Preparation and Biological Activity of Lignin-Silver Hybrid Nanoparticles
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39651097
PubMed Central
PMC11618447
DOI
10.1021/acsomega.4c08117
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Silver nanoparticles (AgNPs) are excellent antimicrobial agents and promising candidates for preventing or treating bacterial infections caused by antibiotic resistant strains. However, their increasing use in commercial products raises concerns about their environmental impact. In addition, traditional physicochemical approaches often involve harmful agents and excessive energy consumption, resulting in AgNPs with short-term colloidal stability and silver ion leaching. To address these issues, we designed stable hybrid lignin-silver nanoparticles (AgLigNPs) intended to effectively hit bacterial envelopes as a main antimicrobial target. The lignin nanoparticles (LigNPs), serving as a reducing and stabilizing agent for AgNPs, have a median size of 256 nm and a circularity of 0.985. These LigNPs were prepared using the dialysis solvent exchange method, producing spherical particles stable under alkaline conditions and featuring reducing groups oriented toward a wrinkled surface, facilitating AgNPs synthesis and attachment. Maximum accumulation of silver on the LigNP surface was observed at a mass reaction ratio mAg:mLig of 0.25, at pH 11. The AgLigNPs completely inhibited suspension growth and reduced biofilm development by 50% in three tested strains of Pseudomonas aeruginosa at a concentration of 80/9.5 (lignin/silver) mg L-1. Compared to unattached AgNPs, AgLigNPs required two to eight times lower silver concentrations to achieve complete inhibition. Additionally, our silver-containing nanosystems were effective against bacteria at safe concentrations in HEK-293 and HaCaT tissue cultures. Stability experiments revealed that the nanosystems tend to aggregate in media used for bacterial cell cultures but remain stable in media used for tissue cultures. In all tested media, the nanoparticles retained their integrity, and the presence of lignin facilitated the prevention of silver ions from leaching. Overall, our data demonstrate the suitability of AgLigNPs for further valorization in the biomedical sector.
Zobrazit více v PubMed
Pang Z.; Raudonis R.; Glick B. R.; Lin T.-J.; Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol. Adv 2019, 37 (1), 177–192. 10.1016/j.biotechadv.2018.11.013. PubMed DOI
Mat́átková O.; Michailidu J.; Miškovská A.; Kolouchová I.; Masák J.; Čejková A. Antimicrobial properties and applications of metal nanoparticles biosynthesized by green methods. Biotechnol. Adv 2022, 58, 107905.10.1016/j.biotechadv.2022.107905. PubMed DOI
Sosa A. M.; Igartúa D. E.; Alonso S. D. V.; Prieto M. J.; Martinez C. S. A crossover study of antimicrobial capacity and biotoxicity of silver nanoparticles. Appl. Organomet. Chem 2024, 38 (4), e737710.1002/aoc.7377. DOI
Kędziora A.; Speruda M.; Krzyżewska E.; Rybka J.; Łukowiak A.; Bugla-Płoskońska G. Similarities and Differences between Silver Ions and Silver in Nanoforms as Antibacterial Agents. Int. J. Mol. Sci 2018, 19 (2), 444.10.3390/ijms19020444. PubMed DOI PMC
Rai M.; Yadav A.; Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv 2009, 27 (1), 76–83. 10.1016/j.biotechadv.2008.09.002. PubMed DOI
Morones J. R.; Elechiguerra J. L.; Camacho A.; Holt K.; Kouri J. B.; Ramírez J. T.; Yacaman M. J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16 (10), 2346.10.1088/0957-4484/16/10/059. PubMed DOI
Johannsen S.; Megger N.; Böhme D.; Sigel R. K. O.; Müller J. Solution structure of a DNA double helix with consecutive metal-mediated base pairs. Nat. Chem 2010, 2 (3), 229–234. 10.1038/nchem.512. PubMed DOI
Bondarenko O. M.; Sihtmäe M.; Kuzmičiova J.; Ragelienė L.; Kahru A.; Daugelavičius R. Plasma membrane is the target of rapid antibacterial action of silver nanoparticles in Escherichia coli and Pseudomonas aeruginosa. Int. J. Nanomed 2018, 13 (null), 6779–6790. 10.2147/IJN.S177163. PubMed DOI PMC
Hwang E. T.; Lee J. H.; Chae Y. J.; Kim Y. S.; Kim B. C.; Sang B.-I.; Gu M. B. Analysis of the Toxic Mode of Action of Silver Nanoparticles Using Stress-Specific Bioluminescent Bacteria. Small 2008, 4 (6), 746–750. 10.1002/smll.200700954. PubMed DOI
Raza M. A.; Kanwal Z.; Rauf A.; Sabri A. N.; Riaz S.; Naseem S. Size- and Shape-Dependent Antibacterial Studies of Silver Nanoparticles Synthesized by Wet Chemical Routes. Nanomaterials 2016, 6 (4), 74.10.3390/nano6040074. PubMed DOI PMC
Cheon J. Y.; Kim S. J.; Rhee Y. H.; Kwon O. H.; Park W. H. Shape-dependent antimicrobial activities of silver nanoparticles. Int. J. Nanomed 2019, 14 (null), 2773–2780. 10.2147/IJN.S196472. PubMed DOI PMC
Pal S.; Tak Y. K.; Song J. M. Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli. Appl. Environ. Microbiol 2007, 73 (6), 1712–1720. 10.1128/AEM.02218-06. PubMed DOI PMC
Vazquez-Muñoz R.; Bogdanchikova N.; Huerta-Saquero A. Beyond the Nanomaterials Approach: Influence of Culture Conditions on the Stability and Antimicrobial Activity of Silver Nanoparticles. ACS Omega 2020, 5 (44), 28441–28451. 10.1021/acsomega.0c02007. PubMed DOI PMC
