Amyloidogenic Intrinsically Disordered Proteins: New Insights into Their Self-Assembly and Their Interaction with Membranes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
32784399
PubMed Central
PMC7459996
DOI
10.3390/life10080144
PII: life10080144
Knihovny.cz E-zdroje
- Klíčová slova
- CMC, amyloids, intrinsically disordered proteins, lipid, lipid-assisted protein transport, lipids, membrane, protein-transport, symmetry-breaking, toxicity,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Aβ, IAPP, α-synuclein, and prion proteins belong to the amyloidogenic intrinsically disordered proteins' family; indeed, they lack well defined secondary and tertiary structures. It is generally acknowledged that they are involved, respectively, in Alzheimer's, Type II Diabetes Mellitus, Parkinson's, and Creutzfeldt-Jakob's diseases. The molecular mechanism of toxicity is under intense debate, as many hypotheses concerning the involvement of the amyloid and the toxic oligomers have been proposed. However, the main role is represented by the interplay of protein and the cell membrane. Thus, the understanding of the interaction mechanism at the molecular level is crucial to shed light on the dynamics driving this phenomenon. There are plenty of factors influencing the interaction as mentioned above, however, the overall view is made trickier by the apparent irreproducibility and inconsistency of the data reported in the literature. Here, we contextualized this topic in a historical, and even more importantly, in a future perspective. We introduce two novel insights: the chemical equilibrium, always established in the aqueous phase between the free and the membrane phospholipids, as mediators of protein-transport into the core of the bilayer, and the symmetry-breaking of oligomeric aggregates forming an alternating array of partially ordered and disordered monomers.
Zobrazit více v PubMed
Chiti F., Dobson C.M. Protein Misfolding, Functional Amyloid, and Human Disease. Annu. Rev. Biochem. 2006;75:333–366. doi: 10.1146/annurev.biochem.75.101304.123901. PubMed DOI
Sengupta U., Nilson A.N., Kayed R. The Role of Amyloid-β Oligomers in Toxicity, Propagation, and Immunotherapy. EBioMedicine. 2016;6:42–49. doi: 10.1016/j.ebiom.2016.03.035. PubMed DOI PMC
Westermark P., Andersson A., Westermark G.T. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol. Rev. 2011;91:795–826. doi: 10.1152/physrev.00042.2009. PubMed DOI
Chiti F., Dobson C.M. Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress over the Last Decade. Annu. Rev. Biochem. 2017;86:27–68. doi: 10.1146/annurev-biochem-061516-045115. PubMed DOI
Scalisi S., Sciacca M.F.M., Zhavnerko G., Grasso D.M., Marletta G., La Rosa C. Self-Assembling Pathway of HiApp Fibrils within Lipid Bilayers. ChemBioChem. 2010;11:1856–1859. doi: 10.1002/cbic.201000090. PubMed DOI
Quist A., Doudevski I., Lin H., Azimova R., Ng D., Frangione B., Kagan B., Ghiso J., Lal R. Amyloid ion channels: A common structural link for protein-misfolding disease. Proc. Natl. Acad. Sci. USA. 2005;102:10427–10432. doi: 10.1073/pnas.0502066102. PubMed DOI PMC
Sciacca M.F.M., Kotler S.A., Brender J.R., Chen J., Lee D., Ramamoorthy A. Two-Step Mechanism of Membrane Disruption by Aβ through Membrane Fragmentation and Pore Formation. Biophys. J. 2012;103:702–710. doi: 10.1016/j.bpj.2012.06.045. PubMed DOI PMC
Finder V.H., Glockshuber R. Amyloid-β Aggregation. Neurodegener. Dis. 2007;4:13–27. doi: 10.1159/000100355. PubMed DOI
Thinakaran G., Koo E.H. Amyloid Precursor Protein Trafficking, Processing, and Function. J. Biol. Chem. 2008;283:29615–29619. doi: 10.1074/jbc.R800019200. PubMed DOI PMC
Goldgaber D., Lerman M.I., Mcbride W., SAFFIoTrI U., Gajdusek D.C. Characterization and Chromosomal Localimtion of a cDNA Encoding Brain Amyloid of Alzheimer’s Disease. Science. 1987;235:877–880. doi: 10.1126/science.3810169. PubMed DOI
Cole S.L., Vassar R. The Role of Amyloid Precursor Protein Processing by BACE1, the β-Secretase, in Alzheimer Disease Pathophysiology. J. Biol. Chem. 2008;283:29621–29625. doi: 10.1074/jbc.R800015200. PubMed DOI PMC
Buoso E., Lanni C., Schettini G., Govoni S., Racchi M. β-Amyloid precursor protein metabolism: Focus on the functions and degradation of its intracellular domain. Pharmacol. Res. 2010;62:308–317. doi: 10.1016/j.phrs.2010.05.002. PubMed DOI
Sisodia S.S. Beta-Amyloid precursor protein cleavage by a membrane-bound protease. Proc. Natl. Acad. Sci. USA. 1992;89:6075–6079. doi: 10.1073/pnas.89.13.6075. PubMed DOI PMC
Riek R., Güntert P., Döbeli H., Wipf B., Wüthrich K. NMR studies in aqueous solution fail to identify significant conformational differences between the monomeric forms of two Alzheimer peptides with widely different plaque-competence, Aβ(1-40) ox and Aβ(1-42) ox: NMR with Alzheimer peptides in aqueous solution. Eur. J. Biochem. 2001;268:5930–5936. doi: 10.1046/j.0014-2956.2001.02537.x. PubMed DOI
Jan A., Gokce O., Luthi-Carter R., Lashuel H.A. The Ratio of Monomeric to Aggregated Forms of Aβ40 and Aβ42 Is an Important Determinant of Amyloid-β Aggregation, Fibrillogenesis, and Toxicity. J. Biol. Chem. 2008;283:28176–28189. doi: 10.1074/jbc.M803159200. PubMed DOI PMC
