Assignment of sigma factors of RNA polymerase to promoters in Corynebacterium glutamicum
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28651382
PubMed Central
PMC5483222
DOI
10.1186/s13568-017-0436-8
PII: 10.1186/s13568-017-0436-8
Knihovny.cz E-zdroje
- Klíčová slova
- Corynebacterium glutamicum, In vitro transcription, Promoter, RNA polymerase, Sigma factor,
- Publikační typ
- časopisecké články MeSH
Corynebacterium glutamicum is an important industrial producer of various amino acids and other metabolites. The C. glutamicum genome encodes seven sigma subunits (factors) of RNA polymerase: the primary sigma factor SigA (σA), the primary-like σB and five alternative sigma factors (σC, σD, σE, σH and σM). We have developed in vitro and in vivo methods to assign particular sigma factors to individual promoters of different classes. In vitro transcription assays and measurements of promoter activity using the overexpression of a single sigma factor gene and the transcriptional fusion of the promoter to the gfpuv reporter gene enabled us to reliably define the sigma factor dependency of promoters. To document the strengths of these methods, we tested examples of respective promoters for each C. glutamicum sigma factor. Promoters of the rshA (anti-sigma for σH) and trxB1 (thioredoxin) genes were found to be σH-dependent, whereas the promoter of the sigB gene (sigma factor σB) was σE- and σH-dependent. It was confirmed that the promoter of the cg2556 gene (iron-regulated membrane protein) is σC-dependent as suggested recently by other authors. The promoter of cmt1 (trehalose corynemycolyl transferase) was found to be clearly σD-dependent. No σM-dependent promoter was identified. The typical housekeeping promoter P2sigA (sigma factor σA) was proven to be σA-dependent but also recognized by σB. Similarly, the promoter of fba (fructose-1,6-bisphosphate aldolase) was confirmed to be σB-dependent but also functional with σA. The study provided demonstrations of the broad applicability of the developed methods and produced original data on the analyzed promoters.
Center for Biotechnology Bielefeld University 33594 Bielefeld Germany
Institute of Microbiology of the CAS v v i Vídeňská 1083 14220 Prague 4 Czech Republic
Zobrazit více v PubMed
Alper H, Stephanopoulos G. Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng. 2007;9:258–267. doi: 10.1016/j.ymben.2006.12.002. PubMed DOI
Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science. 2006;314:1565–1568. doi: 10.1126/science.1131969. PubMed DOI
Becker J, Wittmann C. Bio-based production of chemicals, materials and fuels—Corynebacterium glutamicum as versatile cell factory. Curr Opin Biotechnol. 2012;23:631–640. doi: 10.1016/j.copbio.2011.11.012. PubMed DOI
Busche T, Šilar R, Pičmanová M, Pátek M, Kalinowski J. Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum. BMC Genom. 2012;13:445. doi: 10.1186/1471-2164-13-445. PubMed DOI PMC
Cho BK, Kim D, Knight EM, Zengler K, Palsson BO. Genome-scale reconstruction of the sigma factor network in Escherichia coli: topology and functional states. BMC Biol. 2014;12:4. doi: 10.1186/1741-7007-12-4. PubMed DOI PMC
Ehira S, Shirai T, Teramoto H, Inui M, Yukawa H. Group 2 sigma factor SigB of Corynebacterium glutamicum positively regulates glucose metabolism under conditions of oxygen deprivation. Appl Environ Microbiol. 2008;74:5146–5152. doi: 10.1128/AEM.00944-08. PubMed DOI PMC
Ehira S, Teramoto H, Inui M, Yukawa H. Regulation of Corynebacterium glutamicum heat shock response by the extracytoplasmic-function sigma factor SigH and transcriptional regulators HspR and HrcA. J Bacteriol. 2009;191:2964–2972. doi: 10.1128/JB.00112-09. PubMed DOI PMC
Eikmanns BJ, Thum-Schmitz N, Eggeling L, Ludtke KU, Sahm H. Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology. 1994;140:1817–1828. doi: 10.1099/13500872-140-8-1817. PubMed DOI
Halgasova N, Bukovska G, Timko J, Kormanec J. Cloning and transcriptional characterization of two sigma factor genes, sigA and sigB, from Brevibacterium flavum. Curr Microbiol. 2001;43:249–254. doi: 10.1007/s002840010296. PubMed DOI
Halgasova N, Bukovska G, Ugorcakova J, Timko J, Kormanec J. The Brevibacterium flavum sigma factor SigB has a role in the environmental stress response. FEMS Microbiol Lett. 2002;216:77–84. doi: 10.1111/j.1574-6968.2002.tb11418.x. PubMed DOI
Hanahan D. Techniques for transformation of E. coli. In: Glover DM, editor. DNA cloning. A practical approach. Oxford: IRL; 1985. pp. 109–135.