Niska K.; Knap N.; Kędzia A.; Jaskiewicz M.; Kamysz W.; Inkielewicz-Stepniak I. Capping Agent-Dependent Toxicity and Antimicrobial Activity of Silver Nanoparticles: An In Vitro Study. Concerns about Potential Application in Dental Practice. Int. J. Med. Sci 2016, 13 (10), 772–782. 10.7150/ijms.16011. PubMed DOI PMC
Kittler S.; Greulich C.; Diendorf J.; Köller M.; Epple M. Toxicity of Silver Nanoparticles Increases during Storage Because of Slow Dissolution under Release of Silver Ions. Chem. Mater 2010, 22 (16), 4548–4554. 10.1021/cm100023p. DOI
Vance M. E.; Kuiken T.; Vejerano E. P.; McGinnis S. P.; Hochella M. F. Jr.; Rejeski D.; Hull M. S. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol 2015, 6, 1769–1780. 10.3762/bjnano.6.181. PubMed DOI PMC
Kalantzi I.; Mylona K.; Toncelli C.; Bucheli T. D.; Knauer K.; Pergantis S. A.; Pitta P.; Tsiola A.; Tsapakis M. Ecotoxicity of silver nanoparticles on plankton organisms: a review. J. Nanopart. Res 2019, 21 (3), 65.10.1007/s11051-019-4504-7. DOI
Spagnoletti F. N.; Kronberg F.; Spedalieri C.; Munarriz E.; Giacometti R. Protein corona on biogenic silver nanoparticles provides higher stability and protects cells from toxicity in comparison to chemical nanoparticles. J. Environ. Manage 2021, 297, 113434.10.1016/j.jenvman.2021.113434. PubMed DOI
Sun Q.; Cai X.; Li J.; Zheng M.; Chen Z.; Yu C.-P. Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids Surf., A 2014, 444, 226–231. 10.1016/j.colsurfa.2013.12.065. DOI
Garibo D.; Borbón-Nuñez H. A.; de León J. N. D.; García Mendoza E.; Estrada I.; Toledano-Magaña Y.; Tiznado H.; Ovalle-Marroquin M.; Soto-Ramos A. G.; Blanco A.; et al. Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Sci. Rep 2020, 10 (1), 12805.10.1038/s41598-020-69606-7. PubMed DOI PMC
Pradeep M.; Kruszka D.; Kachlicki P.; Mondal D.; Franklin G. Uncovering the Phytochemical Basis and the Mechanism of Plant Extract-Mediated Eco-Friendly Synthesis of Silver Nanoparticles Using Ultra-Performance Liquid Chromatography Coupled with a Photodiode Array and High-Resolution Mass Spectrometry. ACS Sustainable Chem. Eng 2022, 10 (1), 562–571. 10.1021/acssuschemeng.1c06960. DOI
Paulsen Thoresen P.; Lange H.; Crestini C.; Rova U.; Matsakas L.; Christakopoulos P. Characterization of Organosolv Birch Lignins: Toward Application-Specific Lignin Production. ACS Omega 2021, 6 (6), 4374–4385. 10.1021/acsomega.0c05719. PubMed DOI PMC
Thoresen P. P.; Matsakas L.; Rova U.; Christakopoulos P. Recent advances in organosolv fractionation: Towards biomass fractionation technology of the future. Bioresour. Technol 2020, 306, 123189.10.1016/j.biortech.2020.123189. PubMed DOI
Ugartondo V.; Mitjans M.; Vinardell M. P. Comparative antioxidant and cytotoxic effects of lignins from different sources. Bioresour. Technol 2008, 99 (14), 6683–6687. 10.1016/j.biortech.2007.11.038. PubMed DOI
Vinardell M. P.; Mitjans M. Lignins and Their Derivatives with Beneficial Effects on Human Health. Int. J. Mol. Sci 2017, 18 (6), 1219.10.3390/ijms18061219. PubMed DOI PMC
Weng J.-K.; Chapple C. The origin and evolution of lignin biosynthesis. New Phytol 2010, 187 (2), 273–285. 10.1111/j.1469-8137.2010.03327.x. PubMed DOI
Morena A. G.; Bassegoda A.; Natan M.; Jacobi G.; Banin E.; Tzanov T. Antibacterial Properties and Mechanisms of Action of Sonoenzymatically Synthesized Lignin-Based Nanoparticles. ACS Appl. Mater. Interfaces 2022, 14 (33), 37270–37279. 10.1021/acsami.2c05443. PubMed DOI PMC
Yang W.; Fortunati E.; Gao D.; Balestra G. M.; Giovanale G.; He X.; Torre L.; Kenny J. M.; Puglia D. Valorization of Acid Isolated High Yield Lignin Nanoparticles as Innovative Antioxidant/Antimicrobial Organic Materials. ACS Sustainable Chem. Eng 2018, 6 (3), 3502–3514. 10.1021/acssuschemeng.7b03782. DOI
Nassarawa S. S.; Nayik G. A.; Gupta S. D.; Areche F. O.; Jagdale Y. D.; Ansari M. J.; Hemeg H. A.; Al-Farga A.; Alotaibi S. S. Chemical aspects of polyphenol-protein interactions and their antibacterial activity. Crit. Rev. Food Sci. Nutr 2023, 63 (28), 9482–9505. 10.1080/10408398.2022.2067830. PubMed DOI
Panáček A.; Kvítek L.; Smékalová M.; Večeřová R.; Kolář M.; Röderová M.; Dyčka F.; Šebela M.; Prucek R.; Tomanec O.; Zbořil R. Bacterial resistance to silver nanoparticles and how to overcome it. Nat. Nanotechnol 2018, 13 (1), 65–71. 10.1038/s41565-017-0013-y. PubMed DOI
Wu K.; Li H.; Cui X.; Feng R.; Chen W.; Jiang Y.; Tang C.; Wang Y.; Wang Y.; Shen X.; Liu Y.; et al. Mutagenesis and Resistance Development of Bacteria Challenged by Silver Nanoparticles. Antimicrob. Agents Chemother 2022, 66 (10), e00628-2210.1128/aac.00628-22. PubMed DOI PMC
Stabryla L. M.; Johnston K. A.; Diemler N. A.; Cooper V. S.; Millstone J. E.; Haig S.-J.; Gilbertson L. M. Role of bacterial motility in differential resistance mechanisms of silver nanoparticles and silver ions. Nat. Nanotechnol 2021, 16 (9), 996–1003. 10.1038/s41565-021-00929-w. PubMed DOI
Tian D.; Zhang J.; Hu J.; Huang M.; Zhao L.; Lei Y.; Zou J.; Zhang S.; Shen F. A new water-soluble lignin incorporation enhanced the barrier performance of liquid mulching film. Chem. Eng. J 2023, 452, 139383.10.1016/j.cej.2022.139383. DOI
