Selective growth inhibitory effect of biochanin A against intestinal tract colonizing bacteria

. 2010 Mar 03 ; 15 (3) : 1270-9. [epub] 20100303

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid20335979

Both bifidobacteria and clostridia are part of the natural gut microflora and while clostridia may be responsible for severe intestinal infections, bifidobacteria are probiotic microorganisms belonging to the most important prospective bacteria in the bowel. The antimicrobial activity of biochanin A was tested in vitro against six Bifidobacterium spp., and eight Clostridium spp. using the broth microdilution method. Biochanin A showed an inhibition against all clostridia in the range of minimum inhibitory concentrations (MIC) from 64 microg/mL (for Cl. clostridioforme, strains DSM 933 and I3) to 1,024 microg/mL (for Cl. perfringens, DSM 11778). No bifidobacteria were suppressed at four-fold higher concentration (MICs > 4,096) than MIC of Cl. perfringens. These results indicate selective growth inhibition of biochanin A and its potential use in antimicrobial prevention and/or protection.

Zobrazit více v PubMed

Viswanathan V.K., Hodges K., Hecht G. Enteric infection meets intestinal function: how bacterial pathogens cause diarrhea. Nat. Rev. Microbiol. 2009;7:1–10. doi: 10.1038/nrmicro2053. PubMed DOI PMC

Sullivan A., Nord C.E. The place of probiotics in human intestinal infections. Int. J. Antimicrob. Agents. 2002;20:313–319. doi: 10.1016/S0924-8579(02)00199-1. PubMed DOI

Kuijper E.J., Coignard B., Tull P. Emergence of Clostridium difficile-associated disease in North America and Europe. Clin. Microbiol. Infect. 2006;12:2–18. doi: 10.1111/j.1469-0691.2006.01580.x. PubMed DOI

Fooks L.J., Fuller R., Gibson G.R. Prebiotics, probiotics and human gut microbiology. Int. Dairy J. 1999;9:53–61. doi: 10.1016/S0958-6946(99)00044-8. DOI

Bartlett J.G. Narrative review: The new epidemic of clostridium difficile-associated enteric disease. Ann. Intern Med. 2006;145:758–764. doi: 10.7326/0003-4819-145-10-200611210-00008. PubMed DOI

Larson H.E., Price A.B., Honour P., Borriello S.P. Clostridium difficile and the aetiology of pseudomembranous colitis. Lancet. 1978;311:1063–1066. doi: 10.1016/S0140-6736(78)90912-1. PubMed DOI

Lavigne J.-P., Bouziges N., Sotto A., Leroux J.-L., Michaux-Charachon S. Spondylodiscitis Due to Clostridium ramosum Infection in an Immunocompetent Elderly Patient. J. Clin. Microbiol. 2003;41:2223–2226. doi: 10.1128/JCM.41.5.2223-2226.2003. PubMed DOI PMC

Turkoglu O.F., Solaroglu I., Tun K., Beskonakli E., Taskin Y. Secondary infection of intracranial hydatid cyst with Clostridium ramosum. Child’s Nerv. Syst. 2005;21:1004–1007. doi: 10.1007/s00381-004-1061-9. PubMed DOI

Borregagarcia P., Jimenezmejias M.E., Chinchon I., Cuellocontreras J.A. Paravertebral abscess and meningitis by Clostridium clostridioforme. Med. Clin.-Barcelona. 1994;102:279. PubMed

Spitzer R.D., Ratzan K.R. Chronic osteomyelitis due to Clostridium clostridiiforme. South. Med. J. 1991;84:671–672. PubMed

Marrie T.J., Costerton J.W. Mode of growth of bacterial pathogens in chronic polymicrobial human osteomyelitis. J. Clin. Microbiol. 1985;22:924–933. PubMed PMC

Drudy D., Harnedy N., Fanning S., Hannan M., Kyne L. Emergence and control of fluoroquinolone-resistant, toxin a-negative, toxin B-Positive Clostridium difficile. Infect. Control Hosp. Epidemiol. 2007;28:932–940. doi: 10.1086/519181. PubMed DOI

