Corynebacterium glutamicum promoters: a practical approach
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
23305350
PubMed Central
PMC3917453
DOI
10.1111/1751-7915.12019
Knihovny.cz E-zdroje
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- biotechnologie metody MeSH
- Corynebacterium glutamicum genetika metabolismus MeSH
- genetická transkripce MeSH
- konsenzuální sekvence MeSH
- metabolické sítě a dráhy MeSH
- molekulární sekvence - údaje MeSH
- promotorové oblasti (genetika) genetika MeSH
- regulace genové exprese u bakterií * MeSH
- sekvence nukleotidů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- bakteriální proteiny MeSH
Transcription initiation is the key step in gene expression in bacteria, and it is therefore studied for both theoretical and practical reasons. Promoters, the traffic lights of transcription initiation, are used as construction elements in biotechnological efforts to coordinate 'green waves' in the metabolic pathways leading to the desired metabolites. Detailed analyses of Corynebacterium glutamicum promoters have already provided large amounts of data on their structures, regulatory mechanisms and practical capabilities in metabolic engineering. In this minireview the main aspects of promoter studies, the methods developed for their analysis and their practical use in C. glutamicum are discussed. These include definitions of the consensus sequences of the distinct promoter classes, promoter localization and characterization, activity measurements, the functions of transcriptional regulators and examples of practical uses of constitutive, inducible and modified promoters in biotechnology. The implications of the introduction of novel techniques, such as in vitro transcription and RNA sequencing, to C. glutamicum promoter studies are outlined.
Zobrazit více v PubMed
Asakura Y, Kimura E, Usuda Y, Kawahara Y, Matsui K, Osumi T, Nakamatsu T. Altered metabolic flux due to deletion of odhA causes L-glutamate overproduction in Corynebacterium glutamicum. Appl Environ Microbiol. 2007;73:1308–1319. PubMed PMC
Barreiro C, Gonzalez-Lavado E, Pátek M, Martín JF. Transcriptional analysis of the groESgroEL1groEL2, and dnaK genes in Corynebacterium glutamicum: characterization of heat shock-induced promoters. J Bacteriol. 2004;186:4813–4817. PubMed PMC
Barreiro C, Gonzalez-Lavado E, Brand S, Tauch A, Martín JF. Heat shock proteome analysis of wild-type Corynebacterium glutamicum ATCC 13032 and a spontaneous mutant lacking GroEL1, a dispensable chaperone. J Bacteriol. 2005;187:884–889. PubMed PMC
Baumbach J, Wittkop T, Kleindt CK, Tauch A. Integrated analysis and reconstruction of microbial transcriptional gene regulatory networks using CoryneRegNet. Nat Protoc. 2009;4:992–1005. PubMed
Becker J, Wittmann C. Systems and synthetic metabolic engineering for amino acid production – the heartbeat of industrial strain development. Curr Opin Biotechnol. 2012;23:718–726. PubMed
Becker J, Klopprogge C, Zelder O, Heinzle E, Wittmann C. Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl Environ Microbiol. 2005;71:8587–8596. PubMed PMC
Becker J, Klopprogge C, Herold A, Zelder O, Bolten CJ, Wittmann C. Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum-over expression and modification of G6P dehydrogenase. J Biotechnol. 2007;132:99–109. PubMed
Becker J, Zelder O, Hafner S, Schröder H, Wittmann C. From zero to hero-Design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab Eng. 2011;13:159–168. PubMed
Ben-Samoun K, Leblon G, Reyes O. Positively regulated expression of the Escherichia coli araBAD promoter in Corynebacterium glutamicum. FEMS Microbiol Lett. 1999;174:125–130. PubMed