Amaro M., Šachl R., Aydogan G., Mikhalyov I.I., Vácha R., Hof M. GM 1 Ganglioside Inhibits β-Amyloid Oligomerization Induced by Sphingomyelin. Angew. Chem. Int. Ed. 2016;55:9411–9415. doi: 10.1002/anie.201603178. PubMed DOI PMC
Kowall N.W., Mckee A.C. In Vivo Neurotoxicity of Beta-Amyloid [β(1-40)] and the β(25-35) Fragment. Neurobiol. Aging. 1992;13:537–542. PubMed
Sarkar D., Chakraborty I., Condorelli M., Ghosh B., Mass T., Weingarth M., Mandal A.K., La Rosa C., Subramanian V., Bhunia A. Self-Assembly and Neurotoxicity of β-Amyloid (21–40) Peptide Fragment: The Regulatory Role of GxxxG Motifs. ChemMedChem. 2020;15:293–301. doi: 10.1002/cmdc.201900620. PubMed DOI
Pannuzzo M., Milardi D., Raudino A., Karttunen M., La Rosa C. Analytical model and multiscale simulations of Aβ peptide aggregation in lipid membranes: Towards a unifying description of conformational transitions, oligomerization and membrane damage. Phys. Chem. Chem. Phys. 2013;15:8940–8951. doi: 10.1039/c3cp44539a. PubMed DOI
Sciacca M.F.M., Monaco I., La Rosa C., Milardi D. The active role of Ca 2+ ions in Aβ-mediated membrane damage. Chem. Commun. 2018;54:3629–3631. doi: 10.1039/C8CC01132J. PubMed DOI
Clark A., Nilsson M.R. Islet amyloid: A complication of islet dysfunction or an aetiological factor in Type 2 diabetes? Diabetologia. 2004;47:157–169. doi: 10.1007/s00125-003-1304-4. PubMed DOI
Hull R.L., Westermark G.T., Westermark P., Kahn S.E. Islet Amyloid: A Critical Entity in the Pathogenesis of Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2004;89:3629–3643. doi: 10.1210/jc.2004-0405. PubMed DOI
Haataja L., Gurlo T., Huang C.J., Butler P.C. Islet Amyloid in Type 2 Diabetes, and the Toxic Oligomer Hypothesis. Endocr. Rev. 2008;29:303–316. doi: 10.1210/er.2007-0037. PubMed DOI PMC
Marzban L. Islet amyloid polypeptide and type 2 diabetes. Exp. Gerontol. 2003;38:347–351. doi: 10.1016/S0531-5565(03)00004-4. PubMed DOI
Cooper G.J., Willis A.C., Clark A., Turner R.C., Sim R.B., Reid K.B. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc. Natl. Acad. Sci. USA. 1987;84:8628–8632. doi: 10.1073/pnas.84.23.8628. PubMed DOI PMC
Westermark P., Wernstedt C., Wilander E., Hayden D.W., O’Brien T.D., Johnson K.H. Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc. Natl. Acad. Sci. USA. 1987;84:3881–3885. doi: 10.1073/pnas.84.11.3881. PubMed DOI PMC
Milardi D., Pappalardo M., Pannuzzo M., Grasso D.M., Rosa C.L. The role of the Cys2-Cys7 disulfide bridge in the early steps of Islet amyloid polypeptide aggregation: A molecular dynamics study. Chem. Phys. Lett. 2008;463:396–399. doi: 10.1016/j.cplett.2008.07.110. DOI
Cooper G.J., Leighton B., Dimitriadis G.D., Parry-Billings M., Kowalchuk J.M., Howland K., Rothbard J.B., Willis A.C., Reid K.B. Amylin found in amyloid deposits in human type 2 diabetes mellitus may be a hormone that regulates glycogen metabolism in skeletal muscle. Proc. Natl. Acad. Sci. USA. 1988;85:7763–7766. doi: 10.1073/pnas.85.20.7763. PubMed DOI PMC
Cluck M.W., Chan C.Y., Adrian T.E. The Regulation of Amylin and Insulin Gene Expression and Secretion. Prancreas. 2005;30:1–14. PubMed
Gurlo T., Ryazantsev S., Huang C., Yeh M.W., Reber H.A., Hines O.J., O’Brien T.D., Glabe C.G., Butler P.C. Evidence for Proteotoxicity in β Cells in Type 2 Diabetes. Am. J. Pathol. 2010;176:861–869. doi: 10.2353/ajpath.2010.090532. PubMed DOI PMC
Milardi D., Sciacca M.F.M., Pappalardo M., Grasso D.M., La Rosa C. The role of aromatic side-chains in amyloid growth and membrane interaction of the islet amyloid polypeptide fragment LANFLVH. Eur. Biophys. J. 2011;40:1–12. doi: 10.1007/s00249-010-0623-x. PubMed DOI
Sciacca M.F., Pappalardo M., Attanasio F., Milardi D., La Rosa C., Grasso D.M. Are fibril growth and membrane damage linked processes? An experimental and computational study of IAPP 12–18 and IAPP 21–27 peptides. New J. Chem. 2010;34:200–207. doi: 10.1039/B9NJ00253G. DOI
Pannuzzo M., Raudino A., Milardi D., La Rosa C., Karttunen M. α-helical structures drive early stages of self-assembly of amyloidogenic amyloid polypeptide aggregate formation in membranes. Sci. Rep. 2013;3:2781. doi: 10.1038/srep02781. PubMed DOI PMC
Abedini A., Raleigh D.P. Destabilization of Human IAPP Amyloid Fibrils by Proline Mutations Outside of the Putative Amyloidogenic Domain: Is There a Critical Amyloidogenic Domain in Human IAPP? J. Mol. Biol. 2006;355:274–281. doi: 10.1016/j.jmb.2005.10.052. PubMed DOI
Pappalardo G., Milardi D., Magrì A., Attanasio F., Impellizzeri G., La Rosa C., Grasso D., Rizzarelli E. Environmental Factors Differently Affect Human and Rat IAPP: Conformational Preferences and Membrane Interactions of IAPP17–29 Peptide Derivatives. Chem. A Eur. J. 2007;13:10204–10215. doi: 10.1002/chem.200700576. PubMed DOI
Owen M.C., Gnutt D., Gao M., Wärmländer S.K.T.S., Jarvet J., Gräslund A., Winter R., Ebbinghaus S., Strodel B. Effects of in vivo conditions on amyloid aggregation. Chem. Soc. Rev. 2019;48:3946–3996. doi: 10.1039/C8CS00034D. PubMed DOI
Susa A.C., Wu C., Bernstein S.L., Dupuis N.F., Wang H., Raleigh D.P., Shea J.-E., Bowers M.T. Defining the Molecular Basis of Amyloid Inhibitors: Human Islet Amyloid Polypeptide–Insulin Interactions. J. Am. Chem. Soc. 2014;136:12912–12919. doi: 10.1021/ja504031d. PubMed DOI PMC
Jaikaran E.T.A.S., Nilsson M.R., Clark A. Pancreatic β-cell granule peptides form heteromolecular complexes which inhibit islet amyloid polypeptide fibril formation. Biochem. J. 2004;377:709–716. doi: 10.1042/bj20030852. PubMed DOI PMC