Hoffelder M, Raasch K, van Ooyen J, Eggeling L. The E2 domain of OdhA of Corynebacterium glutamicum has succinyltransferase activity dependent on lipoyl residues of the acetyltransferase AceF. J Bacteriol. 2010;192:5203–5211. doi: 10.1128/JB.00597-10. PubMed DOI PMC
Holátko J, Šilar R, Rabatinová A, Šanderová H, Halada P, Nešvera J, Krásný L, Pátek M. Construction of in vitro transcription system for Corynebacterium glutamicum and its use in the recognition of promoters of different classes. Appl Microbiol Biotechnol. 2012;96:521–529. doi: 10.1007/s00253-012-4336-1. PubMed DOI
Keilhauer C, Eggeling L, Sahm H. Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol. 1993;175:5595–5603. doi: 10.1128/jb.175.17.5595-5603.1993. PubMed DOI PMC
Kim MJ, Yim SS, Choi JW, Jeong KJ. Development of a potential stationary-phase specific gene expression system by engineering of SigB-dependent cg3141 promoter in Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2016;100:4473–4483. doi: 10.1007/s00253-016-7297-y. PubMed DOI
Kirchner O, Tauch A. Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. J Biotechnol. 2003;104:287–299. doi: 10.1016/S0168-1656(03)00148-2. PubMed DOI
Knoppová M, Phensaijai M, Veselý M, Zemanová M, Nešvera J, Pátek M. Plasmid vectors for testing in vivo promoter activities in Corynebacterium glutamicum and Rhodococcus erythropolis. Curr Microbiol. 2007;55:234–239. doi: 10.1007/s00284-007-0106-1. PubMed DOI
Lanza AM, Alper HS. Global strain engineering by mutant transcription factors. Methods Mol Biol. 2011;765:253–274. doi: 10.1007/978-1-61779-197-0_15. PubMed DOI
Larisch C, Nakunst D, Hüser AT, Tauch A, Kalinowski J. The alternative sigma factor SigB of Corynebacterium glutamicum modulates global gene expression during transition from exponential growth to stationary phase. BMC Genom. 2007;8:4. doi: 10.1186/1471-2164-8-4. PubMed DOI PMC
Lisser S, Margalit H. Compilation of E. coli mRNA promoter sequences. Nucleic Acids Res. 1993;21:1507–1516. doi: 10.1093/nar/21.7.1507. PubMed DOI PMC
Liu W, Jiang R. Combinatorial and high-throughput screening approaches for strain engineering. Appl Microbiol Biotechnol. 2015;99:2093–2104. doi: 10.1007/s00253-015-6400-0. PubMed DOI
Nakunst D, Larisch C, Hüser AT, Tauch A, Pühler A, Kalinowski J. The extracytoplasmic function-type sigma factor SigM of Corynebacterium glutamicum ATCC 13032 is involved in transcription of disulfide stress-related genes. J Bacteriol. 2007;189:4696–4707. doi: 10.1128/JB.00382-07. PubMed DOI PMC
Nešvera J, Pátek M. Tools for genetic manipulations in Corynebacterium glutamicum and their applications. Appl Microbiol Biotechnol. 2011;90:1641–1654. doi: 10.1007/s00253-011-3272-9. PubMed DOI
Park SD, Youn JW, Kim YJ, Lee SM, Kim Y, Lee HS. Corynebacterium glutamicum σE is involved in responses to cell surface stresses and its activity is controlled by the anti-σ factor CseE. Microbiology. 2008;154:915–923. doi: 10.1099/mic.0.2007/012690-0. PubMed DOI
Pátek M, Nešvera J. Sigma factors and promoters in Corynebacterium glutamicum. J Biotechnol. 2011;154:101–113. doi: 10.1016/j.jbiotec.2011.01.017. PubMed DOI
Pátek M, Holátko J, Busche T, Kalinowski J, Nešvera J. Corynebacterium glutamicum promoters: a practical approach. Microb Biotechnol. 2013;6:103–117. doi: 10.1111/1751-7915.12019. PubMed DOI PMC
Pfeifer-Sancar K, Mentz A, Rückert C, Kalinowski J. Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique. BMC Genom. 2013;14:888. doi: 10.1186/1471-2164-14-888. PubMed DOI PMC
Qiu Y, Nagarajan H, Embree M, Shieu W, Abate E, Juarez K, Cho BK, Elkins JG, Nevin KP, Barrett CL, Lovley DR, Palsson BO, Zengler K. Characterizing the interplay between multiple levels of organization within bacterial sigma factor regulatory networks. Nat Commun. 2013;4:1755. doi: 10.1038/ncomms2743. PubMed DOI
Rezuchova B, Kormanec J. A two-plasmid system for identification of promoters recognized by RNA polymerase containing extracytoplasmic stress response σE in Escherichia coli. J Microbiol Methods. 2001;45:103–111. doi: 10.1016/S0167-7012(01)00237-8. PubMed DOI
Rhodius VA, Segall-Shapiro TH, Sharon BD, Ghodasara A, Orlova E, Tabakh H, Burkhardt DH, Clancy K, Peterson TC, Gross CA, Voigt CA. Design of orthogonal genetic switches based on a crosstalk map of σs, anti-σs, and promoters. Mol Syst Biol. 2013;9:702. doi: 10.1038/msb.2013.58. PubMed DOI PMC
Rodrigue S, Provvedi R, Jacques PE, Gaudreau L, Manganelli R. The sigma factors of Mycobacterium tuberculosis. FEMS Microbiol Rev. 2006;30:926–941. doi: 10.1111/j.1574-6976.2006.00040.x. PubMed DOI
Ross W, Thompson JF, Newlands JT, Gourse RL. E. coli Fis protein activates ribosomal RNA transcription in vitro and in vivo. EMBO J. 1990;9:3733–3742. PubMed PMC
Sambrook J, Russel DV. Molecular cloning. A laboratory manual. 3. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2001.
