Lipid-Chaperone Hypothesis: A Common Molecular Mechanism of Membrane Disruption by Intrinsically Disordered Proteins
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 AG048934
NIA NIH HHS - United States
ZIA HL001055
Intramural NIH HHS - United States
PubMed
33269918
PubMed Central
PMC7769131
DOI
10.1021/acschemneuro.0c00588
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer, Intrinsically disordered proteins, Parkinson, diabetes mellitus, lipid-chaperone hypothesis, oxidized lipids,
- MeSH
- alfa-synuklein MeSH
- amylin MeSH
- amyloid MeSH
- amyloidogenní proteiny MeSH
- krysa rodu Rattus MeSH
- lipidy MeSH
- vnitřně neuspořádané proteiny * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- alfa-synuklein MeSH
- amylin MeSH
- amyloid MeSH
- amyloidogenní proteiny MeSH
- lipidy MeSH
- vnitřně neuspořádané proteiny * MeSH
An increasing number of human diseases has been shown to be linked to aggregation and amyloid formation by intrinsically disordered proteins (IDPs). Amylin, amyloid-β, and α-synuclein are, indeed, involved in type-II diabetes, Alzheimer's, and Parkinson's, respectively. Despite the correlation of the toxicity of these proteins at early aggregation stages with membrane damage, the molecular events underlying the process is quite complex to understand. In this study, we demonstrate the crucial role of free lipids in the formation of lipid-protein complex, which enables an easy membrane insertion for amylin, amyloid-β, and α-synuclein. Experimental results from a variety of biophysical methods and molecular dynamics results reveal that this common molecular pathway in membrane poration is shared by amyloidogenic (amylin, amyloid-β, and α-synuclein) and nonamyloidogenic (rat IAPP, β-synuclein) proteins. Based on these results, we propose a "lipid-chaperone" hypothesis as a unifying framework for protein-membrane poration.
Department of Chemical Sciences University of Catania Catania 95124 Italy
Department of Physics University of Helsinki P O Box 64 Helsinki FI 00014 Finland
Heidelberg University Biochemistry Center Heidelberg 69120 Germany
Institute of Organic Chemistry and Biochemistry Prague 160 00 Czech Republic
Istituto di Cristallografia CNR Catania 95126 Italy
National Institutes of Health Bethesda Maryland 20892 0001 United States
Zobrazit více v PubMed
Chiti F, and Dobson CM (2017) Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade. Annu. Rev. Biochem 86 (1), 27–68. PubMed
Chiti F, and Dobson CM (2006) Protein Misfolding, Functional Amyloid, and Human Disease. Annu. Rev. Biochem 75 (1), 333–366. PubMed
Scollo F, and La Rosa C (2020) Amyloidogenic Intrinsically Disordered Proteins: New Insights into Their Self-Assembly and Their Interaction with Membranes. Life 10 (8), 144. PubMed PMC
Selkoe DJ, and Hardy J (2016) The Amyloid Hypothesis of Alzheimer’s Disease at 25 Years. EMBO Mol. Med 8 (6), 595–608. PubMed PMC
Hebda JA, and Miranker AD (2009) The Interplay of Catalysis and Toxicity by Amyloid Intermediates on Lipid Bilayers: Insights from Type II Diabetes. Annu. Rev. Biophys 38, 125–152. PubMed