Knight J.D., Williamson J.A., Miranker A.D. Interaction of membrane-bound islet amyloid polypeptide with soluble and crystalline insulin. Protein Sci. 2008;17:1850–1856. doi: 10.1110/ps.036350.108. PubMed DOI PMC
Knight J.D., Miranker A.D. Phospholipid Catalysis of Diabetic Amyloid Assembly. J. Mol. Biol. 2004;341:1175–1187. doi: 10.1016/j.jmb.2004.06.086. PubMed DOI
Goedert M., Jakes R., Crowther R.A., Spillantini M.G. Parkinson’s Disease, Dementia with Lewy Bodies, and Multiple System Atrophy as α-Synucleinopathies. [(accessed on 7 August 2020)]; Available online: https://link.springer.com/protocol/10.1385/1-59259-142-6:33. DOI
Galvagnion C. The Role of Lipids Interacting with α-Synuclein in the Pathogenesis of Parkinson’s Disease. JPD. 2017;7:433–450. doi: 10.3233/JPD-171103. PubMed DOI
Shahmoradian S.H., Lewis A.J., Genoud C., Hench J., Moors T.E., Navarro P.P., Castaño-Díez D., Schweighauser G., Graff-Meyer A., Goldie K.N., et al. Lewy pathology in Parkinson’s disease consists of crowded organelles and lipid membranes. Nat. Neurosci. 2019;22:1099–1109. doi: 10.1038/s41593-019-0423-2. PubMed DOI
Lashuel H.A. Do Lewy bodies contain alpha-synuclein fibrils? and Does it matter? A brief history and critical analysis of recent reports. Neurobiol. Dis. 2020;141:104876. doi: 10.1016/j.nbd.2020.104876. PubMed DOI
Maroteaux L., Campanelli J., Scheller R. Synuclein: A neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J. Neurosci. 1988;8:2804–2815. doi: 10.1523/JNEUROSCI.08-08-02804.1988. PubMed DOI PMC
Shtilerman M.D., Ding T.T., Lansbury P.T. Molecular Crowding Accelerates Fibrillization of α-Synuclein: Could an Increase in the Cytoplasmic Protein Concentration Induce Parkinson’s Disease? Biochemistry. 2002;41:3855–3860. doi: 10.1021/bi0120906. PubMed DOI
Iwai A., Masliah E., Yoshimoto M., Ge N., Fianagan L., Kittei A., Saitoh T. The Precursor Protein of Non-Ap Component of Alzheimer’s Disease Amyloid Is a Presynaptic Protein of the Central Nervous System. Neuron. 1995;14:467–475. doi: 10.1016/0896-6273(95)90302-X. PubMed DOI
Cooper A.A. α-Synuclein Blocks ER-Golgi Traffic and Rab1 Rescues Neuron Loss in Parkinson’s Models. Science. 2006;313:324–328. doi: 10.1126/science.1129462. PubMed DOI PMC
Burré J. The Synaptic Function of α-Synuclein. JPD. 2015;5:699–713. doi: 10.3233/JPD-150642. PubMed DOI PMC
Burré J., Sharma M., Tsetsenis T., Buchman V., Etherton M.R., Südhof T.C. α-Synuclein Promotes SNARE-Complex Assembly in Vivo and in Vitro. Science. 2010;329:5. doi: 10.1126/science.1195227. PubMed DOI PMC
El-Agnaf O.M.A., Irvine G.B. Review: Formation and Properties of Amyloid-like Fibrils Derived from α-Synuclein and Related Proteins. J. Struct. Biol. 2000;130:300–309. doi: 10.1006/jsbi.2000.4262. PubMed DOI
Aarsland D., Marsh L., Schrag A. Neuropsychiatric symptoms in Parkinson’s disease. Mov. Disord. 2009;24:2175–2186. doi: 10.1002/mds.22589. PubMed DOI PMC
Aarsland D., Larsen J.P., Lim N.G., Janvin C., Karlsen K., Tandberg E., Cummings J.L. Range of neuropsychiatric disturbances in patients with Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry. 1999;67:492–496. doi: 10.1136/jnnp.67.4.492. PubMed DOI PMC
Lin Chua C.E., Tang B.L. α—synuclein and Parkinson’s disease: The first roadblock. J. Cell. Mol. Med. 2006;10:828–837. doi: 10.2755/jcmm010.004.04. PubMed DOI
George J.M., Jin H., Woods W.S., Clayton D.F. Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron. 1995;15:361–372. doi: 10.1016/0896-6273(95)90040-3. PubMed DOI
Beyer K. Mechanistic aspects of Parkinson’s disease: α-synuclein and the biomembrane. Cell Biochem. Biophys. 2007;47:285–299. doi: 10.1007/s12013-007-0014-9. PubMed DOI
Fusco G., De Simone A., Gopinath T., Vostrikov V., Vendruscolo M., Dobson C.M., Veglia G. Direct observation of the three regions in α-synuclein that determine its membrane-bound behaviour. Nat. Commun. 2014;5:3827. doi: 10.1038/ncomms4827. PubMed DOI PMC
Bodner C.R., Dobson C.M., Bax A. Multiple Tight Phospholipid-Binding Modes of α-Synuclein Revealed by Solution NMR Spectroscopy. J. Mol. Biol. 2009;390:775–790. doi: 10.1016/j.jmb.2009.05.066. PubMed DOI PMC
Jang H., Connelly L., Teran Arce F., Ramachandran S., Kagan B.L., Lal R., Nussinov R. Mechanisms for the Insertion of Toxic, Fibril-like β-Amyloid Oligomers into the Membrane. J. Chem. Theory Comput. 2013;9:822–833. doi: 10.1021/ct300916f. PubMed DOI PMC
O’Leary E.I., Lee J.C. Interplay between α-synuclein amyloid formation and membrane structure. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2019;1867:483–491. doi: 10.1016/j.bbapap.2018.09.012. PubMed DOI PMC
Conway K.A., Lee S.-J., Rochet J.-C., Ding T.T., Williamson R.E., Lansbury P.T. Acceleration of oligomerization, not fibrillization, is a shared property of both α-synuclein mutations linked to early-onset Parkinson’s disease: Implications for pathogenesis and therapy. Proc. Natl. Acad. Sci. USA. 2000;97:571–576. doi: 10.1073/pnas.97.2.571. PubMed DOI PMC
Conway K.A., Harper J.D., Lansbury P.T. Accelerated in vitro fibril formation by a mutant α-synuclein linked to early-onset Parkinson disease. Nat. Med. 1998;4:1318–1320. doi: 10.1038/3311. PubMed DOI