Hookman P., Barkin J.S. Clostridium difficile associated infection, diarrhea and colitis. World J. Gastroentero. 2009;15:1554–1580. doi: 10.3748/wjg.15.1554. PubMed DOI PMC

Bartlett J.G. The case for vancomycin as the preferred drug for treatment of Clostridium difficile infection. Clin. Infect. Dis. 2008;46:1489–1492. doi: 10.1086/587654. PubMed DOI

O’Horo J., Safdar N. The role of immunoglobulin for the treatment of Clostridium difficile infection: a systematic review. Int. J. Infect Dis. 2009;13:663–667. doi: 10.1016/j.ijid.2008.11.012. PubMed DOI

Huang H.H., Weintraub A., Fang H., Nord C.E. Antimicrobial resistance in Clostridium difficile. Int. J. Antimicrob. Agents. 2009;34:516–522. doi: 10.1016/j.ijantimicag.2009.09.012. PubMed DOI

Sasaki Y., Yamamoto K., Tamura Y., Takahashi T. Tetracycline-resistance genes of Clostridium perfringens, Clostridium septicum and Clostridium sordellii isolated from cattle affected with malignant edema. Vet. Microbiol. 2001;83:61–69. doi: 10.1016/S0378-1135(01)00402-3. PubMed DOI

Fekety R., Shah A.B. Diagnosis and treatment of Clostridium difficile colitis. JAMA. 1993;269:71–75. doi: 10.1001/jama.1993.03500010081036. PubMed DOI

Fekety R., Silva J., Kauffman C., Buggy B., Deery H.G. Treatment of antibiotic-associated clostridium difficile colitis with oral vancomycin - comparasion of 2 dosage regimens. Am. J. Med. 1989;86:15–19. doi: 10.1016/0002-9343(89)90223-4. PubMed DOI

Walters B.A.J., Roberts R., Stafford R., Seneviratne E. Relapse on antibiotic associated colitis - endogenous persistence of Clostridium-difficile during vancomycin therapy. Gut. 1983;24:206–212. doi: 10.1136/gut.24.3.206. PubMed DOI PMC

Neu H.C. The crisis in antibiotic-resistance. Science. 1992;257:1064–1073. doi: 10.1126/science.257.5073.1064. PubMed DOI

McFarland L.V. A randomized placebo-controlled trial of Saccharomyces-boulardii in combination with standard antibodies for Clostridium difficile disease. JAMA. 1994;272:518. PubMed

Tannock G.W. Identification of Lactobacilli and Bifidobacteria. Curr. Issues Mol. Biol. 1999;1:53–64. PubMed

Fuller R. Probiotics in human medicine. Gut. 1991;32:439–442. doi: 10.1136/gut.32.4.439. PubMed DOI PMC

Trejo F.M., Minnaard J., Perez P.F., De Antoni G.L. Inhibition of Clostridium difficile growth and adhesion to enterocytes by Bifidobacterium supernatants. Anaerobe. 2006;12:186–193. doi: 10.1016/j.anaerobe.2006.03.004. PubMed DOI

Lee Y.J., Yu W.K., Heo T.R. Identification and screening for antimicrobial activity against Clostridium difficile of Bifidobacterium and Lactobacillus species isolated from healthy infant faeces. Int. J. Antimicrob. Agents. 2003;21:340–346. doi: 10.1016/S0924-8579(02)00389-8. PubMed DOI

Cowan M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999;12:564–582. PubMed PMC

Rios J.L., Recio M.C. Medicinal plants and antimicrobial activity. J. Ethnopharmacol. 2005;100:80–84. doi: 10.1016/j.jep.2005.04.025. PubMed DOI

Cushnie T.P.T., Lamb A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents. 2005;26:343–356. doi: 10.1016/j.ijantimicag.2005.09.002. PubMed DOI PMC

Dakora F.D., Phillips D.A. Diverse functions of isoflavonoids in legumes transcend anti-microbial definitions of phytoalexins. Physiol. Mol. Plant Pathol. 1996;49:1–20. doi: 10.1006/pmpp.1996.0035. DOI