Sipponen M. H.; Lange H.; Ago M.; Crestini C. Understanding Lignin Aggregation Processes. A Case Study: Budesonide Entrapment and Stimuli Controlled Release from Lignin Nanoparticles. ACS Sustainable Chem. Eng 2018, 6 (7), 9342–9351. 10.1021/acssuschemeng.8b01652. PubMed DOI PMC
Figueiredo P.; Lahtinen M. H.; Agustin M. B.; de Carvalho D. M.; Hirvonen S.-P.; Penttilä P. A.; Mikkonen K. S. Green Fabrication Approaches of Lignin Nanoparticles from Different Technical Lignins: A Comparison Study. ChemSuschem 2021, 14 (21), 4718–4730. 10.1002/cssc.202101356. PubMed DOI PMC
Joudeh N.; Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J. Nanobiotechnol 2022, 20 (1), 262.10.1186/s12951-022-01477-8. PubMed DOI PMC
Hoyo J.; Ivanova K.; Torrent-Burgues J.; Tzanov T. Interaction of Silver-Lignin Nanoparticles With Mammalian Mimetic Membranes. Front. Bioeng. Biotechnol. 2020, 8, 439.10.3389/fbioe.2020.00439. PubMed DOI PMC
Schneider W. D. H.; Dillon A. J. P.; Camassola M. Lignin nanoparticles enter the scene: A promising versatile green tool for multiple applications. Biotechnol. Adv 2021, 47, 107685.10.1016/j.biotechadv.2020.107685. PubMed DOI
Morena A. G.; Bassegoda A.; Hoyo J.; Tzanov T. Hybrid Tellurium–Lignin Nanoparticles with Enhanced Antibacterial Properties. ACS Appl. Mater. Interfaces 2021, 13 (13), 14885–14893. 10.1021/acsami.0c22301. PubMed DOI PMC
Wang B.; Yang G.; Chen J.; Fang G. Green Synthesis and Characterization of Gold Nanoparticles Using Lignin Nanoparticles. Nanomaterials 2020, 10 (9), 1869.10.3390/nano10091869. PubMed DOI PMC
Sun H.; Wang G.; Ge J.; Wei N.; Sui W.; Chen Z.; Jia H.; Parvez A. M.; Si C. Reduction of lignin heterogeneity for improved catalytic performance of lignin nanosphere supported Pd nanoparticles. Ind. Crops Prod 2022, 180, 114685.10.1016/j.indcrop.2022.114685. DOI
Liu J.; Sipponen M. H. Ag-lignin hybrid nanoparticles for high-performance solar absorption in photothermal antibacterial chitosan films. iScience 2023, 26 (10), 108058.10.1016/j.isci.2023.108058. PubMed DOI PMC
Zhang Y.; Wang Y.; Li Z.; Yang D.; Qiu X. Engineering of near-infrared-activated lignin–Polydopamine–Nanosilver composites for highly efficient sterilization. ACS Appl. Bio Mater 2022, 5 (9), 4256–4263. 10.1021/acsabm.2c00474. PubMed DOI
Maršík D.; Thoresen P. P.; Mat́átková O.; Masák J.; Sialini P.; Rova U.; Tsikourkitoudi V.; Christakopoulos P.; Matsakas L.; Jarošová Kolouchová I. Synthesis and Characterization of Lignin-Silver Nanoparticles. Molecules 2024, 29 (10), 2360.10.3390/molecules29102360. PubMed DOI PMC
Mah T.-F.; Pitts B.; Pellock B.; Walker G. C.; Stewart P. S.; O’Toole G. A. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 2003, 426 (6964), 306–310. 10.1038/nature02122. PubMed DOI
Müsken M.; Di Fiore S.; Römling U.; Häussler S. A 96-well-plate–based optical method for the quantitative and qualitative evaluation of Pseudomonas aeruginosa biofilm formation and its application to susceptibility testing. Nat. Protoc 2010, 5 (8), 1460–1469. 10.1038/nprot.2010.110. PubMed DOI
Bassetti M.; Vena A.; Croxatto A.; Righi E.; Guery B. How to manage Pseudomonas aeruginosa infections. Drugs Context 2018, 7, 212527.10.7573/dic.212527. PubMed DOI PMC
Reynolds D.; Kollef M. The Epidemiology and Pathogenesis and Treatment of Pseudomonas aeruginosa Infections: An Update. Drugs 2021, 81 (18), 2117–2131. 10.1007/s40265-021-01635-6. PubMed DOI PMC
Gallaher C.; Norman J.; Singh A.; Sanderson F. Community-acquired Pseudomonas aeruginosa meningitis. BMJ. Case Rep 2017, 2017, bcr–2017-221839. 10.1136/bcr-2017-221839. PubMed DOI PMC
Matsuki Y.; Tanabe S.; Yokozawa T.; Li S.; Oda T. Community-acquired Pseudomonas aeruginosa Osteomyelitis Caused by an Injury from a Dishwasher. Intern. Med 2022, 61 (15), 2373–2376. 10.2169/internalmedicine.7736-21. PubMed DOI PMC
Qin S.; Xiao W.; Zhou C.; Pu Q.; Deng X.; Lan L.; Liang H.; Song X.; Wu M. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduction Targeted Ther 2022, 7 (1), 199.10.1038/s41392-022-01056-1. PubMed DOI PMC
Gale M. J.; Maritato M. S.; Chen Y.-L.; Abdulateef S. S.; Ruiz J. E. Pseudomonas aeruginosa causing inflammatory mass of the nasopharynx in an immunocompromised HIV infected patient: A mimic of malignancy. IDCases 2015, 2 (2), 40–43. 10.1016/j.idcr.2015.01.004. PubMed DOI PMC
Ertugrul B. M.; Lipsky B. A.; Ture M.; Sakarya S. Risk factors for infection with Pseudomonas aeruginosa in diabetic foot infections. J. Am. Podiatr. Med. Assoc 2017, 107 (6), 483–489. 10.7547/15-167. PubMed DOI
Liu T.; Zhang Y.; Wan Q. Pseudomonas aeruginosa bacteremia among liver transplant recipients. Infect. Drug. Resist 2018, 2018, 2345–2356. 10.2147/IDR.S180283. PubMed DOI PMC
Horcajada J. P.; Montero M.; Oliver A.; Sorlí L.; Luque S.; Gómez-Zorrilla S.; Benito N.; Grau S. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin. Microbiol. Rev 2019, 32 (4), e00031-1910.1128/CMR.00031-19. PubMed DOI PMC
Tacconelli E.; Carrara E.; Savoldi A.; Harbarth S.; Mendelson M.; Monnet D. L.; Pulcini C.; Kahlmeter G.; Kluytmans J.; Carmeli Y.; et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 2018, 18 (3), 318–327. 10.1016/S1473-3099(17)30753-3. PubMed DOI
Benn T. M.; Westerhoff P. Nanoparticle Silver Released into Water from Commercially Available Sock Fabrics. Environ. Sci. Technol 2008, 42 (11), 4133–4139. 10.1021/es7032718. PubMed DOI
Wijnhoven S. W. P.; Peijnenburg W. J. G. M.; Herberts C. A.; Hagens W. I.; Oomen A. G.; Heugens E. H. W.; Roszek B.; Bisschops J.; Gosens I.; Van De Meent D.; et al. Nano-silver – a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 2009, 3 (2), 109–138. 10.1080/17435390902725914. DOI
Liu W.; Wu Y.; Wang C.; Li H. C.; Wang T.; Liao C. Y.; Cui L.; Zhou Q. F.; Yan B.; Jiang G. B. Impact of silver nanoparticles on human cells: Effect of particle size. Nanotoxicology 2010, 4 (3), 319–330. 10.3109/17435390.2010.483745. PubMed DOI
Matsakas L.; Gerber M.; Yu L.; Rova U.; Christakopoulos P. Preparation of low carbon impact lignin nanoparticles with controllable size by using different strategies for particles recovery. Ind. Crops Prod 2020, 147, 112243.10.1016/j.indcrop.2020.112243. DOI
Österberg M.; Sipponen M. H.; Mattos B. D.; Rojas O. J. Spherical lignin particles: a review on their sustainability and applications. Green Chem 2020, 22 (9), 2712–2733. 10.1039/D0GC00096E. DOI
Bhattacharjee S. DLS and zeta potential – What they are and what they are not?. J. Controlled Release 2016, 235, 337–351. 10.1016/j.jconrel.2016.06.017. PubMed DOI
Pylypchuk I.; Sipponen M. H. Organic solvent-free production of colloidally stable spherical lignin nanoparticles at high mass concentrations. Green Chem 2022, 24 (22), 8705–8715. 10.1039/D2GC02316D. DOI
Agustin M. B.; Penttilä P. A.; Lahtinen M.; Mikkonen K. S. Rapid and Direct Preparation of Lignin Nanoparticles from Alkaline Pulping Liquor by Mild Ultrasonication. ACS Sustainable Chem. Eng 2019, 7 (24), 19925–19934. 10.1021/acssuschemeng.9b05445. DOI
Frangville C.; Rutkevičius M.; Richter A. P.; Velev O. D.; Stoyanov S. D.; Paunov V. N. Fabrication of Environmentally Biodegradable Lignin Nanoparticles. ChemPhyschem 2012, 13 (18), 4235–4243. 10.1002/cphc.201200537. PubMed DOI
Lintinen K.; Xiao Y.; Bangalore Ashok R.; Leskinen T.; Sakarinen E.; Sipponen M.; Muhammad F.; Oinas P.; Österberg M.; Kostiainen M. Closed cycle production of concentrated and dry redispersible colloidal lignin particles with a three solvent polarity exchange method. Green Chem 2018, 20 (4), 843–850. 10.1039/C7GC03465B. DOI
Leskinen T.; Smyth M.; Xiao Y.; Lintinen K.; Mattinen M.-L.; Kostiainen M. A.; Oinas P.; Österberg M. Scaling Up Production of Colloidal Lignin Particles. Nord. Pulp Pap. Res. J 2017, 32 (4), 586–596. 10.3183/npprj-2017-32-04_p586-596_leskinen. DOI
Pylypchuk I. V.; Riazanova A.; Lindström M. E.; Sevastyanova O. Structural and molecular-weight-dependency in the formation of lignin nanoparticles from fractionated soft- and hardwood lignins. Green Chem 2021, 23 (8), 3061–3072. 10.1039/D0GC04058D. DOI
Xiong F.; Han Y.; Wang S.; Li G.; Qin T.; Chen Y.; Chu F. Preparation and formation mechanism of size-controlled lignin nanospheres by self-assembly. Ind. Crops Prod 2017, 100, 146–152. 10.1016/j.indcrop.2017.02.025. DOI
Larkin P.Infrared and Raman Spectroscopy: Principles and Spectral Interpretation; Elsevier, 2017.
Kubo S.; Kadla J. F. Hydrogen Bonding in Lignin: A Fourier Transform Infrared Model Compound Study. Biomacromolecules 2005, 6 (5), 2815–2821. 10.1021/bm050288q. PubMed DOI
Jõul P.; Ho T. T.; Kallavus U.; Konist A.; Leiman K.; Salm O.-S.; Kulp M.; Koel M.; Lukk T. Characterization of organosolv lignins and their application in the preparation of aerogels. Materials 2022, 15 (8), 2861.10.3390/ma15082861. PubMed DOI PMC
Ibrahim Q.; Kruse A. Prehydrolysis and organosolv delignification process for the recovery of hemicellulose and lignin from beech wood. Bioresour. Technol. Rep 2020, 11, 100506.10.1016/j.biteb.2020.100506. DOI
Popescu C.-M.; Vasile C.; Popescu M.; Singurel G.; Popa V.; Munteanu B. Analytical methods for lignin characterization. II. Spectroscopic studies. Cellul. Chem. Technol 2006, 40 (8), 597.
Cachet N.; Camy S.; Benjelloun-Mlayah B.; Condoret J.-S.; Delmas M. Esterification of organosolv lignin under supercritical conditions. Ind. Crops Prod 2014, 58, 287–297. 10.1016/j.indcrop.2014.03.039. DOI
Sammons R. J.; Harper D. P.; Labbé N.; Bozell J. J.; Elder T.; Rials T. G. Characterization of organosolv lignins using thermal and FT-IR spectroscopic analysis. BioResources 2013, 8 (2), 2752–2767. 10.15376/biores.8.2.2752-2767. DOI
Fodil Cherif M.; Trache D.; Brosse N.; Benaliouche F.; Tarchoun A. F. Comparison of the Physicochemical Properties and Thermal Stability of Organosolv and Kraft Lignins from Hardwood and Softwood Biomass for Their Potential Valorization. Waste Biomass Valorization 2020, 11 (12), 6541–6553. 10.1007/s12649-020-00955-0. DOI
Horikawa Y.; Hirano S.; Mihashi A.; Kobayashi Y.; Zhai S.; Sugiyama J. Prediction of Lignin Contents from Infrared Spectroscopy: Chemical Digestion and Lignin/Biomass Ratios of Cryptomeria japonica. Appl. Biochem. Biotechnol 2019, 188 (4), 1066–1076. 10.1007/s12010-019-02965-8. PubMed DOI
Cichosz S.; Masek A. IR Study on Cellulose with the Varied Moisture Contents: Insight into the Supramolecular Structure. Materials 2020, 13 (20), 4573.10.3390/ma13204573. PubMed DOI PMC
Fan M.; Dai D.; Huang B. Fourier transform infrared spectroscopy for natural fibres. Fourier Transform: Mater. Anal. 2012, 3, 45–68.
Liu L.; Cui B.; Tan L.; Wang W. Improving the combination of cellulose and lignin using xylan as a compatibilizer. Cellulose 2021, 28 (9), 5335–5349. 10.1007/s10570-021-03864-0. DOI
Cheng S.; Huang A.; Wang S.; Zhang Q. Effect of different heat treatment temperatures on the chemical composition and structure of Chinese fir wood. BioResources 2016, 11 (2), 4006–4016. 10.15376/biores.11.2.4006-4016. DOI
Kim G.; Park J.; Kim B. M.; Kim J.; Kim K.-J.; Park J. Influence of nanoprecipitation techniques on lignin nanoparticle structure. Colloids Surf., A 2024, 682, 132803.10.1016/j.colsurfa.2023.132803. DOI
Shankar S.; Rhim J.-W. Preparation and characterization of agar/lignin/silver nanoparticles composite films with ultraviolet light barrier and antibacterial properties. Food Hydrocolloids 2017, 71, 76–84. 10.1016/j.foodhyd.2017.05.002. DOI
Xue Y.; Qiu X.; Liu Z.; Li Y. Facile and Efficient Synthesis of Silver Nanoparticles Based on Biorefinery Wood Lignin and Its Application as the Optical Sensor. ACS Sustainable Chem. Eng 2018, 6 (6), 7695–7703. 10.1021/acssuschemeng.8b00578. DOI
Hu S.; Hsieh Y.-L. Silver nanoparticle synthesis using lignin as reducing and capping agents: A kinetic and mechanistic study. Int. J. Biol. Macromol 2016, 82, 856–862. 10.1016/j.ijbiomac.2015.09.066. PubMed DOI
Murray B. J.; Li Q.; Newberg J. T.; Menke E. J.; Hemminger J. C.; Penner R. M. Shape- and Size-Selective Electrochemical Synthesis of Dispersed Silver(I) Oxide Colloids. Nano Lett 2005, 5 (11), 2319–2324. 10.1021/nl051834o. PubMed DOI
Thanh N. T. K.; Maclean N.; Mahiddine S. Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Chem. Rev 2014, 114 (15), 7610–7630. 10.1021/cr400544s. PubMed DOI
González A. L.; Noguez C.; Beránek J.; Barnard A. S. Size, Shape, Stability, and Color of Plasmonic Silver Nanoparticles. J. Phys. Chem. C 2014, 118 (17), 9128–9136. 10.1021/jp5018168. DOI
Menichetti A.; Mavridi-Printezi A.; Mordini D.; Montalti M. Effect of Size, Shape and Surface Functionalization on the Antibacterial Activity of Silver Nanoparticles. J. Funct. Biomater. 2023, 14 (5), 244.10.3390/jfb14050244. PubMed DOI PMC
Iwase T.; Uehara Y.; Shinji H.; Tajima A.; Seo H.; Takada K.; Agata T.; Mizunoe Y. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 2010, 465 (7296), 346–349. 10.1038/nature09074. PubMed DOI
Lade H.; Park J. H.; Chung S. H.; Kim I. H.; Kim J.-M.; Joo H.-S.; Kim J.-S. Biofilm Formation by Staphylococcus aureus Clinical Isolates is Differentially Affected by Glucose and Sodium Chloride Supplemented Culture Media. J. Clin. Med 2019, 8 (11), 1853.10.3390/jcm8111853. PubMed DOI PMC
Paleczny J.; Junka A.; Brożyna M.; Dydak K.; Oleksy-Wawrzyniak M.; Ciecholewska-Juśko D.; Dziedzic E.; Bartoszewicz M. The High Impact of Staphylococcus aureus Biofilm Culture Medium on In Vitro Outcomes of Antimicrobial Activity of Wound Antiseptics and Antibiotic. Pathogens 2021, 10 (11), 1385.10.3390/pathogens10111385. PubMed DOI PMC
Foster T. J. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiology Reviews 2017, 41 (3), 430–449. 10.1093/femsre/fux007. PubMed DOI
Lee A. S.; de Lencastre H.; Garau J.; Kluytmans J.; Malhotra-Kumar S.; Peschel A.; Harbarth S. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primers 2018, 4 (1), 18033.10.1038/nrdp.2018.33. PubMed DOI
Lee J. H.; Im J. S.; Jin X.; Kim T. M.; Choi J. W. In Vitro and In Vivo Evaluation of Drug-Encapsulated Lignin Nanoparticles for Release Control. ACS Sustainable Chem. Eng 2022, 10 (18), 5792–5802. 10.1021/acssuschemeng.1c08529. DOI
De Leersnyder I.; De Gelder L.; Van Driessche I.; Vermeir P. Influence of growth media components on the antibacterial effect of silver ions on Bacillus subtilis in a liquid growth medium. Sci. Rep 2018, 8 (1), 9325.10.1038/s41598-018-27540-9. PubMed DOI PMC
MacCuspie R. I. Colloidal stability of silver nanoparticles in biologically relevant conditions. J. Nanopart. Res 2011, 13 (7), 2893–2908. 10.1007/s11051-010-0178-x. DOI
Ndaba B.; Roopnarain A.; Daramola M. O.; Adeleke R. Influence of extraction methods on antimicrobial activities of lignin-based materials: A review. Sustainable Chem. Pharm 2020, 18, 100342.10.1016/j.scp.2020.100342. DOI
Cedervall T.; Lynch I.; Lindman S.; Berggård T.; Thulin E.; Nilsson H.; Dawson K. A.; Linse S. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. U. S. A 2007, 104 (7), 2050–2055. 10.1073/pnas.0608582104. PubMed DOI PMC
Cedervall T.; Lynch I.; Foy M.; Berggård T.; Donnelly S. C.; Cagney G.; Linse S.; Dawson K. A. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew. Chem., Int. Ed 2007, 46 (30), 5754–5756. 10.1002/anie.200700465. PubMed DOI
Argentiere S.; Cella C.; Cesaria M.; Milani P.; Lenardi C. Silver nanoparticles in complex biological media: assessment of colloidal stability and protein corona formation. J. Nanopart. Res 2016, 18 (8), 253.10.1007/s11051-016-3560-5. DOI
Pino P. D.; Pelaz B.; Zhang Q.; Maffre P.; Nienhaus G. U.; Parak W. J. Protein corona formation around nanoparticles – from the past to the future. Mater. Horiz 2014, 1 (3), 301–313. 10.1039/C3MH00106G. DOI
Pereira A.; Hoeger I. C.; Ferrer A.; Rencoret J.; Del Rio J. C.; Kruus K.; Rahikainen J.; Kellock M.; Gutiérrez A.; Rojas O. J. Lignin Films from Spruce, Eucalyptus, and Wheat Straw Studied with Electroacoustic and Optical Sensors: Effect of Composition and Electrostatic Screening on Enzyme Binding. Biomacromolecules 2017, 18 (4), 1322–1332. 10.1021/acs.biomac.7b00071. PubMed DOI
El Badawy A. M.; Scheckel K. G.; Suidan M.; Tolaymat T. The impact of stabilization mechanism on the aggregation kinetics of silver nanoparticles. Sci. Total Environ 2012, 429, 325–331. 10.1016/j.scitotenv.2012.03.041. PubMed DOI
Polte J. Fundamental growth principles of colloidal metal nanoparticles – a new perspective. CrystEngcomm 2015, 17 (36), 6809–6830. 10.1039/C5CE01014D. DOI
Ho Y. T.; Azman N. A.; Loh F. W. Y.; Ong G. K. T.; Engudar G.; Kriz S. A.; Kah J. C. Y. Protein Corona Formed from Different Blood Plasma Proteins Affects the Colloidal Stability of Nanoparticles Differently. Bioconjugate Chem 2018, 29 (11), 3923–3934. 10.1021/acs.bioconjchem.8b00743. PubMed DOI
Matsakas L.; Karnaouri A.; Cwirzen A.; Rova U.; Christakopoulos P. Formation of Lignin Nanoparticles by Combining Organosolv Pretreatment of Birch Biomass and Homogenization Processes. Molecules 2018, 23 (7), 1822.10.3390/molecules23071822. PubMed DOI PMC
Petridis L.; Smith J. C. Conformations of Low-Molecular-Weight Lignin Polymers in Water. ChemSuschem 2016, 9 (3), 289–295. 10.1002/cssc.201501350. PubMed DOI
Babick F.Chapter 3.2.1—Dynamic light scattering (DLS). Characterization of Nanoparticles; Hodoroaba V.-D.; Unger W. E. S.; Shard A. G., Eds.; Elsevier, 2020; pp 137–172.