Nussbaum R.L., Polymeropoulos M.H. Genetics of Parkinson’s disease. Cold Spring Harb. Perspect. Med. 1997;6:1687–1691. doi: 10.1093/hmg/6.10.1687. PubMed DOI
Shimura H. Ubiquitination of a New Form of alpha-Synuclein by Parkin from Human Brain: Implications for Parkinson’s Disease. Science. 2001;293:263–269. doi: 10.1126/science.1060627. PubMed DOI
Minton A.P. Implications of macromolecular crowding for protein assembly. Curr. Opin. Struct. Biol. 2000;10:34–39. doi: 10.1016/S0959-440X(99)00045-7. PubMed DOI
Ellis R.J. Macromolecular crowding: An important but neglected aspect of the intracellular environment. Curr. Opin. Struct. Biol. 2001;11:114–119. doi: 10.1016/S0959-440X(00)00172-X. PubMed DOI
Hashimoto M., Rockenstein E., Mante M., Mallory M., Masliah E. beta-Synuclein inhibits alpha-synuclein aggregation: A possible role as an anti-parkinsonian factor. Neuron. 2001;32:213–223. doi: 10.1016/S0896-6273(01)00462-7. PubMed DOI
Uversky V.N., Li J., Souillac P., Millett I.S., Doniach S., Jakes R., Goedert M., Fink A.L. Biophysical Properties of the Synucleins and Their Propensities to Fibrillate: INHIBITION OF α-SYNUCLEIN ASSEMBLY BY β- AND γ-SYNUCLEINS. J. Biol. Chem. 2002;277:11970–11978. doi: 10.1074/jbc.M109541200. PubMed DOI
Tsigelny I.F., Bar-On P., Sharikov Y., Crews L., Hashimoto M., Miller M.A., Keller S.H., Platoshyn O., Yuan J.X.-J., Masliah E. Dynamics of α-synuclein aggregation and inhibition of pore-like oligomer development by β-synuclein: Modeling of α-syn oligomer formation. FEBS J. 2007;274:1862–1877. doi: 10.1111/j.1742-4658.2007.05733.x. PubMed DOI
Sung Y., Eliezer D. Residual Structure, Backbone Dynamics, and Interactions within the Synuclein Family. J. Mol. Biol. 2007;372:689–707. doi: 10.1016/j.jmb.2007.07.008. PubMed DOI PMC
Sode K., Ochiai S., Kobayashi N., Usuzaka E. Effect of Reparation of Repeat Sequences in the Human α-Synuclein on Fibrillation Ability. Int. J. Biol. Sci. 2007;3:1–7. doi: 10.7150/ijbs.3.1. PubMed DOI PMC
Prusiner S.B. Molecular Biology of Prion Diseases. Science. 1991;252:8. doi: 10.1126/science.1675487. PubMed DOI
Cohen F.E., Prusiner S.B. Pathologic Conformations of Prion Proteins. Annu. Rev. Biochem. 1998;67:793–819. doi: 10.1146/annurev.biochem.67.1.793. PubMed DOI
Colby D.W., Prusiner S.B. Prions. Cold Spring Harb. Perspect. Biol. 2011;3:a006833. doi: 10.1101/cshperspect.a006833. PubMed DOI PMC
Abskharon R., Wang F., Wohlkonig A., Ruan J., Soror S., Giachin G., Pardon E., Zou W., Legname G., Ma J., et al. Structural evidence for the critical role of the prion protein hydrophobic region in forming an infectious prion. PLoS Pathog. 2019;15:e1008139. doi: 10.1371/journal.ppat.1008139. PubMed DOI PMC
Pan K.-M., Baldwin M., Nguyen J., Gasset M., Mehlhorn I., Huang Z., Fletterick R.J., Cohenu F.E., Prusiner S.B. Conversion of α-helices into β-sheets features in the formation of the scrapie prion proteins. Proc. Natl. Acad. Sci. USA. 1993;90:10962–10966. doi: 10.1073/pnas.90.23.10962. PubMed DOI PMC
Zhang J., Zhang Y. Molecular dynamics studies on 3D structures of the hydrophobic region PrP (109–136) Acta Biochim. Biophys. Sin. 2013;45:509–519. doi: 10.1093/abbs/gmt031. PubMed DOI
Garnier J., Osguthorpe D.J., Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol. 1978;120:97–120. doi: 10.1016/0022-2836(78)90297-8. PubMed DOI
Riek R., Wider G., Billeter M., Hornemann S., Glockshuber R., Wuthrich K. Prion protein NMR structure and familial human spongiform encephalopathies. Proc. Natl. Acad. Sci. USA. 1998;95:11667–11672. doi: 10.1073/pnas.95.20.11667. PubMed DOI PMC
Donne D.G., Viles J.H., Groth D., Mehlhorn I., James T.L., Cohen F.E., Prusiner S.B., Wright P.E., Dyson H.J. Structure of the recombinant full-length hamster prion protein PrP(29-231): The N terminus is highly flexible. Proc. Natl. Acad. Sci. USA. 1997;94:13452–13457. doi: 10.1073/pnas.94.25.13452. PubMed DOI PMC
Liu H., Farr-Jones S., Ulyanov N.B., Llinas M., Marqusee S., Groth D., Cohen F.E., Prusiner S.B., James T.L. Solution Structure of Syrian Hamster Prion Protein rPrP(90−231) Biochemistry. 1999;38:5362–5377. doi: 10.1021/bi982878x. PubMed DOI
Riek R., Hornemann S., Wider G., Glockshuber R., Wüthrich K. NMR characterization of the full-length recombinant murine prion protein, m PrP(23-231) FEBS Lett. 1997;413:282–288. doi: 10.1016/S0014-5793(97)00920-4. PubMed DOI
Zahn R., Liu A., Luhrs T., Riek R., von Schroetter C., Lopez Garcia F., Billeter M., Calzolai L., Wider G., Wuthrich K. NMR solution structure of the human prion protein. Proc. Natl. Acad. Sci. USA. 2000;97:145–150. doi: 10.1073/pnas.97.1.145. PubMed DOI PMC
Cho K.R., Huang Y., Yu S., Yin S., Plomp M., Qiu S.R., Lakshminarayanan R., Moradian-Oldak J., Sy M.-S., De Yoreo J.J. A Multistage Pathway for Human Prion Protein Aggregation in Vitro: From Multimeric Seeds to β-Oligomers and Nonfibrillar Structures. J. Am. Chem. Soc. 2011;133:8586–8593. doi: 10.1021/ja1117446. PubMed DOI PMC
Bocharova O.V., Breydo L., Parfenov A.S., Salnikov V.V., Baskakov I.V. In vitro Conversion of Full-length Mammalian Prion Protein Produces Amyloid Form with Physical Properties of PrPSc. J. Mol. Biol. 2005;346:645–659. doi: 10.1016/j.jmb.2004.11.068. PubMed DOI
Baskakov I.V., Bocharova O.V. In Vitro Conversion of Mammalian Prion Protein into Amyloid Fibrils Displays Unusual Features. Biochemistry. 2005;44:2339–2348. doi: 10.1021/bi048322t. PubMed DOI
Safar J., Wille H., Itri V., Groth D., Serban H., Torchia M., Cohen F.E., Prusiner S.B. Eight prion strains have PrPSc molecules with different conformations. Nat. Med. 1998;4:1157–1165. doi: 10.1038/2654. PubMed DOI
Prusiner S.B., McKinley M.P., Bowman K.A., Bolton D.C., Bendheim P.E., Groth D.F., Glenner G.G. Scrapie prions aggregate to form amyloid-like birefringent rods. Cell. 1983;35:349–358. doi: 10.1016/0092-8674(83)90168-X. PubMed DOI
Wille H., Michelitsch M.D., Guénebaut V., Supattapone S., Serban A., Cohen F.E., Agard D.A., Prusiner S.B. Structural studies of the scrapie prion protein by electron crystallography. Proc. Natl. Acad. Sci. USA. 2002;99:3563–3568. doi: 10.1073/pnas.052703499. PubMed DOI PMC
Chesebro B., Trifilo M., Race R., Meade-White K., Teng C., Lacasse R., Raymond L., Favara C., Baron G., Priola S., et al. Anchorless Prion Protein Results in Infectious Amyloid Disease Without Clinical Scrapie. Science. 2005;308:1435–1439. doi: 10.1126/science.1110837. PubMed DOI
Pappalardo M., Milardi D., Grasso D., La Rosa C. Steered molecular dynamics studies reveal different unfolding pathways of prions from mammalian and non-mammalian species. New J. Chem. 2007;31:901–905. doi: 10.1039/b700764g. DOI
Lashuel H.A., Lansbury P.T. Are amyloid diseases caused by protein aggregates that mimic bacterial pore-forming toxins? Q. Rev. Biophys. 2006;39:167–201. doi: 10.1017/S0033583506004422. PubMed DOI
Hebda J.A., Miranker A.D. The Interplay of Catalysis and Toxicity by Amyloid Intermediates on Lipid Bilayers: Insights from Type II Diabetes. Annu. Rev. Biophys. 2009;38:125–152. doi: 10.1146/annurev.biophys.050708.133622. PubMed DOI
Hirakura Y., Yiu W.W., Yamamoto A., Kagan B.L. Amyloid peptide channels: Blockade by zinc and inhibition by Congo red (amyloid channel block) Amyloid. 2000;7:194–199. doi: 10.3109/13506120009146834. PubMed DOI
Sciacca M.F.M., Milardi D., Messina G.M.L., Marletta G., Brender J.R., Ramamoorthy A., La Rosa C. Cations as Switches of Amyloid-Mediated Membrane Disruption Mechanisms: Calcium and IAPP. Biophys. J. 2013;104:173–184. doi: 10.1016/j.bpj.2012.11.3811. PubMed DOI PMC
Sciacca M.F.M., Brender J.R., Lee D.-K., Ramamoorthy A. Phosphatidylethanolamine Enhances Amyloid Fiber-Dependent Membrane Fragmentation. Biochemistry. 2012;51:7676–7684. doi: 10.1021/bi3009888. PubMed DOI PMC
Engel M.F.M., Khemtemourian L., Kleijer C.C., Meeldijk H.J.D., Jacobs J., Verkleij A.J., de Kruijff B., Killian J.A., Hoppener J.W.M. Membrane damage by human islet amyloid polypeptide through fibril growth at the membrane. Proc. Natl. Acad. Sci. USA. 2008;105:6033–6038. doi: 10.1073/pnas.0708354105. PubMed DOI PMC
Zhu M., Li J., Fink A.L. The Association of α-Synuclein with Membranes Affects Bilayer Structure, Stability, and Fibril Formation. J. Biol. Chem. 2003;278:40186–40197. doi: 10.1074/jbc.M305326200. PubMed DOI
Sanghera N., Pinheiro T.J.T. Binding of prion protein to lipid membranes and implications for prion conversion. J. Mol. Biol. 2002;315:1241–1256. doi: 10.1006/jmbi.2001.5322. PubMed DOI
Terzi E., Holzemann G. Alzheimer, & Amyloid Peptide 25-35: Electrostatic Interactions with Phospholipid Membranest. Biochemistry. 1994;33:7434–7441. PubMed
Hane F., Drolle E., Gaikwad R., Faught E., Leonenko Z. Amyloid-β Aggregation on Model Lipid Membranes: An Atomic Force Microscopy Study. JAD. 2011;26:485–494. doi: 10.3233/JAD-2011-102112. PubMed DOI
Terzi E., Hölzemann G., Seelig J. Interaction of Alzheimer β-Amyloid Peptide(1−40) with Lipid Membranes. Biochemistry. 1997;36:14845–14852. doi: 10.1021/bi971843e. PubMed DOI
Sciacca M.F., Pappalardo M., Milardi D., Grasso D.M., La Rosa C. Calcium-activated membrane interaction of the islet amyloid polypeptide: Implications in the pathogenesis of type II diabetes mellitus. Arch. Biochem. Biophys. 2008;477:291–298. doi: 10.1016/j.abb.2008.06.018. PubMed DOI
Brender J.R., Krishnamoorthy J., Messina G.M.L., Deb A., Vivekanandan S., Rosa C.L., Penner-Hahn J.E., Ramamoorthy A. Zinc stabilization of prefibrillar oligomers of human islet amyloid polypeptide. Chem. Commun. 2013;49:3339–3341. doi: 10.1039/c3cc40383a. PubMed DOI
Ahyayauch H., de la Arada I., Masserini M.E., Arrondo J.L.R., Goñi F.M., Alonso A. The Binding of Aβ42 Peptide Monomers to Sphingomyelin/Cholesterol/Ganglioside Bilayers Assayed by Density Gradient Ultracentrifugation. Int. J. Mol. Sci. 2020;21:1674. doi: 10.3390/ijms21051674. PubMed DOI PMC
Wakabayashi M., Matsuzaki K. Ganglioside-induced amyloid formation by human islet amyloid polypeptide in lipid rafts. FEBS Lett. 2009;583:2854–2858. doi: 10.1016/j.febslet.2009.07.044. PubMed DOI
Hoshino T., Mahmood M.I., Mori K., Matsuzaki K. Binding and Aggregation Mechanism of Amyloid β-Peptides onto the GM1 Ganglioside-Containing Lipid Membrane. J. Phys. Chem. B. 2013;117:8085–8094. doi: 10.1021/jp4029062. PubMed DOI
Wakabayashi M., Okada T., Kozutsumi Y., Matsuzaki K. GM1 ganglioside-mediated accumulation of amyloid β-protein on cell membranes. Biochem. Biophys. Res. Commun. 2005;328:1019–1023. doi: 10.1016/j.bbrc.2005.01.060. PubMed DOI
Di Scala C., Troadec J.-D., Lelièvre C., Garmy N., Fantini J., Chahinian H. Mechanism of cholesterol-assisted oligomeric channel formation by a short Alzheimer β-amyloid peptide. J. Neurochem. 2014;128:186–195. doi: 10.1111/jnc.12390. PubMed DOI
Sciacca M.F.M., Lolicato F., Di Mauro G., Milardi D., D’Urso L., Satriano C., Ramamoorthy A., La Rosa C. The Role of Cholesterol in Driving IAPP-Membrane Interactions. Biophys. J. 2016;111:140–151. doi: 10.1016/j.bpj.2016.05.050. PubMed DOI PMC
Yu X., Zheng J. Cholesterol Promotes the Interaction of Alzheimer β-Amyloid Monomer with Lipid Bilayer. J. Mol. Biol. 2012;421:561–571. doi: 10.1016/j.jmb.2011.11.006. PubMed DOI
Choo-Smith L.-P., Garzon-Rodriguez W., Glabe C.G., Surewicz W.K. Acceleration of Amyloid Fibril Formation by Specific Binding of Aβ-(1–40) Peptide to Ganglioside-containing Membrane Vesicles. J. Biol. Chem. 1997;272:22987–22990. doi: 10.1074/jbc.272.37.22987. PubMed DOI
Ji S.-R., Wu Y., Sui S. Cholesterol Is an Important Factor Affecting the Membrane Insertion of β-Amyloid Peptide (Aβ1–40), Which May Potentially Inhibit the Fibril Formation. J. Biol. Chem. 2002;277:6273–6279. doi: 10.1074/jbc.M104146200. PubMed DOI
Dias C.L., Jalali S., Yang Y., Cruz L. Role of Cholesterol on Binding of Amyloid Fibrils to Lipid Bilayers. J. Phys. Chem. B. 2020;124:3036–3042. doi: 10.1021/acs.jpcb.0c00485. PubMed DOI
Chi E.Y., Ege C., Winans A., Majewski J., Wu G., Kjaer K., Lee K.Y.C. Lipid membrane templates the ordering and induces the fibrillogenesis of Alzheimer’s disease amyloid-β peptide: Lipid Membrane Templates Aβ Fibrillogenesis. Proteins. 2008;72:1–24. doi: 10.1002/prot.21887. PubMed DOI
Soong R., Brender J.R., Macdonald P.M., Ramamoorthy A. Association of Highly Compact Type II Diabetes Related Islet Amyloid Polypeptide Intermediate Species at Physiological Temperature Revealed by Diffusion NMR Spectroscopy. J. Am. Chem. Soc. 2009;131:7079–7085. doi: 10.1021/ja900285z. PubMed DOI
Brender J.R., Lee E.L., Cavitt M.A., Gafni A., Steel D.G., Ramamoorthy A. Amyloid Fiber Formation and Membrane Disruption are Separate Processes Localized in Two Distinct Regions of IAPP, the Type-2-Diabetes-Related Peptide. J. Am. Chem. Soc. 2008;130:6424–6429. doi: 10.1021/ja710484d. PubMed DOI PMC
Terzi E. Self-association of β-Amyloid Peptide (1–40) in Solution and Binding to Lipid Membranes. J. Mol. Biol. 1998;252:633–642. doi: 10.1006/jmbi.1995.0525. PubMed DOI
Morillas M., Swietnicki W., Gambetti P., Surewicz W.K. Membrane Environment Alters the Conformational Structure of the Recombinant Human Prion Protein. J. Biol. Chem. 1999;274:36859–36865. doi: 10.1074/jbc.274.52.36859. PubMed DOI
Domanov Y.A., Kinnunen P.K.J. Islet Amyloid Polypeptide Forms Rigid Lipid–Protein Amyloid Fibrils on Supported Phospholipid Bilayers. J. Mol. Biol. 2008;376:42–54. doi: 10.1016/j.jmb.2007.11.077. PubMed DOI
Jayasinghe S.A., Langen R. Lipid Membranes Modulate the Structure of Islet Amyloid Polypeptide. Biochemistry. 2005;44:12113–12119. doi: 10.1021/bi050840w. PubMed DOI
Sparr E., Engel M.F.M., Sakharov D.V., Sprong M., Jacobs J., de Kruijff B., Höppener J.W.M., Antoinette Killian J. Islet amyloid polypeptide-induced membrane leakage involves uptake of lipids by forming amyloid fibers. FEBS Lett. 2004;577:117–120. doi: 10.1016/j.febslet.2004.09.075. PubMed DOI
Bucciantini M., Cecchi C. Biological Membranes as Protein Aggregation Matrices and Targets of Amyloid Toxicity. In: Bross P., Gregersen N., editors. Protein Misfolding and Cellular Stress in Disease and Aging. Volume 648. Humana Press; Totowa, NJ, USA: 2010. pp. 231–243. Methods in Molecular Biology. PubMed
Sciacca M.F.M., Tempra C., Scollo F., Milardi D., La Rosa C. Amyloid growth and membrane damage: Current themes and emerging perspectives from theory and experiments on Aβ and hIAPP. Biochim. Biophys. Acta (BBA) Biomembr. 2018;1860:1625–1638. doi: 10.1016/j.bbamem.2018.02.022. PubMed DOI
Bokvist M., Lindström F., Watts A., Gröbner G. Two Types of Alzheimer’s β-Amyloid (1–40) Peptide Membrane Interactions: Aggregation Preventing Transmembrane Anchoring Versus Accelerated Surface Fibril Formation. J. Mol. Biol. 2004;335:1039–1049. doi: 10.1016/j.jmb.2003.11.046. PubMed DOI
Fink A.L. The Aggregation and Fibrillation of α-Synuclein. Acc. Chem. Res. 2006;39:628–634. doi: 10.1021/ar050073t. PubMed DOI
Ambadi Thody S., Mathew M.K., Udgaonkar J.B. Mechanism of aggregation and membrane interactions of mammalian prion protein. Biochim. Biophys. Acta (BBA) Biomembr. 2018;1860:1927–1935. doi: 10.1016/j.bbamem.2018.02.031. PubMed DOI
Scollo F., Tempra C., Lolicato F., Sciacca M.F.M., Raudino A., Milardi D., La Rosa C. Phospholipids Critical Micellar Concentrations Trigger Different Mechanisms of Intrinsically Disordered Proteins Interaction with Model Membranes. J. Phys. Chem. Lett. 2018;9:5125–5129. doi: 10.1021/acs.jpclett.8b02241. PubMed DOI
La Rosa C., Scalisi S., Lolicato F., Pannuzzo M., Raudino A. Lipid-assisted protein transport: A diffusion-reaction model supported by kinetic experiments and molecular dynamics simulations. J. Chem. Phys. 2016;144:184901. doi: 10.1063/1.4948323. PubMed DOI
Milardi D., Sciacca M.F.M., Randazzo L., Raudino A., La Rosa C. The Role of Calcium, Lipid Membranes and Islet Amyloid Polypeptide in the Onset of Type 2 Diabetes: Innocent Bystanders or Partners in a Crime? Front. Endocrinol. 2014;5 doi: 10.3389/fendo.2014.00216. PubMed DOI PMC