Binder S, Schendzielorz G, Stabler N, Krumbach K, Hoffmann K, Bott M, Eggeling L. A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol. 2012;13:R40. PubMed PMC
Blombach B, Eikmanns BJ. Current knowledge on isobutanol production with Escherichia coliBacillus subtilis and Corynebacterium glutamicum. Bioeng Bugs. 2011;2:346–350. PubMed PMC
Börmann ER, Eikmanns BJ, Sahm H. Molecular analysis of the Corynebacterium glutamicum gdh gene encoding glutamate dehydrogenase. Mol Microbiol. 1992;6:317–326. PubMed
Browning DF, Busby SJ. The regulation of bacterial transcription initiation. Nat Rev Microbiol. 2004;2:57–65. PubMed
Busche T, Šilar R, Pičmanová M, Pátek M, Kalinowski J. Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum. BMC Genomics. 2012;13:445. PubMed PMC
Ehira S, Shirai T, Teramoto H, Inui M, Yukawa H. Group 2 sigma factor SigB of Corynebacterium glutamicum positively regulates glucose metabolism under conditions of oxygen deprivation. Appl Environ Microbiol. 2008;74:5146–5152. PubMed PMC
Ehira S, Teramoto H, Inui M, Yukawa H. Regulation of Corynebacterium glutamicum heat shock response by the extracytoplasmic-function sigma factor SigH and transcriptional regulators HspR and HrcA. J Bacteriol. 2009;191:2964–2972. PubMed PMC
Fujita M. Identification of new σK-dependent promoters using an in vitro transcription system derived from Bacillus subtilis. Gene. 1999;237:45–52. PubMed
Fukui K, Koseki C, Yamamoto Y, Nakamura J, Sasahara A, Yuji R, et al. Identification of succinate exporter in Corynebacterium glutamicum and its physiological roles under anaerobic conditions. J Biotechnol. 2011;154:25–34. PubMed
Georgi T, Engels V, Wendisch VF. Regulation of L-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum. J Bacteriol. 2008;190:963–971. PubMed PMC
Gerstmeir R, Wendisch VF, Schnicke S, Ruan H, Farwick M, Reinscheid D, Eikmanns BJ. Acetate metabolism and its regulation in Corynebacterium glutamicum. J Biotechnol. 2003;104:99–122. PubMed
Gruber TM, Gross CA. Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol. 2003;57:441–466. PubMed
Hänssler E, Müller T, Palumbo K, Pátek M, Brocker M, Krämer R, Burkovski A. A game with many players: control of gdh transcription in Corynebacterium glutamicum. J Biotechnol. 2009;142:114–122. PubMed
Holátko J, Elišáková V, Prouza M, Sobotka M, Nešvera J, Pátek M. Metabolic engineering of the L-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation. J Biotechnol. 2009;139:203–210. PubMed
Holátko J, Šilar R, Rabatinová A, Šanderová H, Halada P, Nešvera J, et al. Construction of in vitro transcription system for Corynebacterium glutamicum and its use in the recognition of promoters of different classes. Appl Microbiol Biotechnol. 2012;96:521–529. PubMed
Hou X, Chen X, Zhang Y, Qian H, Zhang W. L-Valine production with minimization of by-products' synthesis in Corynebacterium glutamicum and Brevibacterium flavum. Amino Acids. 2012;43:2301–2311. PubMed
Hüser AT, Chassagnole C, Lindley ND, Merkamm M, Guyonvarch A, Elišáková V, et al. Rational design of a Corynebacterium glutamicum pantothenate production strain and its characterization by metabolic flux analysis and genome-wide transcriptional profiling. Appl Environ Microbiol. 2005;71:3255–3268. PubMed PMC
Ikeda M, Mizuno Y, Awane S, Hayashi M, Mitsuhashi S, Takeno S. Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2011;90:1443–1451. PubMed
Inui M, Suda M, Okino S, Nonaka H, Puskas LG, Vertes AA, Yukawa H. Transcriptional profiling of Corynebacterium glutamicum metabolism during organic acid production under oxygen deprivation conditions. Microbiology. 2007;153:2491–2504. PubMed