Johnson G., Maag D.D., Johnson D.K., Thomas R.D. Possible role of phytoalexins in resistance of sugarbeet (Beta vulgaris) to Cercospora beticola. Physiol. Plant Pathol. 1976;8:225–230. doi: 10.1016/0048-4059(76)90017-5. DOI

Dastidar S.G., Manna A., Kumar K.A., Mazumdar K., Dutta N.K., Chakrabarty A.N., Motohashi N., Shirataki Y. Studies on the antibacterial potentiality of isoflavones. Int. J. Antimicrob. Agents. 2004;23:99–102. doi: 10.1016/j.ijantimicag.2003.06.003. PubMed DOI

Gnanamanickam S.S., Smith D.A. Selective toxicity of isoflavonoid phytoalexins to Gram-positive bacteria. Phytopathology. 1980;70:894–896. doi: 10.1094/Phyto-70-894. DOI

Hong H.K., Landauer M.R., Foriska M.A., Ledney G.D. Antibacterial activity of the soy isoflavone genistein. J. Basic Microbiol. 2006;46:329–335. doi: 10.1002/jobm.200510073. PubMed DOI

Verdrengh M., Collins L.V., Bergin P., Tarkowski A. Phytoestrogen genistein as an anti-staphylococcal agent. Microbes Infect. 2004;6:86–92. doi: 10.1016/j.micinf.2003.10.005. PubMed DOI

Sato M., Tanaka H., Fujiwara S., Hirata M., Yamaguchi R., Etoh H., Tokuda C. Antibacterial property of isoflavonoids isolated from Erythrina variegata against cariogenic oral bacteria. Phytomedicine. 2003;10:427–433. doi: 10.1078/0944-7113-00225. PubMed DOI

Weidenborner M., Hindorf H., Jha H.C., Tsotsonos P., Egge H. Antifungal activity of isoflavonoids in different reduced stages on Rhizoctonia solani and Sclerotium rolfsii. Phytochemistry. 1990;29:801–803. doi: 10.1016/0031-9422(90)80022-9. DOI

Kramer R.P., Hindorf H., Jha H.C., Kallage J., Zilliken F. Antifungal activity of soybean and chickpea isoflavonec and their reduced derivatives. Phytochemistry. 1984;23:2203–2205. doi: 10.1016/S0031-9422(00)80520-8. DOI

Rojas R., Bustamante B., Ventosilla P., Fernadez I., Caviedes L., Gilman R.H., Lock O., Hammond G.B. Larvicidal, antimycobacterial and antifungal compounds from the bark of the Peruvian plant Swartzia polyphylla DC. Chem. Pharm. Bull. 2006;54:278–279. doi: 10.1248/cpb.54.278. PubMed DOI

Lechner D., Gibbons S., Bucar F. Plant phenolic compounds as ethidium bromide efflux inhibitors in Mycobacterium smegmatis. J. Antimicrob. Chemother. 2008;62:345–348. doi: 10.1093/jac/dkn178. PubMed DOI

Sklenickova O., Flesar J., Kokoska L. Selective antimicrobial activity of isoflavonoids. Ann. Nutr. Metab. 2009;55:391.

Paredes C.J., Alsaker K.V., Papoutsakis E.T. A Comparative Genomic View of Clostridial Sporulation and Physiology. Nat. Rev. Microbiol. 2005;3:969–978. doi: 10.1038/nrmicro1288. PubMed DOI

Yuli S., Chengxu L., Sydney F.M. Multiplex PCR for rapid differentiation of three species in the “Clostridium clostridioforme group”. FEMS Microbiol. Lett. 2005;244:391–395. doi: 10.1016/j.femsle.2005.02.017. PubMed DOI

Brook I. Clostridial infection in children. J. Med. Microbiol. 1995;42:78–82. doi: 10.1099/00222615-42-2-78. PubMed DOI

