Genome Sequence of Rhodococcus erythropolis Strain CCM2595, a Phenol Derivative-Degrading Bacterium

. 2014 Mar 20 ; 2 (2) : . [epub] 20140320

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid24652983

We announce the completion of the genome sequence of a phenol derivative-degrading bacterium, Rhodococcus erythropolis strain CCM2595. This bacterium is interesting in the context of bioremediation for its capability to degrade phenol, catechol, resorcinol, hydroxybenzoate, hydroquinone, p-chlorophenol, p-nitrophenol, pyrimidines, and sterols.

Zobrazit více v PubMed

Larkin MJ, Kulakov LA, Allen CC. 2005. Biodegradation and Rhodococcus—masters of catabolic versatility. Curr. Opin. Biotechnol. 16:282–290. 10.1016/j.copbio.2005.04.007 PubMed DOI

Martínková L, Uhnáková B, Pátek M, Nesvera J, Kren V. 2009. Biodegradation potential of the genus Rhodococcus. Environ. Int. 35:162–177. 10.1016/j.envint.2008.07.018 PubMed DOI

van der Geize R, Dijkhuizen L. 2004. Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr. Opin. Microbiol. 7:255–261. 10.1016/j.mib.2004.04.001 PubMed DOI

Martinkova L, Kren V. 2010. Biotransformations with nitrilases. Curr. Opin. Chem. Biol. 14:130–137. 10.1016/j.cbpa.2009.11.018 PubMed DOI

Bisset KA, Moore FW. 1950. Jensenia, a new genus of the actinomycetales. J. Gen. Microbiol. 4:280. 10.1099/00221287-4-2-280 PubMed DOI

Goodfellow M, Alderson G. 1977. The actinomycete-genus Rhodococcus: a home for the “rhodochrous” complex. J. Gen. Microbiol. 100:99–122. 10.1099/00221287-100-1-99 PubMed DOI

Cejkova A, Masak J, Jirku V, Vesely M, Patek M, Nesvera J. 2005. Potential of Rhodococcus erythropolis as a bioremediation organism. World J. Microbiol. Biotechnol. 21:317–321. 10.1007/s11274-004-2152-1 DOI

Soong CL, Ogawa J, Sakuradani E, Shimizu S. 2002. Barbiturase, a novel zinc-containing amidohydrolase involved in oxidative pyrimidine metabolism. J. Biol. Chem. 277:7051–7058. 10.1074/jbc.M110784200 PubMed DOI

van der Geize R, Hessels GI, van Gerwen R, Vrijbloed JW, van der Meijden P, Dijkhuizen L. 2000. Targeted disruption of the kstD gene encoding a 3-ketosteroid delta(1)-dehydrogenase isoenzyme of Rhodococcus erythropolis strain SQ1. Appl. Environ. Microbiol. 66:2029–2036. 10.1128/AEM.66.5.2029-2036.2000 PubMed DOI PMC

Masák J, Cejková A, Jirků V, Kotrba D, Hron P, Siglová M. 2005. Colonization of surfaces by phenolic compounds utilizing microorganisms. Environ. Int. 31:197–200. 10.1016/j.envint.2004.09.015 PubMed DOI

Veselý M, Pátek M, Nesvera J, Cejková A, Masák J, Jirků V. 2003. Host-vector system for phenol-degrading Rhodococcus erythropolis based on Corynebacterium plasmids. Appl. Microbiol. Biotechnol. 61:523–527. 10.1007/s00253-003-1230-x PubMed DOI

Veselý M, Knoppová M, Nesvera J, Pátek M. 2007. Analysis of catRABC operon for catechol degradation from phenol-degrading Rhodococcus erythropolis. Appl. Microbiol. Biotechnol. 76:159–168. 10.1007/s00253-007-0997-6 PubMed DOI

Schreiberová O, Krulikovská T, Sigler K, Cejková A, Rezanka T. 2010. RP-HPLC/MS-APCI analysis of branched chain TAG prepared by precursor-directed biosynthesis with Rhodococcus erythropolis. Lipids 45:743–756. 10.1007/s11745-010-3447-7 PubMed DOI

Rezanka T, Schreiberová O, Krulikovská T, Masák J, Sigler K. 2010. RP-HPLC/MS-APCI analysis of odd-chain TAGs from Rhodococcus erythropolis including some regioisomers. Chem. Phys. Lipids 163:373–380. 10.1016/j.chemphyslip.2010.01.007 PubMed DOI

Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B. 2000. Artemis: sequence visualization and annotation. Bioinformatics 16:944–945. 10.1093/bioinformatics/16.10.944 PubMed DOI

Gordon D, Green P. 2013. Consed: a graphical editor for next-generation sequencing. Bioinformatics 29:2936–2937. 10.1093/bioinformatics/btt515 PubMed DOI PMC

Knoppová M, Phensaijai M, Veselý M, Zemanová M, Nesvera J, Pátek M. 2007. Plasmid vectors for testing in vivo promoter activities in Corynebacterium glutamicum and Rhodococcus erythropolis. Curr. Microbiol. 55:234–239. 10.1007/s00284-007-0106-1 PubMed DOI

Badger JH, Olsen GJ. 1999. CRITICA: coding region identification tool invoking comparative analysis. Mol. Biol. Evol. 16:512–524. 10.1093/oxfordjournals.molbev.a026133 PubMed DOI

Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119. 10.1186/1471-2105-11-119 PubMed DOI PMC

Delcher AL, Harmon D, Kasif S, White O, Salzberg SL. 1999. Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 27:4636–4641. 10.1093/nar/27.23.4636 PubMed DOI PMC

Laslett D, Canback B. 2004. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32:11–16. 10.1093/nar/gkh152 PubMed DOI PMC

Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25:955–964. 10.1093/nar/25.5.0955 PubMed DOI PMC

Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T, Ussery DW. 2007. RNammer: consistent annotation of ribosomal RNA genes in genomic sequences. Nucleic Acids Res. 35:3100–3108. 10.1093/nar/gkm160 PubMed DOI PMC

Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. 2012. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28:464–469. 10.1093/bioinformatics/btr703 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace