Promoter recognition specificity of Corynebacterium glutamicum stress response sigma factors σD and σH deciphered using computer modeling and point mutagenesis
Jazyk angličtina Země Nizozemsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
338321
Grant Agency of Charles University
PubMed
39585436
PubMed Central
PMC11588781
DOI
10.1007/s10822-024-00577-x
PII: 10.1007/s10822-024-00577-x
Knihovny.cz E-zdroje
- Klíčová slova
- Bio-orthogonal transcription, Corynebacterium, Promoter, Sigma factor,
- MeSH
- bakteriální proteiny * genetika metabolismus chemie MeSH
- bodová mutace * MeSH
- Corynebacterium glutamicum * genetika MeSH
- DNA řízené RNA-polymerasy genetika metabolismus chemie MeSH
- fyziologický stres genetika MeSH
- genetická transkripce MeSH
- počítačová simulace MeSH
- promotorové oblasti (genetika) * MeSH
- regulace genové exprese u bakterií MeSH
- sigma faktor * genetika metabolismus chemie MeSH
- simulace molekulární dynamiky * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny * MeSH
- DNA řízené RNA-polymerasy MeSH
- sigma faktor * MeSH
This study aimed to reveal interactions of the stress response sigma subunits (factors) σD and σH of RNA polymerase and promoters in Gram-positive bacterium Corynebacterium glutamicum by combining wet-lab obtained data and in silico modeling. Computer modeling-guided point mutagenesis of C. glutamicum σH subunit led to the creation of a panel of σH variants. Their ability to initiate transcription from naturally occurring hybrid σD/σH-dependent promoter Pcg0441 and two control canonical promoters (σD-dependent PrsdA and σH-dependent PuvrD3) was measured and interpreted using molecular dynamics simulations of homology models of all complexes. The results led us to design the artificial hybrid promoter PD35H10 combining the -10 element of the PuvrD3 promoter and the -35 element of the PrsdA promoter. This artificial hybrid promoter PD35-rsdAH10-uvrD3 showed almost optimal properties needed for the bio-orthogonal transcription (not interfering with the native biological processes).
Center for Biotechnology Bielefeld University Bielefeld Germany
Institute of Microbiology CAS v v i Prague Czech Republic
Institute of Physics Faculty of Mathematics and Physics Charles University Prague Czech Republic
Zobrazit více v PubMed
Kinoshita S, Udaka S, Shimono M (2004) Studies on the amino acid fermentation. Part 1. Production of L-glutamic acid by various microorganisms. J Gen Appl Microbiol 50:331–343 PubMed
Becker J, Wittmann C (2012) Bio-based production of chemicals, materials and fuels - Corynebacterium glutamicum as versatile cell factory. Curr Opin Biotechnol 23:631–640 PubMed
Lee JY, Na YA, Kim E, Lee HS, Kim P (2016) The Actinobacterium Corynebacterium glutamicum, an industrial workhorse. J Microbiol Biotechnol 26:807–822 PubMed
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Möckel B, Pfefferle W, Pühler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegräbe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25 PubMed
Burgess RR, Travers AA, Dunn JJ, Bautz EKF (1969) Factor stimulating transcription by RNA polymerase. Nature 22:43–46 PubMed
Pátek M, Nešvera J (2011) Sigma factors and promoters in Corynebacterium glutamicum. J Biotechnol 154:101–113 PubMed
Oguiza JA, Marcos AT, Martín JF (1997) Transcriptional analysis of the sigA and sigB genes of Brevibacterium lactofermentum. FEMS Microbiol Lett 153:111–117 PubMed
Larisch C, Nakunst D, Huser AT, Tauch A, Kalinowski J (2007) The alternative sigma factor SigB of Corynebacterium glutamicum modulates global gene expression during transition from exponential growth to stationary phase. BMC Genomics 8:4 PubMed PMC
Feklistov A, Darst SA (2011) Structural basis for promoter −10 element recognition by the bacterial RNA polymerase σ subunit. Cell 147:1257–1269 PubMed PMC
Hawley DK, McClure WR (1983) Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res 11:2237–2255 PubMed PMC
Ruff EF, RecordArtsimovitch MTI (2015) Initial events in bacterial transcription initiation. Biomolecules 5:1035–1062 PubMed PMC
Sharma UK, Chatterji D (2010) Transcriptional switching in Escherichia coli during stress and starvation by modulation of σ70 activity. FEMS Microbiol Rev 34:646–657 PubMed