Jacques JF, Rodrigue S, Brzezinski R, Gaudreau L. A recombinant Mycobacterium tuberculosis in vitro transcription system. FEMS Microbiol Lett. 2006;255:140–147. PubMed
Jacques PE, Rodrigue S, Gaudreau L, Goulet J, Brzezinski R. Detection of prokaryotic promoters from the genomic distribution of hexanucleotide pairs. BMC Bioinformatics. 2006;7:423. PubMed PMC
Jungwirth B, Emer D, Brune I, Hansmeier N, Puhler A, Eikmanns BJ, Tauch A. Triple transcriptional control of the resuscitation promoting factor 2 (rpf2) gene of Corynebacterium glutamicum by the regulators of acetate metabolism RamA and RamB and the cAMP-dependent regulator GlxR. FEMS Microbiol Lett. 2008;281:190–197. PubMed
Kind S, Jeong WK, Schröder H, Wittmann C. Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. Metab Eng. 2010;12:341–351. PubMed
Kind S, Kreye S, Wittmann C. Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum. Metab Eng. 2011;13:617–627. PubMed
Knoppová M, Phensaijai M, Veselý M, Zemanová M, Nešvera J, Pátek M. Plasmid vectors for testing in vivo promoter activities in Corynebacterium glutamicum and Rhodococcus erythropolis. Curr Microbiol. 2007;55:234–239. PubMed
Kohl TA, Tauch A. The GlxR regulon of the amino acid producer Corynebacterium glutamicum: detection of the corynebacterial core regulon and integration into the transcriptional regulatory network model. J Biotechnol. 2009;143:239–246. PubMed
Kohl TA, Baumbach J, Jungwirth B, Pühler A, Tauch A. The GlxR regulon of the amino acid producer Corynebacterium glutamicum: in silico and in vitro detection of DNA binding sites of a global transcription regulator. J Biotechnol. 2008;135:340–350. PubMed
Larisch C, Nakunst D, Hüser AT, Tauch A, Kalinowski J. The alternative sigma factor SigB of Corynebacterium glutamicum modulates global gene expression during transition from exponential growth to stationary phase. BMC Genomics. 2007;8:4. PubMed PMC
Lausberg F, Chattopadhyay AR, Heyer A, Eggeling L, Freudl R. A tetracycline inducible expression vector for Corynebacterium glutamicum allowing tightly regulable gene expression. Plasmid. 2012;68:142–147. PubMed
Letek M, Valbuena N, Ramos A, Ordonez E, Gil JA, Mateos LM. Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum. J Bacteriol. 2006;188:409–423. PubMed PMC
Litsanov B, Brocker M, Bott M. Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate. Appl Environ Microbiol. 2012;78:3325–3337. PubMed PMC
Liu X, Brutlag DL, Liu JS. BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. Pac Symp Biocomput. 2001;2001:127–138. PubMed
Möker N, Brocker M, Schäffer S, Krämer R, Morbach S, Bott M. Deletion of the genes encoding the MtrA-MtrB two-component system of Corynebacterium glutamicum has a strong influence on cell morphology, antibiotics susceptibility and expression of genes involved in osmoprotection. Mol Microbiol. 2004;54:420–438. PubMed
Mustafi N, Grünberger A, Kohlheyer D, Bott M, Frunzke J. The development and application of a single-cell biosensor for the detection of L-methionine and branched-chain amino acids. Metab Eng. 2012;14:449–457. PubMed
Nakunst D, Larisch C, Hüser AT, Tauch A, Pühler A, Kalinowski J. The extracytoplasmic function-type sigma factor SigM of Corynebacterium glutamicum ATCC 13032 is involved in transcription of disulfide stress-related genes. J Bacteriol. 2007;189:4696–4707. PubMed PMC
Nešvera J, Pátek M, Burkovski A. Corynebacteria. Genomics and Molecular Biology. Norfolk, UK: Caister Academic Press; 2008. Plasmids and promoters in corynebacteria and their applications; pp. 113–154.
