Genome Sequence of Rhodococcus erythropolis Strain CCM2595, a Phenol Derivative-Degrading Bacterium
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
PubMed
24652983
PubMed Central
PMC3961730
DOI
10.1128/genomea.00208-14
PII: 2/2/e00208-14
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We announce the completion of the genome sequence of a phenol derivative-degrading bacterium, Rhodococcus erythropolis strain CCM2595. This bacterium is interesting in the context of bioremediation for its capability to degrade phenol, catechol, resorcinol, hydroxybenzoate, hydroquinone, p-chlorophenol, p-nitrophenol, pyrimidines, and sterols.
Zobrazit více v PubMed
Larkin MJ, Kulakov LA, Allen CC. 2005. Biodegradation and Rhodococcus—masters of catabolic versatility. Curr. Opin. Biotechnol. 16:282–290. 10.1016/j.copbio.2005.04.007 PubMed DOI
Martínková L, Uhnáková B, Pátek M, Nesvera J, Kren V. 2009. Biodegradation potential of the genus Rhodococcus. Environ. Int. 35:162–177. 10.1016/j.envint.2008.07.018 PubMed DOI
van der Geize R, Dijkhuizen L. 2004. Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr. Opin. Microbiol. 7:255–261. 10.1016/j.mib.2004.04.001 PubMed DOI
Martinkova L, Kren V. 2010. Biotransformations with nitrilases. Curr. Opin. Chem. Biol. 14:130–137. 10.1016/j.cbpa.2009.11.018 PubMed DOI
Bisset KA, Moore FW. 1950. Jensenia, a new genus of the actinomycetales. J. Gen. Microbiol. 4:280. 10.1099/00221287-4-2-280 PubMed DOI
Goodfellow M, Alderson G. 1977. The actinomycete-genus Rhodococcus: a home for the “rhodochrous” complex. J. Gen. Microbiol. 100:99–122. 10.1099/00221287-100-1-99 PubMed DOI
Cejkova A, Masak J, Jirku V, Vesely M, Patek M, Nesvera J. 2005. Potential of Rhodococcus erythropolis as a bioremediation organism. World J. Microbiol. Biotechnol. 21:317–321. 10.1007/s11274-004-2152-1 DOI
Soong CL, Ogawa J, Sakuradani E, Shimizu S. 2002. Barbiturase, a novel zinc-containing amidohydrolase involved in oxidative pyrimidine metabolism. J. Biol. Chem. 277:7051–7058. 10.1074/jbc.M110784200 PubMed DOI
van der Geize R, Hessels GI, van Gerwen R, Vrijbloed JW, van der Meijden P, Dijkhuizen L. 2000. Targeted disruption of the kstD gene encoding a 3-ketosteroid delta(1)-dehydrogenase isoenzyme of Rhodococcus erythropolis strain SQ1. Appl. Environ. Microbiol. 66:2029–2036. 10.1128/AEM.66.5.2029-2036.2000 PubMed DOI PMC
Masák J, Cejková A, Jirků V, Kotrba D, Hron P, Siglová M. 2005. Colonization of surfaces by phenolic compounds utilizing microorganisms. Environ. Int. 31:197–200. 10.1016/j.envint.2004.09.015 PubMed DOI
Veselý M, Pátek M, Nesvera J, Cejková A, Masák J, Jirků V. 2003. Host-vector system for phenol-degrading Rhodococcus erythropolis based on Corynebacterium plasmids. Appl. Microbiol. Biotechnol. 61:523–527. 10.1007/s00253-003-1230-x PubMed DOI
Veselý M, Knoppová M, Nesvera J, Pátek M. 2007. Analysis of catRABC operon for catechol degradation from phenol-degrading Rhodococcus erythropolis. Appl. Microbiol. Biotechnol. 76:159–168. 10.1007/s00253-007-0997-6 PubMed DOI
Schreiberová O, Krulikovská T, Sigler K, Cejková A, Rezanka T. 2010. RP-HPLC/MS-APCI analysis of branched chain TAG prepared by precursor-directed biosynthesis with Rhodococcus erythropolis. Lipids 45:743–756. 10.1007/s11745-010-3447-7 PubMed DOI
Rezanka T, Schreiberová O, Krulikovská T, Masák J, Sigler K. 2010. RP-HPLC/MS-APCI analysis of odd-chain TAGs from Rhodococcus erythropolis including some regioisomers. Chem. Phys. Lipids 163:373–380. 10.1016/j.chemphyslip.2010.01.007 PubMed DOI
Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B. 2000. Artemis: sequence visualization and annotation. Bioinformatics 16:944–945. 10.1093/bioinformatics/16.10.944 PubMed DOI
Gordon D, Green P. 2013. Consed: a graphical editor for next-generation sequencing. Bioinformatics 29:2936–2937. 10.1093/bioinformatics/btt515 PubMed DOI PMC
Knoppová M, Phensaijai M, Veselý M, Zemanová M, Nesvera J, Pátek M. 2007. Plasmid vectors for testing in vivo promoter activities in Corynebacterium glutamicum and Rhodococcus erythropolis. Curr. Microbiol. 55:234–239. 10.1007/s00284-007-0106-1 PubMed DOI
Badger JH, Olsen GJ. 1999. CRITICA: coding region identification tool invoking comparative analysis. Mol. Biol. Evol. 16:512–524. 10.1093/oxfordjournals.molbev.a026133 PubMed DOI
Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119. 10.1186/1471-2105-11-119 PubMed DOI PMC
Delcher AL, Harmon D, Kasif S, White O, Salzberg SL. 1999. Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 27:4636–4641. 10.1093/nar/27.23.4636 PubMed DOI PMC
Laslett D, Canback B. 2004. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32:11–16. 10.1093/nar/gkh152 PubMed DOI PMC
Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25:955–964. 10.1093/nar/25.5.0955 PubMed DOI PMC
Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T, Ussery DW. 2007. RNammer: consistent annotation of ribosomal RNA genes in genomic sequences. Nucleic Acids Res. 35:3100–3108. 10.1093/nar/gkm160 PubMed DOI PMC
Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. 2012. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28:464–469. 10.1093/bioinformatics/btr703 PubMed DOI PMC