Dostálová H, Busche T, Holátko J, Rucká L, Štěpánek V, Barvík I, Nešvera J, Kalinowski J, Pátek M (2019) Overlap of promoter recognition specificity of stress response sigma factors SigD and SigH in Corynebacterium glutamicum ATCC 13032. Front Microbiol 9:3287 PubMed PMC
Knoppová M, Phensaijai M, Veselý M, Zemanová M, Nešvera J, Pátek M (2007) Plasmid vectors for testing in vivo promoter activities in Corynebacterium glutamicum and Rhodococcus erythropolis. Curr Microbiol 55:234–239 PubMed
Kirchner O, Tauch A (2003) Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. J Biotechnol 104:287–299 PubMed
Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, vol 1, 3rd edn. Cold Spring Harbor Laboratory Press, New York
Green M, Sambrook J (2012) Molecular cloning: a laboratory manual, vol 2, 4rd edn. Cold Spring Harbor Laboratory Press, New York
van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol and Biotechnol 52:541–545 PubMed
Dostálová H, Holátko J, Busche T, Rucká L, Rapoport A, Halada P, Nešvera J, Kalinowski J, Pátek M (2017) Assignment of sigma factors of RNA polymerase to promoters of Corynebacterium glutamicum. AMB Express 7:133 PubMed PMC
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 PubMed
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303 PubMed PMC
Campagne S, Marsh ME, Capitani G, Vorholt JA, Allain FH-T (2014) Structural basis for −10 promoter element melting by environmentally induced sigma factors. Nat Struct Mol Biol 21:269–276 PubMed
Lane WJ, Darst SA (2006) The structural basis for promoter −35 element recognition by the group IV sigma factors. Plos Biol 4:e269 PubMed PMC
Salomon-Ferrer R, Gotz AW, Poole D, Le Grand S, Walker RC (2013) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J Chem Theory Comput 9:3878–3888 PubMed
Heider SAE, Wendisch VF (2015) Engineering microbial cell factories: metabolic engineering of Corynebacterium glutamicum with a focus on non-natural products. Biotechnol J 10:1170–1184 PubMed
Rhodius VA, Segall-Shapiro TH, Sharon BD, Ghodasara A, Orlova E, Tabakh H, Burkhardt DH, Clancy K, Peterson TC, Gross CA, Voigt CA (2013) Design of orthogonal genetic switches based on a crosstalk map of sigma s, anti-sigma s, and promoters. Mol Syst Biol 9:702 PubMed PMC
Kumar A, Grimes B, Logan M, Wedgwood S, Williamson H, Hayward RS (1995) A hybrid sigma subunit directs RNA polymerase to a hybrid promoter in Escherichia coli. J Mol Biol 246:563–571 PubMed
Todor H, Osadnik H, Campbell EA, Myers KS, Li H, Donohue TJ, Gross CA (2020) Rewiring the specificity of extracytoplasmic function sigma factors. PNAS 117:33496–33506 PubMed PMC
Fang C, Li L, Shen L, Shi J, Wang S, Feng Z, Zhang Y (2019) Structures and mechanism of transcription initiation by bacterial ECF factors. Nucleic Acids Res 47:7094–7104 PubMed PMC
Lin W, Mandal S, Degen D, Cho MS, Feng Y, Das K, Ebright RH (2019) Structural basis of ECF-sigma-factor-dependent transcription initiation. Nat Commun 10:710 PubMed PMC
Li L, Fang C, Zhuang N, Wang T, Zhang Y (2019) Structural basis for transcription initiation by bacterial ECF sigma factors. Nat Commun 10:1153 PubMed PMC
Gaballa A, Guariglia-Oropeza V, Durr F, Butcher B G, Chen A Y, Chandrangsu P, Helmann JD (2018) Modulation of extracytoplasmic function (ECF) sigma factor promoter selectivity by spacer region sequence. Nucleic Acids Res 46:134–145 PubMed PMC
Mitchell JE, Zheng D, Busby SJW, Minchin SD (2003) Identification and analysis of ‘extended −10’ promoters in Escherichia coli. Nucleic Acids Res 31:4689–4695 PubMed PMC
Marcos-Torres MJ, Moraleda-Munoz A, Contreras-Moreno FJ, Munoz-Dorado J, Pérez J (2022) Mechanisms of action of non-canonical ECF sigma factors. Int J Mol Sci 23:3601 PubMed PMC
Campbell EA, Tupy JL, Gruber TM, Wang S, Sharp MM, Gross CA, Darst SA (2003) Crystal structure of Escherichia coli sigmaE with the cytoplasmic domain of its anti-sigma RseA. Mol Cell 11:1067–1078 PubMed
Busche T, Šilar R, Pičmanová M, Pátek M, Kalinowski J (2012) Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulátory network in Corynebacterium glutamicum. BMS Genomic 13:445 PubMed PMC
Presnell KV, Alper HS (2018) Thermodynamic and first-principles biomolecular simulations applied to synthetic biology: promoter and aptamer designs. Mol Syst Des Eng 3:19
Seeliger D, Buelens FP, Goette M, de Groot BL, Grubmuller H (2011) Towards computational specificity screening of DNA-binding proteins. Nucleic Acids Res 39:8281–8290 PubMed PMC