Brender J.R., Hartman K., Nanga R.P.R., Popovych N., de la Salud Bea R., Vivekanandan S., Marsh E.N.G., Ramamoorthy A. Role of Zinc in Human Islet Amyloid Polypeptide Aggregation. J. Am. Chem. Soc. 2010;132:8973–8983. doi: 10.1021/ja1007867. PubMed DOI PMC
Hindo S.S., Mancino A.M., Braymer J.J., Liu Y., Vivekanandan S., Ramamoorthy A., Lim M.H. Small Molecule Modulators of Copper-Induced Aβ Aggregation. J. Am. Chem. Soc. 2009;131:16663–16665. doi: 10.1021/ja907045h. PubMed DOI PMC
Ladiwala A.R.A., Lin J.C., Bale S.S., Marcelino-Cruz A.M., Bhattacharya M., Dordick J.S., Tessier P.M. Resveratrol Selectively Remodels Soluble Oligomers and Fibrils of Amyloid Aβ into Off-pathway Conformers. J. Biol. Chem. 2010;285:24228–24237. doi: 10.1074/jbc.M110.133108. PubMed DOI PMC
Bieschke J., Herbst M., Wiglenda T., Friedrich R.P., Boeddrich A., Schiele F., Kleckers D., Lopez del Amo J.M., Grüning B.A., Wang Q., et al. Small-molecule conversion of toxic oligomers to nontoxic β-sheet–rich amyloid fibrils. Nat. Chem. Biol. 2012;8:93–101. doi: 10.1038/nchembio.719. PubMed DOI
Wärmländer S., Tiiman A., Abelein A., Luo J., Jarvet J., Söderberg K.L., Danielsson J., Gräslund A. Biophysical Studies of the Amyloid β-Peptide: Interactions with Metal Ions and Small Molecules. ChemBioChem. 2013;14:1692–1704. doi: 10.1002/cbic.201300262. PubMed DOI
Yoo S.I., Yang M., Brender J.R., Subramanian V., Sun K., Joo N.E., Jeong S.-H., Ramamoorthy A., Kotov N.A. Inhibition of Amyloid Peptide Fibrillation by Inorganic Nanoparticles: Functional Similarities with Proteins. Angew. Chem. Int. Ed. 2011;50:5110–5115. doi: 10.1002/anie.201007824. PubMed DOI PMC
D’Urso L., Condorelli M., Puglisi O., Tempra C., Lolicato F., Compagnini G., Rosa C.L. Detection and characterization at nM concentration of oligomers formed by hIAPP, Aβ(1–40) and their equimolar mixture using SERS and MD simulations. Phys. Chem. Chem. Phys. 2018;20:20588–20596. doi: 10.1039/C7CP08552D. PubMed DOI
Sciacca M.F.M., Romanucci V., Zarrelli A., Monaco I., Lolicato F., Spinella N., Galati C., Grasso G., D’Urso L., Romeo M., et al. Inhibition of Aβ Amyloid Growth and Toxicity by Silybins: The Crucial Role of Stereochemistry. ACS Chem. Neurosci. 2017;8:1767–1778. doi: 10.1021/acschemneuro.7b00110. PubMed DOI
Hyung S.-J., DeToma A.S., Brender J.R., Lee S., Vivekanandan S., Kochi A., Choi J.-S., Ramamoorthy A., Ruotolo B.T., Lim M.H. Insights into antiamyloidogenic properties of the green tea extract (-)-epigallocatechin-3-gallate toward metal-associated amyloid- species. Proc. Natl. Acad. Sci. USA. 2013;110:3743–3748. doi: 10.1073/pnas.1220326110. PubMed DOI PMC
Sciacca M.F., Chillemi R., Sciuto S., Pappalardo M., Rosa C.L., Grasso D., Milardi D. Interactions of two O-phosphorylresveratrol derivatives with model membranes. Arch. Biochem. Biophys. 2012;521:111–116. doi: 10.1016/j.abb.2012.03.022. PubMed DOI
Sciacca M.F.M., Chillemi R., Sciuto S., Greco V., Messineo C., Kotler S.A., Lee D.-K., Brender J.R., Ramamoorthy A., La Rosa C., et al. A blend of two resveratrol derivatives abolishes hIAPP amyloid growth and membrane damage. Biochim. Biophys. Acta (BBA) Biomembr. 2018;1860:1793–1802. doi: 10.1016/j.bbamem.2018.03.012. PubMed DOI
Marsh D. Handbook of Lipid Bilayer. 2nd ed. CRC Press; Boca Raton, FL, USA: 2013.
Korshavn K.J., Satriano C., Lin Y., Zhang R., Dulchavsky M., Bhunia A., Ivanova M.I., Lee Y.-H., La Rosa C., Lim M.H., et al. Reduced Lipid Bilayer Thickness Regulates the Aggregation and Cytotoxicity of Amyloid-β. J. Biol. Chem. 2017;292:4638–4650. doi: 10.1074/jbc.M116.764092. PubMed DOI PMC
Sunde M., Blake C. Advances in Protein Chemistry. Volume 50. Elsevier; Amsterdam, The Netherlands: 1997. The Structure of Amyloid Fibrils by Electron Microscopy and X-Ray Diffraction; pp. 123–159. PubMed
Fändrich M. Oligomeric Intermediates in Amyloid Formation: Structure Determination and Mechanisms of Toxicity. J. Mol. Biol. 2012;421:427–440. doi: 10.1016/j.jmb.2012.01.006. PubMed DOI
Tuttle M.D., Comellas G., Nieuwkoop A.J., Covell D.J., Berthold D.A., Kloepper K.D., Courtney J.M., Kim J.K., Barclay A.M., Kendall A., et al. Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein. Nat. Struct. Mol. Biol. 2016;23:409–415. doi: 10.1038/nsmb.3194. PubMed DOI PMC
Vilar M., Chou H.-T., Luhrs T., Maji S.K., Riek-Loher D., Verel R., Manning G., Stahlberg H., Riek R. The fold of -synuclein fibrils. Proc. Natl. Acad. Sci. USA. 2008;105:8637–8642. doi: 10.1073/pnas.0712179105. PubMed DOI PMC
Luhrs T., Ritter C., Adrian M., Riek-Loher D., Bohrmann B., Dobeli H., Schubert D., Riek R. 3D structure of Alzheimer’s amyloid- (1-42) fibrils. Proc. Natl. Acad. Sci. USA. 2005;102:17342–17347. doi: 10.1073/pnas.0506723102. PubMed DOI PMC
Kollmer M., Close W., Funk L., Rasmussen J., Bsoul A., Schierhorn A., Schmidt M., Sigurdson C.J., Jucker M., Fändrich M. Cryo-EM structure and polymorphism of Aβ amyloid fibrils purified from Alzheimer’s brain tissue. Nat. Commun. 2019;10:4760. doi: 10.1038/s41467-019-12683-8. PubMed DOI PMC
Guerrero-Ferreira R., Taylor N.M., Arteni A.-A., Kumari P., Mona D., Ringler P., Britschgi M., Lauer M.E., Makky A., Verasdonck J., et al. Two new polymorphic structures of human full-length alpha-synuclein fibrils solved by cryo-electron microscopy. eLife. 2019;8:e48907. doi: 10.7554/eLife.48907. PubMed DOI PMC