Chiti F, and Dobson CM (2006) Protein Misfolding, Functional Amyloid, and Human Disease. Annu. Rev. Biochem 75, 333–366. PubMed
Arispe N, Rojas E, and Pollard HB (1993) Alzheimer Disease Amyloid Beta Protein Forms Calcium Channels in Bilayer Membranes: Blockade by Tromethamine and Aluminum. Proc. Natl. Acad. Sci. U. S. A 90 (2), 567–571. PubMed PMC
Butterfield SM, and Lashuel HA (2010) Amyloidogenic Protein-Membrane Interactions: Mechanistic Insight from Model Systems. Angew. Chem., Int. Ed 49 (33), 5628–5654. PubMed
Sciacca MFM, Kotler SA, Brender JR, Chen J, Lee D, and Ramamoorthy A (2012) Two-Step Mechanism of Membrane Disruption by Aβ through Membrane Fragmentation and Pore Formation. Biophys. J 103 (4), 702–710. PubMed PMC
Scalisi S, Sciacca MFM, Zhavnerko G, Grasso DM, Marletta G, and La Rosa C (2010) Self-Assembling Pathway of HiApp Fibrils within Lipid Bilayers. ChemBioChem 11 (13), 1856–1859. PubMed
Quist A, Doudevski I, Lin H, Azimova R, Ng D, Frangione B, Kagan B, Ghiso J, and Lal R (2005) Amyloid Ion Channels: A Common Structural Link for Protein-Misfolding Disease. Proc. Natl. Acad. Sci. U. S. A 102 (30), 10427–10432. PubMed PMC
Jang H, Arce FT, Ramachandran S, Capone R, Azimova R, Kagan BL, Nussinov R, and Lal R (2010) Truncated -Amyloid Peptide Channels Provide an Alternative Mechanism for Alzheimer’s Disease and Down Syndrome. Proc. Natl. Acad. Sci. U. S. A 107 (14), 6538–6543. PubMed PMC
Pannuzzo M, Raudino A, Milardi D, La Rosa C, and Karttunen M (2013) α-Helical Structures Drive Early Stages of Self-Assembly of Amyloidogenic Amyloid Polypeptide Aggregate Formation in Membranes. Sci. Rep 3, 2781. PubMed PMC
Zhao J, Hu R, Sciacca MFM, Brender JR, Chen H, Ramamoorthy A, and Zheng J (2014) Non-Selective Ion Channel Activity of Polymorphic Human Islet Amyloid Polypeptide (Amylin) Double Channels. Phys. Chem. Chem. Phys 16 (6), 2368–2377. PubMed PMC
van Rooijen BD, Claessens MMAE, and Subramaniam V (2009) Lipid Bilayer Disruption by Oligomeric α-Synuclein Depends on Bilayer Charge and Accessibility of the Hydrophobic Core. Biochim. Biophys. Acta, Biomembr 1788 (6), 1271–1278. PubMed
Korshavn KJ, Satriano C, Lin Y, Zhang R, Dulchavsky M, Bhunia A, Ivanova MI, Lee Y-H, La Rosa C, Lim MH, and Ramamoorthy A (2017) Reduced Lipid Bilayer Thickness Regulates the Aggregation and Cytotoxicity of Amyloid-β. J. Biol. Chem 292 (11), 4638–4650. PubMed PMC
Marsh D (2012) Thermodynamics of Phospholipid Self-Assembly. Biophys. J 102 (5), 1079–1087. PubMed PMC
Scollo F, Tempra C, Lolicato F, Sciacca MFM, Raudino A, Milardi D, and La Rosa C (2018) Phospholipids Critical Micellar Concentrations Trigger Different Mechanisms of Intrinsically Disordered Proteins Interaction with Model Membranes. J. Phys. Chem. Lett 9 (17), 5125–5129. PubMed
La Rosa C, Scalisi S, Lolicato F, Pannuzzo M, and Raudino A (2016) Lipid-Assisted Protein Transport: A Diffusion-Reaction Model Supported by Kinetic Experiments and Molecular Dynamics Simulations. J. Chem. Phys 144 (18), 184901. PubMed
Delgado DA, Doherty K, Cheng Q, Kim H, Xu D, Dong H, Grewer C, and Qiang W (2016) Distinct Membrane Disruption Pathways Are Induced by 40-Residue β-Amyloid Peptides. J. Biol. Chem 291 (23), 12233–12244. PubMed PMC