Hoeger I. C.; Filpponen I.; Martin-Sampedro R.; Johansson L.-S.; Österberg M.; Laine J.; Kelley S.; Rojas O. J. Bicomponent Lignocellulose Thin Films to Study the Role of Surface Lignin in Cellulolytic Reactions. Biomacromolecules 2012, 13 (10), 3228–3240. 10.1021/bm301001q. PubMed DOI
Leskinen T.; Witos J.; Valle-Delgado J. J.; Lintinen K.; Kostiainen M.; Wiedmer S. K.; Österberg M.; Mattinen M.-L. Adsorption of Proteins on Colloidal Lignin Particles for Advanced Biomaterials. Biomacromolecules 2017, 18 (9), 2767–2776. 10.1021/acs.biomac.7b00676. PubMed DOI
Yang B.; Wyman C. E. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol. Bioeng 2006, 94 (4), 611–617. 10.1002/bit.20750. PubMed DOI
Salas C.; Rojas O. J.; Lucia L. A.; Hubbe M. A.; Genzer J. On the Surface Interactions of Proteins with Lignin. ACS Appl. Mater. Interfaces 2013, 5 (1), 199–206. 10.1021/am3024788. PubMed DOI
Zheng P.; Xiang L.; Chang J.; Lin Q.; Xie L.; Lan T.; Liu J.; Gong Z.; Tang T.; Shuai L.; et al. Nanomechanics of Lignin–Cellulase Interactions in Aqueous Solutions. Biomacromolecules 2021, 22 (5), 2033–2042. 10.1021/acs.biomac.1c00140. PubMed DOI
Yamaguchi A.; Isozaki K.; Nakamura M.; Takaya H.; Watanabe T. Discovery of 12-mer peptides that bind to wood lignin. Sci. Rep 2016, 6 (1), 21833.10.1038/srep21833. PubMed DOI PMC
Zhu L.; Wang J.; Feng Y.; Yin H.; Lai H.; Xiao R.; He S.; Yang Z.; He Y. Process Optimization, Amino Acid Composition, and Antioxidant Activities of Protein and Polypeptide Extracted from Waste Beer Yeast. Molecules 2022, 27 (20), 6825.10.3390/molecules27206825. PubMed DOI PMC
Zhou X.; Guo T.; Lu Y.; Hadiatullah H.; Li P.; Ding K.; Zhao G. Effects of amino acid composition of yeast extract on the microbiota and aroma quality of fermented soy sauce. Food Chem 2022, 393, 133289.10.1016/j.foodchem.2022.133289. PubMed DOI
Tao Z.; Yuan H.; Liu M.; Liu Q.; Zhang S.; Liu H.; Jiang Y.; Huang D.; Wang T. Yeast Extract: Characteristics, Production, Applications and Future Perspectives. J. Microbiol. Biotechnol 2023, 33 (2), 151–166. 10.4014/jmb.2207.07057. PubMed DOI PMC
Qin J.; Shi A.; Song Q.; Li S.; Wang F.; Cao Y.; Ravelombola W.; Song Q.; Yang C.; Zhang M. Genome Wide Association Study and Genomic Selection of Amino Acid Concentrations in Soybean Seeds. Front. Plant Sci 2019, 10, 1445.10.3389/fpls.2019.01445. PubMed DOI PMC
Karr-Lilienthal L. K.; Grieshop C. M.; Spears J. K.; Fahey G. C. Amino Acid, Carbohydrate, and Fat Composition of Soybean Meals Prepared at 55 Commercial U.S. Soybean Processing Plants. J. Agric. Food Chem 2005, 53 (6), 2146–2150. 10.1021/jf048385i. PubMed DOI
Jacob F. F.; Striegel L.; Rychlik M.; Hutzler M.; Methner F.-J. Yeast extract production using spent yeast from beer manufacture: influence of industrially applicable disruption methods on selected substance groups with biotechnological relevance. Eur. Food Res. Technol 2019, 245 (6), 1169–1182. 10.1007/s00217-019-03237-9. DOI
Jones D. B.Factors for Converting Percentages of Nitrogen in Foods and Feeds into Percentages of Proteins; US Department of Agriculture: Washington, DC, 1941.
Boulos S.; Tännler A.; Nyström L. Nitrogen-to-Protein Conversion Factors for Edible Insects on the Swiss Market: T. molitor, A. domesticus, and L. migratoria. Front. Nutr. 2020, 7, 89.10.3389/fnut.2020.00089. PubMed DOI PMC
Hall N. G.; Schönfeldt H. C. Total nitrogen vs. amino-acid profile as indicator of protein content of beef. Food Chem 2013, 140 (3), 608–612. 10.1016/j.foodchem.2012.08.046. PubMed DOI
Lee D. Y.; Yun S. H.; Lee S. Y.; Lee J.; Mariano E. Jr.; Joo S. T.; Choi I.; Seok Choi J.; Kim G. D.; Lee J.; et al. Corrigendum to “Analysis of commercial fetal bovine serum (FBS) and its substitutes in the development of cultured meat” [Food Res. Int.174P1 (2023) 113617]. Food Res. Int 2024, 188, 114303.10.1016/j.foodres.2024.114303. PubMed DOI
Lee D. Y.; Yun S. H.; Lee S. Y.; Lee J.; Jr. Mariano E.; Joo S. T.; Choi I.; Choi J. S.; Kim G. D.; Lee J.; Choi S.-H.; et al. Analysis of commercial fetal bovine serum (FBS) and its substitutes in the development of cultured meat. Food Res. Int 2023, 174, 113617.10.1016/j.foodres.2023.113617. PubMed DOI
Takeda K.; Wada A.; Yamamoto K.; Moriyama Y.; Aoki K. Conformational change of bovine serum albumin by heat treatment. Journal Of Protein Chemistry 1989, 8 (5), 653–659. 10.1007/BF01025605. PubMed DOI
Pal S.; Pyne P.; Samanta N.; Ebbinghaus S.; Mitra R. K. Thermal stability modulation of the native and chemically-unfolded state of bovine serum albumin by amino acids. Phys. Chem. Chem. Phys 2020, 22 (1), 179–188. 10.1039/C9CP04887A. PubMed DOI
Rondeau P.; Armenta S.; Caillens H.; Chesne S.; Bourdon E. Assessment of temperature effects on β-aggregation of native and glycated albumin by FTIR spectroscopy and PAGE: Relations between structural changes and antioxidant properties. Arch. Biochem. Biophys 2007, 460 (1), 141–150. 10.1016/j.abb.2007.01.014. PubMed DOI
Honda C.; Kamizono H.; Samejima T.; Endo K. Studies on Thermal Aggregation of Bovine Serum Albumin as a Drug Carrier. Chem. Pharm. Bull 2000, 48 (4), 464–466. 10.1248/cpb.48.464. PubMed DOI
Chiti F.; Dobson C. M. Amyloid formation by globular proteins under native conditions. Nat. Chem. Biol 2009, 5 (1), 15–22. 10.1038/nchembio.131. PubMed DOI
Bohrmann B.; Tjernberg L.; Kuner P.; Poli S.; Levet-Trafit B.; Näslund J.; Richards G.; Huber W.; Döbeli H.; Nordstedt C. Endogenous Proteins Controlling Amyloid β-Peptide Polymerization: possible implications for β-amyloid formation in the central nervous system and in peripheral tissues*. J. Biol. Chem 1999, 274 (23), 15990–15995. 10.1074/jbc.274.23.15990. PubMed DOI
Ashraf J. M.; Ansari M. A.; Khan H. M.; Alzohairy M. A.; Choi I. Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques. Sci. Rep 2016, 6 (1), 20414.10.1038/srep20414. PubMed DOI PMC
Agnihotri S.; Mukherji S.; Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv 2014, 4 (8), 3974–3983. 10.1039/C3RA44507K. DOI
Fernando I.; Zhou Y. Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles. Chemosphere 2019, 216, 297–305. 10.1016/j.chemosphere.2018.10.122. PubMed DOI
De Leersnyder I.; De Gelder L.; Van Driessche I.; Vermeir P. Revealing the Importance of Aging, Environment, Size and Stabilization Mechanisms on the Stability of Metal Nanoparticles: A Case Study for Silver Nanoparticles in a Minimally Defined and Complex Undefined Bacterial Growth Medium. Nanomaterials 2019, 9 (12), 1684.10.3390/nano9121684. PubMed DOI PMC
nanoComposix. Stability and Shelf Life of Small PVP Silver Nanoparticles. 2020. https://nanocomposix.com/pages/stability-and-shelf-life-of-small-pvp-silver-nanoparticles#:~:text=nanoComposix%20guarantees%20our%20materials%20to,of%20shipment%20for%20most%20nanoparticleshttps://nanocomposix.com/pages/stability-and-shelf-life-of-small-pvp-silver-nanoparticles#:~:text=nanoComposix%20guarantees%20our%20materials%20to,of%20shipment%20for%20most%20nanoparticles (accessed 2024-03-05).
