Plasmid vectors for testing in vivo promoter activities in Corynebacterium glutamicum and Rhodococcus erythropolis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- Corynebacterium glutamicum genetika MeSH
- genetické vektory * MeSH
- plazmidy genetika MeSH
- promotorové oblasti (genetika) * MeSH
- Rhodococcus genetika MeSH
- zelené fluorescenční proteiny MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- zelené fluorescenční proteiny MeSH
Novel shuttle promoter-probe vectors replicating in Escherichia coli, Corynebacterium glutamicum, and Rhodococcus erythropolis were constructed on the basis of the C. glutamicum plasmid pCG1. The vectors carry reporter genes coding for fluorescent proteins, which allow the measurement of promoter activities in vivo. The promoter-probe vector pPRE11 contains the rsgfp reporter gene, coding for a variant of green fluorescent protein (GFP) with a red-shifted excitation maximum. To ensure efficient expression of the gfp gene in R. erythropolis from the tested promoters, the promoterless gene gfpuv, with 5' end fusion with the initial six codons of the aph gene and upstream insertion of the aph Shine-Dalgarno sequence, was used as a reporter gene in the promoter-probe vector pEPR1. Insertion of the rfp reference gene, coding for a variant of the red fluorescent protein DsRed.T4 and cloned under the strong constitutive C. glutamicum promoter P-45, into the vector pEPR1 resulted in a new-generation promoter-probe vector (pRAG5). All vectors were tested using a set of mutant P-dapA promoters displaying various transcriptional activities. The vector pRAG5 is suitable for normalized measurements of promoter activities during the growth of bacterial batch cultures because estimation of the GFP-to-red fluorescent protein fluorescence ratio in strains carrying the plasmid pRAG5 with the tested promoters upstream of gfpuv avoids the influence of plasmid copy number variations on the promoter activity assay.
Zobrazit více v PubMed
J Bacteriol. 2007 Apr;189(8):2955-66 PubMed
Mol Gen Genet. 1984;196(1):175-8 PubMed
J Bacteriol. 1999 Oct;181(19):6188-91 PubMed
J Bacteriol. 2003 Aug;185(15):4519-29 PubMed
Appl Microbiol Biotechnol. 2003 Jun;61(5-6):523-7 PubMed
Plasmid. 2003 Jan;49(1):63-74 PubMed
J Bacteriol. 2004 Nov;186(21):7112-22 PubMed
Mol Plant Microbe Interact. 2000 Nov;13(11):1243-50 PubMed
Nat Biotechnol. 2007 Apr;25(4):443-5 PubMed
Microbes Infect. 2005 Oct;7(13):1352-63 PubMed
J Biotechnol. 2003 Sep 4;104(1-3):155-72 PubMed
J Microbiol Methods. 2003 Aug;54(2):203-11 PubMed
Gene. 1987;56(2-3):309-12 PubMed
Biotechnol Lett. 2003 Feb;25(3):1875-82 PubMed
Nat Biotechnol. 2002 Jan;20(1):83-7 PubMed
Gene. 1998 Jul 17;215(1):213-22 PubMed
Microbiology. 1996 May;142 ( Pt 5):1297-309 PubMed
FEMS Microbiol Lett. 1989 Dec;53(3):299-303 PubMed
J Bacteriol. 2006 Jan;188(2):409-23 PubMed
J Gen Microbiol. 1993 Aug;139(8):1753-9 PubMed
Curr Opin Biotechnol. 2005 Jun;16(3):282-90 PubMed
Overlapping SigH and SigE sigma factor regulons in Corynebacterium glutamicum
Assignment of sigma factors of RNA polymerase to promoters in Corynebacterium glutamicum
The small 6C RNA of Corynebacterium glutamicum is involved in the SOS response
Genome Sequence of Rhodococcus erythropolis Strain CCM2595, a Phenol Derivative-Degrading Bacterium
Corynebacterium glutamicum promoters: a practical approach
General and molecular microbiology and microbial genetics in the IM CAS