Bokvist M, Lindström F, Watts A, and Gröbner G (2004) Two Types of Alzheimer’s Beta-Amyloid (1–40) Peptide Membrane Interactions: Aggregation Preventing Transmembrane Anchoring versus Accelerated Surface Fibril Formation. J. Mol. Biol 335 (4), 1039–1049. PubMed
Sparr E, Engel MFM, Sakharov DV, Sprong M, Jacobs J, de Kruijff B, Höppener JWM, and Killian JA (2004) Islet Amyloid Polypeptide-Induced Membrane Leakage Involves Uptake of Lipids by Forming Amyloid Fibers. FEBS Lett. 577 (1–2), 117–120. PubMed
Quist A, Doudevski I, Lin H, Azimova R, Ng D, Frangione B, Kagan B, Ghiso J, and Lal R (2005) Amyloid Ion Channels: A Common Structural Link for Protein-Misfolding Disease. Proc. Natl. Acad. Sci. U. S. A 102 (30), 10427–10432. PubMed PMC
Tomasello MF, Sinopoli A, Attanasio F, Giuffrida ML, Campagna T, Milardi D, and Pappalardo G (2014) Molecular and Cytotoxic Properties of HIAPP17–29 and RIAPP17–29 Fragments: A Comparative Study with the Respective Full-Length Parent Polypeptides. Eur. J. Med. Chem 81, 442–455. PubMed
Magzoub M, and Miranker AD (2012) Concentration-dependent Transitions Govern the Subcellular Localization of Islet Amyloid Polypeptide. FASEB J. 26 (3), 1228–1238. PubMed PMC
Nanga RPR, Brender JR, Xu J, Veglia G, and Ramamoorthy A (2008) Structures of Rat and Human Islet Amyloid Polypeptide IAPP(1–19) in Micelles by NMR Spectroscopy. Biochemistry 47 (48), 12689–12697. PubMed PMC
Korshavn KJ, Bhunia A, Lim MH, and Ramamoorthy A (2016) Amyloid-β Adopts a Conserved, Partially Folded Structure upon Binding to Zwitterionic Lipid Bilayers Prior to Amyloid Formation. Chem. Commun 52 (5), 882–885. PubMed PMC
Cao P, Abedini A, Wang H, Tu L-H, Zhang X, Schmidt AM, and Raleigh DP (2013) Islet Amyloid Polypeptide Toxicity and Membrane Interactions. Proc. Natl. Acad. Sci. U. S. A 110 (48), 19279–19284. PubMed PMC
Di Scala C, Yahi N, Boutemeur S, Flores A, Rodriguez L, Chahinian H, and Fantini J (2016) Common Molecular Mechanism of Amyloid Pore Formation by Alzheimer’s β-Amyloid Peptide and α-Synuclein. Sci. Rep 6 (1), 28781. PubMed PMC
Bisaglia M, Trolio A, Bellanda M, Bergantino E, Bubacco L, and Mammi S (2006) Structure and Topology of the Non-Amyloid-β Component Fragment of Human α-Synuclein Bound to Micelles: Implications for the Aggregation Process. Protein Sci. 15 (6), 1408–1416. PubMed PMC
Gallardo J, Escalona-Noguero C, and Sot B (2020) Role of α-Synuclein Regions in Nucleation and Elongation of Amyloid Fiber Assembly. ACS Chem. Neurosci 11 (6), 872–879. PubMed
Giasson BI, Murray IV, Trojanowski JQ, and Lee VM (2001) A Hydrophobic Stretch of 12 Amino Acid Residues in the Middle of Alpha-Synuclein Is Essential for Filament Assembly. J. Biol. Chem 276 (4), 2380–2386. PubMed
Sahoo BR, Genjo T, Nakayama TW, Stoddard AK, Ando T, Yasuhara K, Fierke CA, and Ramamoorthy A (2019) A Cationic Polymethacrylate-Copolymer Acts as an Agonist for β-Amyloid and an Antagonist for Amylin Fibrillation. Chem. Sci 10 (14), 3976–3986. PubMed PMC