Nešvera J, Pátek M. Tools for genetic manipulations in Corynebacterium glutamicum and their applications. Appl Microbiol Biotechnol. 2011;90:1641–1654. PubMed
Neuner A, Heinzle E. Mixed glucose and lactate uptake by Corynebacterium glutamicum through metabolic engineering. Biotechnol J. 2011;6:318–329. PubMed
Neuner A, Wagner I, Sieker T, Ulber R, Schneider K, Peifer S, Heinzle E. Production of L-lysine on different silage juices using genetically engineered Corynebacterium glutamicum. J Biotechnol. 2012 doi: 10.1016/j.jbiotec.2012.07.190. PubMed DOI
Nolden L, Farwick M, Krämer R, Burkovski A. Glutamine synthetases of Corynebacterium glutamicum: transcriptional control and regulation of activity. FEMS Microbiol Lett. 2001;201:91–98. PubMed
Okibe N, Suzuki N, Inui M, Yukawa H. Isolation, evaluation and use of two strong, carbon source-inducible promoters from Corynebacterium glutamicum. Lett Appl Microbiol. 2010;50:173–180. PubMed
van Ooyen J, Noack S, Bott M, Reth A, Eggeling L. Improved L-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity. Biotechnol Bioeng. 2012;109:2070–2081. PubMed
Paget MS, Kang JG, Roe JH, Buttner MJ. σR, an RNA polymerase sigma factor that modulates expression of the thioredoxin system in response to oxidative stress in Streptomyces coelicolor A3(2) EMBO J. 1998;17:5776–5782. PubMed PMC
Pátek M, Nešvera J. Sigma factors and promoters in Corynebacterium glutamicum. J Biotechnol. 2011;154:101–113. PubMed
Pátek M, Nešvera J, Yukawa H, Inui M. Biology and Biotechnology of Corynebacterium glutamicum. Berlin, Germany: Springer; 2012. Promoters and plasmid vectors of Corynebacterium glutamicum; pp. 51–88.
Pátek M, Eikmanns BJ, Pátek J, Sahm H. Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif. Microbiology. 1996;142:1297–1309. PubMed
Pátek M, Muth G, Wohlleben W. Function of Corynebacterium glutamicum promoters in Escherichia coliStreptomyces lividans, and Bacillus subtilis. J Biotechnol. 2003a;104:325–334. PubMed
Pátek M, Nešvera J, Guyonvarch A, Reyes O, Leblon G. Promoters of Corynebacterium glutamicum. J Biotechnol. 2003b;104:311–323. PubMed
Pauling J, Röttger R, Tauch A, Azevedo V, Baumbach J. CoryneRegNet 6.0 – updated database content, new analysis methods and novel features focusing on community demands. Nucleic Acids Res. 2012;40:D610–D614. PubMed PMC
Pfefferle W, Möckel B, Bathe B, Marx A. Biotechnological manufacture of lysine. Adv Biochem Eng Biotechnol. 2003;79:59–112. PubMed
Plassmeier J, Persicke M, Pühler A, Sterthoff C, Rückert C, Kalinowski J. Molecular characterization of PrpR, the transcriptional activator of propionate catabolism in Corynebacterium glutamicum. J Biotechnol. 2012a;159:1–11. PubMed
Plassmeier J, Busche T, Molck S, Presicke M, Pühler A, Rückert S, Kalinowski J. A propionate-inducible expression system based on the Corynebacterium glutamicum prpD2 promoter and PrpR activator and its application for redirection of amino acid biosynthesis pathways. J Biotechnol. 2012b doi: 10.1016/j.jbiotec.2012.08.009. PubMed DOI
Rodrigue S, Provvedi R, Jacques PE, Gaudreau L, Manganelli R. The sigma factors of Mycobacterium tuberculosis. FEMS Microbiol Rev. 2006;30:926–941. PubMed
Ross W, Gourse RL. Analysis of RNA polymerase-promoter complex formation. Methods. 2009;47:13–24. PubMed PMC
Schneider J, Eberhardt D, Wendisch VF. Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system. Appl Microbiol Biotechnol. 2012;95:169–178. PubMed