Malysheva A.; Ivask A.; Hager C.; Brunetti G.; Marzouk E. R.; Lombi E.; Voelcker N. H. Sorption of silver nanoparticles to laboratory plastic during (eco)toxicological testing. Nanotoxicology 2016, 10 (4), 385–390. 10.3109/17435390.2015.1084059. PubMed DOI
Podila R.; Chen R.; Ke P. C.; Brown J. M.; Rao A. M. Effects of surface functional groups on the formation of nanoparticle-protein corona. Appl. Phys. Lett 2012, 101 (26), 263701.10.1063/1.4772509. PubMed DOI PMC
Shannahan J. H.; Podila R.; Brown J. M. A hyperspectral and toxicological analysis of protein corona impact on silver nanoparticle properties, intracellular modifications, and macrophage activation. Int. J. Nanomed 2015, 10 (null), 6509–6521. 10.2147/IJN.S92570. PubMed DOI PMC
Mogensen K. B.; Kneipp K. Size-Dependent Shifts of Plasmon Resonance in Silver Nanoparticle Films Using Controlled Dissolution: Monitoring the Onset of Surface Screening Effects. J. Phys. Chem. C 2014, 118 (48), 28075–28083. 10.1021/jp505632n. DOI
Li Y.; Zhao J.; Shang E.; Xia X.; Niu J.; Crittenden J. Effects of Chloride Ions on Dissolution, ROS Generation, and Toxicity of Silver Nanoparticles under UV Irradiation. Environ. Sci. Technol 2018, 52 (8), 4842–4849. 10.1021/acs.est.7b04547. PubMed DOI
Baksi A.; Gandi M.; Chaudhari S.; Bag S.; Gupta S. S.; Pradeep T. Extraction of Silver by Glucose. Angew. Chem., Int. Ed 2016, 55 (27), 7777–7781. 10.1002/anie.201510122. PubMed DOI
Bouwmeester H.; Poortman J.; Peters R. J.; Wijma E.; Kramer E.; Makama S.; Puspitaninganindita K.; Marvin H. J. P.; Peijnenburg A. A. C. M.; Hendriksen P. J. M. Characterization of Translocation of Silver Nanoparticles and Effects on Whole-Genome Gene Expression Using an In Vitro Intestinal Epithelium Coculture Model. ACS Nano 2011, 5 (5), 4091–4103. 10.1021/nn2007145. PubMed DOI
Miškovská A.; Michailidu J.; Kolouchová I. J.; Barone L.; Gornati R.; Montali A.; Tettamanti G.; Berini F.; Marinelli F.; Masák J.; et al. Biological activity of silver nanoparticles synthesized using viticultural waste. Microb. Pathog 2024, 190, 106613.10.1016/j.micpath.2024.106613. PubMed DOI
Helmlinger J.; Sengstock C.; Groß-Heitfeld C.; Mayer C.; Schildhauer T. A.; Köller M.; Epple M. Silver nanoparticles with different size and shape: equal cytotoxicity, but different antibacterial effects. RSC Adv 2016, 6 (22), 18490–18501. 10.1039/C5RA27836H. DOI
Luque de Castro M. D.Chapter 8-Membrane-Based Separation Techniques: Dialysis, Gas Diffusion and Pervaporation. In Comprehensive Analytical Chemistry; Kolev S. D.; McKelvie I. D., Eds.; Elsevier, 2008; Vol. 54, pp 203–234.