Yamaguchi T, Matsuzaki K, and Hoshino M (2011) Transient Formation of Intermediate Conformational States of Amyloid-β Peptide Revealed by Heteronuclear Magnetic Resonance Spectroscopy. FEBS Lett. 585 (7), 1097–1102. PubMed
Sahoo BR, Genjo T, Cox SJ, Stoddard AK, Anantharamaiah GM, Fierke C, and Ramamoorthy A (2018) Nanodisc-Forming Scaffold Protein Promoted Retardation of Amyloid-Beta Aggregation. J. Mol. Biol 430 (21), 4230–4244. PubMed PMC
Patil SM, Xu S, Sheftic SR, and Alexandrescu AT (2009) Dynamic α-Helix Structure of Micelle-Bound Human Amylin. J. Biol. Chem 284 (18), 11982–11991. PubMed PMC
Nanga RPR, Brender JR, Xu J, Hartman K, Subramanian V, and Ramamoorthy A (2009) Three-Dimensional Structure and Orientation of Rat Islet Amyloid Polypeptide Protein in a Membrane Environment by Solution NMR Spectroscopy. J. Am. Chem. Soc 131 (23), 8252–8261. PubMed PMC
Tomaselli S, Esposito V, Vangone P, van Nuland NAJ, Bonvin AMJJ, Guerrini R, Tancredi T, Temussi PA, and Picone D (2006) The α-to-β Conformational Transition of Alzheimer’s Aβ-(1–42) Peptide in Aqueous Media Is Reversible: A Step by Step Conformational Analysis Suggests the Location of β Conformation Seeding. ChemBioChem 7 (2), 257–267. PubMed
Engel MFM, Yigittop H, Elgersma RC, Rijkers DTS, Liskamp RMJ, de Kruijff B, Höppener JWM, and Antoinette Killian J (2006) Islet Amyloid Polypeptide Inserts into Phospholipid Monolayers as Monomer. J. Mol. Biol 356 (3), 783–789. PubMed
Khemtémourian L, Engel MFM, Kruijtzer JAW, Höppener JWM, Liskamp RMJ, and Killian JA (2010) The Role of the Disulfide Bond in the Interaction of Islet Amyloid Polypeptide with Membranes. Eur. Biophys. J 39 (9), 1359–1364. PubMed PMC
Vivekanandan S, Brender JR, Lee SY, and Ramamoorthy A (2011) A Partially Folded Structure of Amyloid-Beta(1–40) in an Aqueous Environment. Biochem. Biophys. Res. Commun 411 (2), 312–316. PubMed PMC
Kegulian NC, Sankhagowit S, Apostolidou M, Jayasinghe SA, Malmstadt N, Butler PC, and Langen R (2015) Membrane Curvature-Sensing and Curvature-Inducing Activity of Islet Amyloid Polypeptide and Its Implications for Membrane Disruption. J. Biol. Chem 290 (43), 25782–25793. PubMed PMC
Eisenberg D, Schwarz E, Komaromy M, and Wall R (1984) Analysis of Membrane and Surface Protein Sequences with the Hydrophobic Moment Plot. J. Mol. Biol 179 (1), 125–142. PubMed
Ahmad W, Ijaz B, Shabbiri K, Ahmed F, and Rehman S (2017) Oxidative Toxicity in Diabetes and Alzheimer’s Disease: Mechanisms behind ROS/ RNS Generation. J. Biomed. Sci 24 (1), 76. PubMed PMC
Gunn AP, Wong BX, Johanssen T, Griffith JC, Masters CL, Bush AI, Barnham KJ, Duce JA, and Cherny RA (2016) Amyloid-β Peptide Aβ3pE-42 Induces Lipid Peroxidation, Membrane Permeabilization, and Calcium Influx in Neurons. J. Biol. Chem 291 (12), 6134–6145. PubMed PMC
Pilkington AW, Donohoe GC, Akhmedov NG, Ferrebee T, Valentine SJ, and Legleiter J (2019) Hydrogen Peroxide Modifies Aβ–Membrane Interactions with Implications for Aβ 40 Aggregation. Biochemistry 58 (26), 2893–2905. PubMed
Dyall SC (2010) Amyloid-Beta Peptide, Oxidative Stress and Inflammation in Alzheimer’s Disease: Potential Neuroprotective Effects of Omega-3 Polyunsaturated Fatty Acids. Int. J. Alzheimer’s Dis 2010, 1–10.