Schröder J, Tauch A. Transcriptional regulation of gene expression in Corynebacterium glutamicum: the role of global, master and local regulators in the modular and hierarchical gene regulatory network. FEMS Microbiol Rev. 2010;34:685–737. doi: 10.1111/j.1574-6976.2010.00228.x. PubMed DOI
Šilar R, Holátko J, Rucká L, Rapoport A, Dostálová H, Kadeřábková P, Nešvera J, Pátek M. Use of in vitro transcription system for analysis of Corynebacterium glutamicum promoters recognized by two sigma factors. Curr Microbiol. 2016;73:401–408. doi: 10.1007/s00284-016-1077-x. PubMed DOI
Taniguchi H, Wendisch VF. Exploring the role of sigma factor gene expression on production by Corynebacterium glutamicum: sigma factor H and FMN as example. Front Microbiol. 2015;6:740. doi: 10.3389/fmicb.2015.00740. PubMed DOI PMC
Toyoda K, Inui M. The extracytoplasmic function σ factor σC regulates expression of a branched quinol oxidation pathway in Corynebacterium glutamicum. Mol Microbiol. 2016;100:486–509. doi: 10.1111/mmi.13330. PubMed DOI
Toyoda K, Inui M. Regulons of global transcription factors in Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2016;100:45–60. doi: 10.1007/s00253-015-7074-3. PubMed DOI
Toyoda K, Teramoto H, Yukawa H, Inui M. Expanding the regulatory network governed by the extracytoplasmic function sigma factor σH in Corynebacterium glutamicum. J Bacteriol. 2015;197:483–496. doi: 10.1128/JB.02248-14. PubMed DOI PMC
Tripathi L, Zhang Y, Lin Z. Bacterial sigma factors as targets for engineered or synthetic transcriptional control. Front Bioeng Biotechnol. 2014;2:33. doi: 10.3389/fbioe.2014.00033. PubMed DOI PMC
Tyo KE, Alper HS, Stephanopoulos GN. Expanding the metabolic engineering toolbox: more options to engineer cells. Trends Biotechnol. 2007;25:132–137. doi: 10.1016/j.tibtech.2007.01.003. PubMed DOI
Typas A, Becker G, Hengge R. The molecular basis of selective promoter activation by the σS subunit of RNA polymerase. Mol Microbiol. 2007;63:1296–1306. doi: 10.1111/j.1365-2958.2007.05601.x. PubMed DOI
van der Rest ME, Lange C, Molenaar D. A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol. 1999;52:541–555. doi: 10.1007/s002530051557. PubMed DOI
Yu H, Tyo K, Alper H, Klein-Marcuschamer D, Stephanopoulos G. A high-throughput screen for hyaluronic acid accumulation in recombinant Escherichia coli transformed by libraries of engineered sigma factors. Biotechnol Bioeng. 2008;101:788–796. doi: 10.1002/bit.21947. PubMed DOI
Zemanová M, Kadeřábková P, Pátek M, Knoppová M, Šilar R, Nešvera J. Chromosomally encoded small antisense RNA in Corynebacterium glutamicum. FEMS Microbiol Lett. 2008;279:195–201. doi: 10.1111/j.1574-6968.2007.01024.x. PubMed DOI
Zhang F, Qian X, Si H, Xu G, Han R, Ni Y. Significantly improved solvent tolerance of Escherichia coli by global transcription machinery engineering. Cell Fact. 2015;14:175. doi: 10.1186/s12934-015-0368-4. PubMed DOI PMC
Overlapping SigH and SigE sigma factor regulons in Corynebacterium glutamicum