Guerrero-Ferreira R., Taylor N.M., Mona D., Ringler P., Lauer M.E., Riek R., Britschgi M., Stahlberg H. Cryo-EM structure of alpha-synuclein fibrils. eLife. 2018;7:e36402. doi: 10.7554/eLife.36402. PubMed DOI PMC
Van den Akker C.C., Deckert-Gaudig T., Schleeger M., Velikov K.P., Deckert V., Bonn M., Koenderink G.H. Nanoscale Heterogeneity of the Molecular Structure of Individual hIAPP Amyloid Fibrils Revealed with Tip-Enhanced Raman Spectroscopy. Small. 2015;11:4131–4139. doi: 10.1002/smll.201500562. PubMed DOI
La Rosa C., Condorelli M., Compagnini G., Lolicato F., Milardi D., Do T.N., Karttunen M., Pannuzzo M., Ramamoorthy A., Fraternali F., et al. Symmetry-breaking transitions in the early steps of protein self-assembly. Eur. Biophys. J. 2020;49:1–17. doi: 10.1007/s00249-020-01424-1. PubMed DOI
Iljina M., Garcia G.A., Dear A.J., Flint J., Narayan P., Michaels T.C.T., Dobson C.M., Frenkel D., Knowles T.P.J., Klenerman D. Quantitative analysis of co-oligomer formation by amyloid-beta peptide isoforms. Sci. Rep. 2016;6:28658. doi: 10.1038/srep28658. PubMed DOI PMC
Milardi D., La Rosa C., Grasso D., Guzzi R., Sportelli L., Fini C. Thermodynamics and kinetics of the thermal unfolding of plastocyanin. Eur. Biophys. J. 1998;27:273–282. doi: 10.1007/s002490050134. DOI
La Rosa C., Milardi D., Grasso D.M., Verbeet M.P., Canters G.W., Sportelli L., Guzzi R. A model for the thermal unfolding of amicyanin. Eur. Biophys. J. 2002;30:559–570. doi: 10.1007/s00249-001-0193-z. PubMed DOI
Manetto G.D., Grasso D.M., Milardi D., Pappalardo M., Guzzi R., Sportelli L., Verbeet M.P., Canters G.W., La Rosa C. The Role Played by the α-Helix in the Unfolding Pathway and Stability of Azurin: Switching Between Hierarchic and Nonhierarchic Folding. ChemBioChem. 2007;8:1941–1949. doi: 10.1002/cbic.200700214. PubMed DOI
Pappalardo M., Sciacca M., Milardi D., Grasso D., La Rosa C. Thermodynamics of azurin folding: The role of copper ion. J. Therm. Anal. Calorim. 2008;93:575–581. doi: 10.1007/s10973-007-8422-z. DOI
La Rosa C., Milardi D., Amato E., Pappalardo M., Grasso D. Molecular mechanism of the inhibition of cytochrome c aggregation by Phe-Gly. Arch. Biochem. Biophys. 2005;435:182–189. doi: 10.1016/j.abb.2004.12.006. PubMed DOI
Sciacca M., Milardi D., Pappalardo M., La Rosa C., Grasso D. Role of electrostatics in the thermal stability of ubiquitin: A combined DSC and MM study. J. Therm. Anal. Calorim. 2006;86:311–314. doi: 10.1007/s10973-005-7467-0. DOI
Manetto G., La Rosa C., Grasso D., Milardi D. Evaluation of thermodynamic properties of irreversible protein thermal unfolding measured by DSC. J. Therm. Anal. Calorim. 2005;80:263–270. doi: 10.1007/s10973-005-0646-1. DOI
Romanucci V., Milardi D., Campagna T., Gaglione M., Messere A., D’Urso A., Crisafi E., La Rosa C., Zarrelli A., Balzarini J., et al. Synthesis, biophysical characterization and anti-HIV activity of d (TG 3 AG) quadruplexes bearing hydrophobic tails at the 5′-end. Bioorg. Med. Chem. 2014;22:960–966. doi: 10.1016/j.bmc.2013.12.051. PubMed DOI
Khare S.D., Caplow M., Dokholyan N.V. The rate and equilibrium constants for a multistep reaction sequence for the aggregation of superoxide dismutase in amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA. 2004;101:15094–15099. doi: 10.1073/pnas.0406650101. PubMed DOI PMC
Stathopulos P.B., Rumfeldt J.A.O., Karbassi F., Siddall C.A., Lepock J.R., Meiering E.M. Calorimetric Analysis of Thermodynamic Stability and Aggregation for Apo and Holo Amyotrophic Lateral Sclerosis-associated Gly-93 Mutants of Superoxide Dismutase. J. Biol. Chem. 2006;281:6184–6193. doi: 10.1074/jbc.M509496200. PubMed DOI
Milardi D., Pappalardo M., Grasso D.M., La Rosa C. Unveiling the unfolding pathway of FALS associated G37R SOD1 mutant: A computational study. Mol. BioSyst. 2010;6:1032–1039. doi: 10.1039/b918662j. PubMed DOI
Lella M., Mahalakshmi R. Metamorphic Proteins: Emergence of Dual Protein Folds from One Primary Sequence. Biochemistry. 2017;56:2971–2984. doi: 10.1021/acs.biochem.7b00375. PubMed DOI
Brender J.R., Krishnamoorthy J., Sciacca M.F.M., Vivekanandan S., D’Urso L., Chen J., La Rosa C., Ramamoorthy A. Probing the Sources of the Apparent Irreproducibility of Amyloid Formation: Drastic Changes in Kinetics and a Switch in Mechanism Due to Micellelike Oligomer Formation at Critical Concentrations of IAPP. J. Phys. Chem. B. 2015;119:2886–2896. doi: 10.1021/jp511758w. PubMed DOI
Cao P., Abedini A., Wang H., Tu L.-H., Zhang X., Schmidt A.M., Raleigh D.P. Islet amyloid polypeptide toxicity and membrane interactions. Proc. Natl. Acad. Sci. USA. 2013;110:19279–19284. doi: 10.1073/pnas.1305517110. PubMed DOI PMC
Tomasello M.F., Sinopoli A., Attanasio F., Giuffrida M.L., Campagna T., Milardi D., Pappalardo G. Molecular and cytotoxic properties of hIAPP17–29 and rIAPP17–29 fragments: A comparative study with the respective full-length parent polypeptides. Eur. J. Med. Chem. 2014;81:442–455. doi: 10.1016/j.ejmech.2014.05.038. PubMed DOI
La Rosa C. Intrinsically Disordered Proteins Share a Common Molecular Mechanism in Membranes Damages: Lipid-Chaperone Hypothesis. [(accessed on 7 August 2020)]; Available online: https://www.morressier.com/article/intrinsically-disordered-proteins-share-common-molecular-mechanism-membranes-damages-lipidchaperone-hypothesis/5e736588cde2b641284ab645.