Mattoo J., van Hoek A., Domig K.J., Saarela M., Florez A.B., Brockmann E., Amtmann E., Mayo B., Aarts H.J.M., Danielsen M. Susceptibility of human and probiotic Bifidobacterium spp. to selected antibiotics as determined by the Etest method. Int. Dairy J. 2007;17:1123–1131. doi: 10.1016/j.idairyj.2007.01.008. DOI

Kiwaki M., Sato T. Antimicrobial susceptibility of Bifidobacterium breve strains and genetic analysis of streptomycin resistance of probiotic B. breve strain Yakult. Int. J. Food Microbiol. 2009;134:211–215. doi: 10.1016/j.ijfoodmicro.2009.06.011. PubMed DOI

Morel C., Stermitz F.R., Tegos G., Lewis K. Isoflavones as potentiators of antibacterial activity. Int. J. Food Microbiol. 2003;51:5677–5679. doi: 10.1021/jf0302714. PubMed DOI

Sato M., Tanaka H., Tani N., Nagayama M., Yamaguchi R. Different antibacterial actions of isoflavones isolated from Erythrina poeppigiana against methicillin-resistant Staphylococcus aureus. Lett. Appl. Microbiol. 2006;43:243–248. doi: 10.1111/j.1472-765X.2006.01963.x. PubMed DOI

Saviranta N.M., Anttonen M.J., von Wright A., Karjalainen R.O. Red clover (Trifolium pratense L.) isoflavones: determination of concentrations by plant stage, flower colour, plant part and cultivar. J. Sci. Food Agric. 2008;88:125–132.

Batterha T.J., Shutt D.A., Hart N.K., Braden A.W.H., Tweeddal H.J. Metabolism of intraruminally administered [4-C-14]formononetin and [4-C-14]biochanin A in sheep. Aust. J. Agric. Res. 1971;22:131–138. doi: 10.1071/AR9710131. DOI

Davies F.T., Calderon C.M., Human Z., Gomez R. Influence of a flavonoid (formononetin) on mycorrhizal activity and potato crop productivity in the highlands of Peru. Sci. Hortic.-Amsterdam. 2005;106:318–329. doi: 10.1016/j.scienta.2005.04.013. DOI

Occhiuto F., Zangla G., Samperi S., Palumbo D.R., Pino A., De Pasquale R., Circosta C. The phytoestrogenic isoflavones from Trifolium pratense L. (Red clover) protects human cortical neurons from glutamate toxicity. Phytomedicine. 2008;15:676–682. doi: 10.1016/j.phymed.2008.04.007. PubMed DOI

Morimoto K., Karita S., Kimura T., Sakka K., Ohmiya K. Characterization of Clostridium paraputrificum Chitanase A from a Recombinant Escherichia coli. J. Biosci. Bioeng. 2001;92:466–468. doi: 10.1016/S1389-1723(01)80297-8. PubMed DOI

Evvyernie D., Yamazaki S., Morimoto K., Karita S., Kimura T., Sakka K., Ohmiya K. Identification and Characterization of Clostridium paraputrificum M-21, a Chitinolytic, Mesophilic and Hydrogen-Producing Bacterium. J. Biosci. Bioeng. 2000;89:596–601. doi: 10.1016/S1389-1723(00)80063-8. PubMed DOI

Cushnie T.P.T., Lamb A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents. 2005;26:343–356. doi: 10.1016/j.ijantimicag.2005.09.002. PubMed DOI PMC

Tsuchiya H., Sato M., Miyazaki T., Fujiwara S., Tanigaki S., Ohyama M., Tanaka T., Iinuma M. Comparative study on the antibacterial activity of phytochemical flavanones against methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol. 1996;50:27–34. doi: 10.1016/0378-8741(96)85514-0. PubMed DOI

Jorgensen J.H., Turnidge J.D. Antimicrobial Susceptibility Testing: General Considerations. In: Murray P.R., Baron E.J., Pfaller M.A., Al. E., editors. Manual Of Clinical Microbiology. 7th ed. ASM Press; Washington, DC, USA: 1999. pp. 1469–1473.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...