Asmat U, Abad K, and Ismail K (2016) Diabetes Mellitus and Oxidative Stress—A Concise Review. Saudi Pharm. J 24 (5), 547–553. PubMed PMC
Mattson MP, Pedersen WA, Duan W, Culmsee C, and Camandola S (1999) Cellular and Molecular Mechanisms Underlying Perturbed Energy Metabolism and Neuronal Degeneration in Alzheimer’s and Parkinson’s Diseases. Ann. N. Y. Acad. Sci 893 (1 OXIDATIVE/ENE), 154–175. PubMed
Lyras L, Cairns NJ, Jenner A, Jenner P, and Halliwell B (1997) An Assessment of Oxidative Damage to Proteins, Lipids, and DNA in Brain from Patients with Alzheimer’s Disease. J. Neurochem 68 (5), 2061–2069. PubMed
Puspita L, Chung SY, and Shim J (2017) Oxidative Stress and Cellular Pathologies in Parkinson’s Disease. Mol. Brain 10 (1), 53. PubMed PMC
Wei Z, Li X, Li X, Liu Q, and Cheng Y (2018) Oxidative Stress in Parkinson’s Disease: A Systematic Review and Meta-Analysis. Front. Mol. Neurosci 11, 236. PubMed PMC
Wright E, Scism-Bacon JL, and Glass LC (2006) Oxidative Stress in Type 2 Diabetes: The Role of Fasting and Postprandial Glycaemia: Oxidative Stress in Type 2 Diabetes. Int. J. Clin. Pract 60 (3), 308–314. PubMed PMC
Pande AH, Kar S, and Tripathy RK (2010) Oxidatively Modified Fatty Acyl Chain Determines Physicochemical Properties of Aggregates of Oxidized Phospholipids. Biochim. Biophys. Acta, Biomembr 1798 (3), 442–452. PubMed
Sengupta U, Nilson AN, and Kayed R (2016) The Role of Amyloid-β Oligomers in Toxicity, Propagation, and Immunotherapy. EBioMedicine 6, 42–49. PubMed PMC
Westermark P, Andersson A, and Westermark GT (2011) Islet Amyloid Polypeptide, Islet Amyloid, and Diabetes Mellitus. Physiol. Rev 91 (3), 795–826. PubMed
La Rosa C, Condorelli M, Compagnini G, Lolicato F, Milardi D, Do TN, Karttunen M, Pannuzzo M, Ramamoorthy A, Fraternali F, Collu F, Rezaei H, Strodel B, and Raudino A (2020) Symmetry-Breaking Transitions in the Early Steps of Protein Self-Assembly. Eur. Biophys. J 49 (2), 175–191. PubMed
Brender JR, Krishnamoorthy J, Sciacca MFM, Vivekanandan S, D’Urso L, Chen J, La Rosa C, and Ramamoorthy A (2015) Probing the Sources of the Apparent Irreproducibility of Amyloid Formation: Drastic Changes in Kinetics and a Switch in Mechanism Due to Micellelike Oligomer Formation at Critical Concentrations of IAPP. J. Phys. Chem. B 119 (7), 2886–2896. PubMed PMC
O’Leary EI, Jiang Z, Strub M-P, and Lee JC (2018) Effects of Phosphatidylcholine Membrane Fluidity on the Conformation and Aggregation of N-Terminally Acetylated α-Synuclein. J. Biol. Chem 293 (28), 11195–11205. PubMed PMC
Johnson M, Coulton AT, Geeves MA, and Mulvihill DP (2010) Targeted Amino-Terminal Acetylation of Recombinant Proteins in E. PLoS One 5 (12), No. e15801. PubMed PMC
Jakes R, Spillantini MG, and Goedert M (1994) Identification of Two Distinct Synucleins from Human Brain. FEBS Lett. 345 (1), 27–32. PubMed
Pappalardo M, Milardi D, Grasso D, and La Rosa C (2005) Phase Behaviour of Polymer-Grafted DPPC Membranes for Drug Delivery Systems Design. J. Therm. Anal. Calorim 80 (2), 413–418.