Schröder J, Tauch A. Transcriptional regulation of gene expression in Corynebacterium glutamicum: the role of global, master and local regulators in the modular and hierarchical gene regulatory network. FEMS Microbiol Rev. 2010;34:685–737. PubMed
Schröder J, Jochmann N, Rodionov DA, Tauch A. The Zur regulon of Corynebacterium glutamicum ATCC 13032. BMC Genomics. 2010;11:12. PubMed PMC
Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A, et al. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature. 2010;464:250–255. PubMed
Song Y, Matsumoto K, Yamada M, Gohda A, Brigham CJ, Sinskey AJ, Taguchi S. Engineered Corynebacterium glutamicum as an endotoxin-free platform strain for lactate-based polyester production. Appl Microbiol Biotechnol. 2012;93:1917–1925. PubMed
Suda M, Teramoto H, Imamiya T, Inui M, Yukawa H. Transcriptional regulation of Corynebacterium glutamicum methionine biosynthesis genes in response to methionine supplementation under oxygen deprivation. Appl Microbiol Biotechnol. 2008;81:505–513. PubMed
Tateno T, Fukuda H, Kondo A. Direct production of L-lysine from raw corn starch by Corynebacterium glutamicum secreting Streptococcus bovis alpha-amylase using cspB promoter and signal sequence. Appl Microbiol Biotechnol. 2007;77:533–541. PubMed
Tateno T, Hatada K, Tanaka T, Fukuda H, Kondo A. Development of novel cell surface display in Corynebacterium glutamicum using porin. Appl Microbiol Biotechnol. 2009;84:733–739. PubMed
Toyoda K, Teramoto H, Inui M, Yukawa H. Genome-wide identification of in vivo binding sites of GlxR, a cyclic AMP receptor protein-type regulator in Corynebacterium glutamicum. J Bacteriol. 2011;193:4123–4133. PubMed PMC
Tsuchiya M, Morinaga Y. Genetic control systems of Escherichia coli can confer inducible expression of cloned genes in coryneform bacteria. Bio/Technology. 1988;6:428–430.
Uhde A, Youn JW, Maeda T, Clermont L, Matano C, Krämer R, et al. Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2012 doi: 10.1007/s0253-012-4313-8. PubMed DOI
Vašicová P, Abrhámová Z, Nešvera J, Pátek M, Sahm H, Eikmanns B. Integrating and autonomously replicating vectors for analysis of promoters in Corynebacterium glutamicum. Biotechnol Techniques. 1998;12:743–746.
Vašicová P, Pátek M, Nešvera J, Sahm H, Eikmanns B. Analysis of the Corynebacterium glutamicum dapA promoter. J Bacteriol. 1999;181:6188–6191. PubMed PMC
Vertes AA, Inui M, Yukawa H. Postgenomic approaches to using corynebacteria as biocatalysts. Annu Rev Microbiol. 2012;66:521–550. PubMed
van Vliet AH. Next generation sequencing of microbial transcriptomes: challenges and opportunities. FEMS Microbiol Lett. 2010;302:1–7. PubMed
Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W. Emerging Corynebacterium glutamicum systems biology. J Biotechnol. 2006;124:74–92. PubMed
Wieschalka S, Blombach B, Eikmanns BJ. Engineering Corynebacterium glutamicum for the production of pyruvate. Appl Microbiol Biotechnol. 2012;94:449–459. PubMed
Youn JW, Jolkver E, Krämer R, Marin K, Wendisch VF. Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum. J Bacteriol. 2008;190:6458–6466. PubMed PMC
Youn JW, Jolkver E, Krämer R, Marin K, Wendisch VF. Characterization of the dicarboxylate transporter DctA in Corynebacterium glutamicum. J Bacteriol. 2009;191:5480–5488. PubMed PMC
Zhang Y, Shang X, Lai S, Zhang G, Liang Y, Wen T. Development and application of an arabinose-inducible expression system by facilitating inducer uptake in Corynebacterium glutamicum. Appl Environ Microbiol. 2012;78:5831–5838. PubMed PMC