaguchi R. Different antibacterial actions of isoflavones isolated from Erythrina poeppigiana against methicillin-resistant Staphylococcus aureus. Lett. Appl. Microbiol. 2006;43:243–248. doi: 10.1111/j.1472-765X.2006.01963.x. PubMed DOI
Saviranta N.M., Anttonen M.J., von Wright A., Karjalainen R.O. Red clover (Trifolium pratense L.) isoflavones: determination of concentrations by plant stage, flower colour, plant part and cultivar. J. Sci. Food Agric. 2008;88:125–132.
Batterha T.J., Shutt D.A., Hart N.K., Braden A.W.H., Tweeddal H.J. Metabolism of intraruminally administered [4-C-14]formononetin and [4-C-14]biochanin A in sheep. Aust. J. Agric. Res. 1971;22:131–138. doi: 10.1071/AR9710131. DOI
Davies F.T., Calderon C.M., Human Z., Gomez R. Influence of a flavonoid (formononetin) on mycorrhizal activity and potato crop productivity in the highlands of Peru. Sci. Hortic.-Amsterdam. 2005;106:318–329. doi: 10.1016/j.scienta.2005.04.013. DOI
Occhiuto F., Zangla G., Samperi S., Palumbo D.R., Pino A., De Pasquale R., Circosta C. The phytoestrogenic isoflavones from Trifolium pratense L. (Red clover) protects human cortical neurons from glutamate toxicity. Phytomedicine. 2008;15:676–682. doi: 10.1016/j.phymed.2008.04.007. PubMed DOI
Morimoto K., Karita S., Kimura T., Sakka K., Ohmiya K. Characterization of Clostridium paraputrificum Chitanase A from a Recombinant Escherichia coli. J. Biosci. Bioeng. 2001;92:466–468. doi: 10.1016/S1389-1723(01)80297-8. PubMed DOI
Evvyernie D., Yamazaki S., Morimoto K., Karita S., Kimura T., Sakka K., Ohmiya K. Identification and Characterization of Clostridium paraputrificum M-21, a Chitinolytic, Mesophilic and Hydrogen-Producing Bacterium. J. Biosci. Bioeng. 2000;89:596–601. doi: 10.1016/S1389-1723(00)80063-8. PubMed DOI
Cushnie T.P.T., Lamb A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents. 2005;26:343–356. doi: 10.1016/j.ijantimicag.2005.09.002. PubMed DOI PMC
Tsuchiya H., Sato M., Miyazaki T., Fujiwara S., Tanigaki S., Ohyama M., Tanaka T., Iinuma M. Comparative study on the antibacterial activity of phytochemical flavanones against methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol. 1996;50:27–34. doi: 10.1016/0378-8741(96)85514-0. PubMed DOI
Jorgensen J.H., Turnidge J.D. Antimicrobial Susceptibility Testing: General Considerations. In: Murray P.R., Baron E.J., Pfaller M.A., Al. E., editors. Manual Of Clinical Microbiology. 7th ed. ASM Press; Washington, DC, USA: 1999. pp. 1469–1473.