MacDonald RC, MacDonald RI, Menco BP, Takeshita K, Subbarao NK, and Hu LR (1991) Small-Volume Extrusion Apparatus for Preparation of Large, Unilamellar Vesicles. Biochim. Biophys. Acta, Biomembr 1061 (2), 297–303. PubMed
Stewart JCM (1980) Colorimetric Determination of Phospholipids with Ammonium Ferrothiocyanate. Anal. Biochem 104 (1), 10–14. PubMed
Dasari M, Espargaro A, Sabate R, Lopez Del Amo JM, Fink U, Grelle G, Bieschke J, Ventura S, and Reif B (2011) Bacterial Inclusion Bodies of Alzheimer’s Disease β-Amyloid Peptides Can Be Employed To Study Native-Like Aggregation Intermediate States. ChemBioChem 12 (3), 407–423. PubMed
Sahoo BR, Genjo T, Bekier M, Cox SJ, Stoddard AK, Ivanova M, Yasuhara K, Fierke CA, Wang Y, and Ramamoorthy A (2018) Alzheimer’s Amyloid-Beta Intermediates Generated Using Polymer-Nanodiscs. Chem. Commun 54 (91), 12883–12886. PubMed PMC
Sahoo BR, Genjo T, Cox SJ, Stoddard AK, Anantharamaiah GM, Fierke C, and Ramamoorthy A (2018) Nanodisc-Forming Scaffold Protein Promoted Retardation of Amyloid-Beta Aggregation. J. Mol. Biol 430 (21), 4230–4244. PubMed PMC
Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, and Lindahl E (2015) GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 1–2, 19–25.
Huang J, and MacKerell AD (2013) CHARMM36 All-Atom Additive Protein Force Field: Validation Based on Comparison to NMR Data. J. Comput. Chem 34 (25), 2135–2145. PubMed PMC
Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot BL, Grubmüller H, and MacKerell AD (2017) CHARMM36m: An Improved Force Field for Folded and Intrinsically Disordered Proteins. Nat. Methods 14 (1), 71–73. PubMed PMC
Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD, and Pastor RW (2010) Update of the CHARMM All-Atom Additive Force Field for Lipids: Validation on Six Lipid Types. J. Phys. Chem. B 114 (23), 7830–7843. PubMed PMC
Darden T, York D, and Pedersen L (1993) Particle Mesh Ewald: An Nlog(N) Method for Ewald Sums in Large Systems. J. Chem. Phys 98 (12), 10089–10092.
Nose S, and Klein ML (1983) Constant Pressure Molecular Dynamics for Molecular Systems. Mol. Phys 50 (5), 1055–1076.
Parrinello M, and Rahman A (1981) Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys 52 (12), 7182–7190.
Patil SM, Xu S, Sheftic SR, and Alexandrescu AT (2009) Dynamic α-Helix Structure of Micelle-Bound Human Amylin. J. Biol. Chem 284 (18), 11982–11991. PubMed PMC
Nanga RPR, Brender JR, Xu J, Hartman K, Subramanian V, and Ramamoorthy A (2009) Three-Dimensional Structure and Orientation of Rat Islet Amyloid Polypeptide Protein in a Membrane Environment by Solution NMR Spectroscopy. J. Am. Chem. Soc 131 (23), 8252–8261. PubMed PMC
Tomaselli S, Esposito V, Vangone P, van Nuland NAJ, Bonvin AMJJ, Guerrini R, Tancredi T, Temussi PA, and Picone D (2006) The α-to-β Conformational Transition of Alzheimer’s Aβ-(1–42) Peptide in Aqueous Media Is Reversible: A Step by Step Conformational Analysis Suggests the Location of β Conformation Seeding. ChemBioChem 7 (2), 257–267. PubMed
Daura X, Gademann K, Jaun B, Seebach D, van Gunsteren WF, and Mark AE (1999) Peptide Folding: When Simulation Meets Experiment. Angew. Chem., Int. Ed 38 (1–2), 236–240.
Ionic Environment Affects Biomolecular Interactions of Amyloid-β: SPR Biosensor Study