Kim J. H.; Dong J.; Le B. H.; Lonergan Z. R.; Gu W.; Girke T.; Zhang W.; Newman D. K.; Martins-Green M. Pseudomonas aeruginosa Activates Quorum Sensing, Antioxidant Enzymes and Type VI Secretion in Response to Oxidative Stress to Initiate Biofilm Formation and Wound Chronicity. Antioxidants 2024, 13 (6), 655.10.3390/antiox13060655. PubMed DOI PMC
Pezzoni M.; Pizarro R. A.; Costa C. S. Role of quorum sensing in UVA-induced biofilm formation in Pseudomonas aeruginosa. Microbiology 2020, 166 (8), 735–750. 10.1099/mic.0.000932. PubMed DOI
Yin I. X.; Zhang J.; Zhao I. S.; Mei M. L.; Li Q.; Chu C. H. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int. J. Nanomed 2020, 15 (null), 2555–2562. 10.2147/IJN.S246764. PubMed DOI PMC
Shah S.; Gaikwad S.; Nagar S.; Kulshrestha S.; Vaidya V.; Nawani N.; Pawar S. Biofilm inhibition and anti-quorum sensing activity of phytosynthesized silver nanoparticles against the nosocomial pathogen Pseudomonas aeruginosa. Biofouling 2019, 35 (1), 34–49. 10.1080/08927014.2018.1563686. PubMed DOI
Qais F. A.; Shafiq A.; Ahmad I.; Husain F. M.; Khan R. A.; Hassan I. Green synthesis of silver nanoparticles using Carum copticum: Assessment of its quorum sensing and biofilm inhibitory potential against gram negative bacterial pathogens. Microb. Pathog 2020, 144, 104172.10.1016/j.micpath.2020.104172. PubMed DOI
Miškovská A.; Rabochová M.; Michailidu J.; Masák J.; Čejková A.; Lorinčík J.; Mat́átková O.; Al-Shaeri M. A. M. Antibiofilm activity of silver nanoparticles biosynthesized using viticultural waste. PLoS One 2022, 17 (8), e027284410.1371/journal.pone.0272844. PubMed DOI PMC
Liao S.; Zhang Y.; Pan X.; Zhu F.; Jiang C.; Liu Q.; Cheng Z.; Dai G.; Wu G.; Wang L.; et al. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int. J. Nanomed 2019, 14 (null), 1469–1487. 10.2147/IJN.S191340. PubMed DOI PMC
Reidy B.; Haase A.; Luch A.; Dawson K. A.; Lynch I. Mechanisms of Silver Nanoparticle Release, Transformation and Toxicity: A Critical Review of Current Knowledge and Recommendations for Future Studies and Applications. Materials 2013, 6 (6), 2295–2350. 10.3390/ma6062295. PubMed DOI PMC
Bélteky P.; Rónavári A.; Zakupszky D.; Boka E.; Igaz N.; Szerencsés B.; Pfeiffer I.; Vágvölgyi C.; Kiricsi M.; Kónya Z. Are Smaller Nanoparticles Always Better? Understanding the Biological Effect of Size-Dependent Silver Nanoparticle Aggregation Under Biorelevant Conditions. Int. J. Nanomed 2021, 16 (null), 3021–3040. 10.2147/IJN.S304138. PubMed DOI PMC
Dibrov P.; Dzioba J.; Gosink K. K.; Häse C. C. Chemiosmotic Mechanism of Antimicrobial Activity of Ag+ in Vibrio cholerae. Antimicrob. Agents Chemother 2002, 46 (8), 2668–2670. 10.1128/AAC.46.8.2668-2670.2002. PubMed DOI PMC
Yang S.; Cheng X.; Jin Z.; Xia A.; Ni L.; Zhang R.; Jin F.; Kivisaar M. Differential Production of Psl in Planktonic Cells Leads to Two Distinctive Attachment Phenotypes in Pseudomonas aeruginosa. Appl. Environ. Microbiol 2018, 84 (14), e00700-1810.1128/AEM.00700-18. PubMed DOI PMC
Siddiqui L.; Bag J.; Seetha S.; Mittal D.; Leekha A.; Mishra H.; Mishra M.; Verma A. K.; Mishra P. K.; Ekielski A.; Iqbal Z.; et al. Assessing the potential of lignin nanoparticles as drug carrier: Synthesis, cytotoxicity and genotoxicity studies. Int. J. Biol. Macromol 2020, 152, 786–802. 10.1016/j.ijbiomac.2020.02.311. PubMed DOI
Tsai Y.-F.; Yang J.-S.; Tsai F.-J.; Cheng Y.-D.; Chiu Y.-J.; Tsai S.-C. High concentration of iopromide induces apoptosis and autophagy in human embryonic kidney cells via activating a ROS-dependent cellular stress pathway. In Vivo 2021, 35 (6), 3221–3232. 10.21873/invivo.12617. PubMed DOI PMC
Castañeda-Arriaga R.; Pérez-González A.; Reina M.; Alvarez-Idaboy J. R.; Galano A. Comprehensive Investigation of the Antioxidant and Pro-oxidant Effects of Phenolic Compounds: A Double-Edged Sword in the Context of Oxidative Stress?. J. Phys. Chem. B 2018, 122 (23), 6198–6214. 10.1021/acs.jpcb.8b03500. PubMed DOI
Yin H.; Xu L.; Porter N. A. Free Radical Lipid Peroxidation: Mechanisms and Analysis. Chem. Rev 2011, 111 (10), 5944–5972. 10.1021/cr200084z. PubMed DOI
He D.; Miller C. J.; Waite T. D. Fenton-like zero-valent silver nanoparticle-mediated hydroxyl radical production. J. Catal 2014, 317, 198–205. 10.1016/j.jcat.2014.06.016. DOI
Nemmar A.; Al-Salam S.; Greish Y. E.; Beegam S.; Zaaba N. E.; Ali B. H. Impact of Intratracheal Administration of Polyethylene Glycol-Coated Silver Nanoparticles on the Heart of Normotensive and Hypertensive Mice. Int. J. Mol. Sci. 2023, 24 (10), 8890.10.3390/ijms24108890. PubMed DOI PMC
Ansari M. A.; Shukla A. K.; Oves M.; Khan H. M. Electron microscopic ultrastructural study on the toxicological effects of AgNPs on the liver, kidney and spleen tissues of albino mice. Environ. Toxicol. Pharmacol 2016, 44, 30–43. 10.1016/j.etap.2016.04.007. PubMed DOI
Lee J. T. Y.; Leng Y.; Chow K. L.; Ren F.; Ge X.; Wang K.; Lu X. Cell culture medium as an alternative to conventional simulated body fluid. Acta Biomater 2011, 7 (6), 2615–2622. 10.1016/j.actbio.2011.02.034. PubMed DOI
Bayrak O. ¨.; Ghahramanzadeh Asl H.; Ak A. Comparison of SBF and DMEM in terms of electrochemical properties of common metallic biomaterials. Mater. Corros 2020, 71 (2), 209–221. 10.1002/maco.201810762. DOI
Blott S. J.; Pye K. Particle shape: a review and new methods of characterization and classification. Sedimentology 2008, 55 (1), 31–63. 10.1111/j.1365-3091.2007.00892.x. DOI
Vaňková E.; Lokočová K.; Kašparová P.; Hadravová R.; Křížová I.; Mat́átková O.; Masák J.; Šícha V. Cobalt Bis-Dicarbollide Enhances Antibiotics Action towards Staphylococcus epidermidis Planktonic Growth Due to Cell Envelopes Disruption. Pharmaceuticals 2022, 15 (5), 534.10.3390/ph15050534. PubMed DOI PMC
Maršík D.; Mat́átková O.; Kolková A.; Masák J. Exploring the antimicrobial potential of chitosan nanoparticles: synthesis, characterization and impact on Pseudomonas aeruginosa virulence factors. Nanoscale Adv 2024, 6 (12), 3093–3105. 10.1039/D4NA00064A. PubMed DOI PMC
Kulišová M.; Mat́átková O.; Brányik T.; Zelenka J.; Drábová L.; Kolouchová I. J. Detection of microscopic filamentous fungal biofilms – Choosing the suitable methodology. J. Microbiol. Methods 2023, 205, 106676.10.1016/j.mimet.2023.106676. PubMed DOI
Dostálková A.; Škach K.; Kaufman F.; Křížová I.; Hadravová R.; Flegel M.; Ruml T.; Hrabal R.; Rumlová M. PF74 and Its Novel Derivatives Stabilize Hexameric Lattice of HIV-1 Mature-Like Particles. Molecules 2020, 25 (8), 1895.10.3390/molecules25081895. PubMed DOI PMC