Cobalt Bis-Dicarbollide Enhances Antibiotics Action towards Staphylococcus epidermidis Planktonic Growth Due to Cell Envelopes Disruption

. 2022 Apr 26 ; 15 (5) : . [epub] 20220426

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35631360

Grantová podpora
CZ.02.1.01/0.0/0.0/17_048/0007411 European Regional Development Fund ERDF/ESF Project "UniQSurf - Centre of biointerfaces and hybrid functional materials"
CZ.02.1.01/0.0/0.0/16_019/0000729 European Regional Development Fund; OP RDE
61388963 RVO project

The emergence of antibiotic resistance in opportunistic pathogens represents a huge problem, the solution for which may be a treatment with a combination of multiple antimicrobial agents. Sodium salt of cobalt bis-dicarbollide (COSAN.Na) is one of the very stable, low-toxic, amphiphilic boron-rich sandwich complex heteroboranes. This compound has a wide range of potential applications in the biological sciences due to its antitumor, anti-HIV-1, antimicrobial and antibiofilm activity. Our study confirmed the ability of COSAN.Na (in the concentration range 0.2-2.48 µg/mL) to enhance tetracycline, erythromycin, and vancomycin action towards Staphylococcus epidermidis planktonic growth with an additive or synergistic effect (e.g., the combination of 1.24 µg/mL COSAN.Na and 6.5 µg/mL TET). The effective inhibitory concentration of antibiotics was reduced up to tenfold most efficiently in the case of tetracycline (from 65 to 6.5 µg/mL). In addition, strong effect of COSAN.Na on disruption of the cell envelopes was determined using propidium iodide uptake measurement and further confirmed by transmission electron microscopy. The combination of amphiphilic COSAN.Na with antibiotics can therefore be considered a promising way to overcome antibiotic resistance in Gram-positive cocci.

Zobrazit více v PubMed

Otto M. Staphylococcus epidermidis—The ‘accidental’ pathogen. Nat. Rev. Microbiol. 2009;7:555–567. doi: 10.1038/nrmicro2182. PubMed DOI PMC

Watnick P., Kolter R. Biofilm, city of microbes. J. Bacteriol. 2000;182:2675–2679. doi: 10.1128/JB.182.10.2675-2679.2000. PubMed DOI PMC

Frieri M., Kumar K., Boutin A. Antibiotic resistance. J. Infect. Public Health. 2017;10:369–378. doi: 10.1016/j.jiph.2016.08.007. PubMed DOI

Rao M., Padyana S., Dipin K., Kumar S., Nayak B., Varela M. Antimicrobial compounds of plant origin as efflux pump inhibitors: New avenues for controlling multidrug resistant pathogens. J. Antimicrob. Agents. 2018;4:1000159. doi: 10.4172/2472-1212.1000159. DOI

Yusuf M. Food Packaging and Preservation. Elsevier; Amsterdam, The Netherlands: 2018. Natural antimicrobial agents for food biopreservation; pp. 409–438. Chapter 12. DOI

Pizzolato-Cezar L.R., Okuda-Shinagawa N.M., Machini M.T. Combinatory therapy antimicrobial peptide-antibiotic to minimize the ongoing rise of resistance. Front. Microbiol. 2019;10:1703. doi: 10.3389/fmicb.2019.01703. PubMed DOI PMC

Vaňková E., Kašparová P., Dulíčková N., Čeřovský V. Combined effect of lasioglossin LL-III derivative with azoles against Candida albicans virulence factors: Biofilm formation, phospholipases, proteases and hemolytic activity. FEMS Yeast Res. 2020;20:foaa020. doi: 10.1093/femsyr/foaa020. PubMed DOI

Kašparová P., Vaňková E., Brázdová L., Lokočová K., Maťátková O., Masák J. Antibiofilm agent pterostilbene is able to enhance antibiotics action against Staphylococcus epidermidis. Microb. Pathog. 2021;152:104632. doi: 10.1016/j.micpath.2020.104632. PubMed DOI

Ishak S.F., Ghazali A.R., Zin N.M., Basri D.F. Pterostilbene enhanced anti-methicillin resistant Staphylococcus aureus (MRSA) activity of oxacillin. Am. J. Infect. Dis. 2016;12:1–10. doi: 10.3844/ajidsp.2016.1.10. DOI

Amin M.U., Khurram M., Khattak B., Khan J. Antibiotic additive and synergistic action of rutin, morin and quercetin against methicillin resistant Staphylococcus aureus. BMC Complement. Med. Ther. 2015;15:59. doi: 10.1186/s12906-015-0580-0. PubMed DOI PMC

Kašparová P., Zmuda M., Vaňková E., Maťátková O., Masák J. Low-molecular weight chitosan enhances antibacterial effect of antibiotics and permeabilizes cytoplasmic membrane of Staphylococcus epidermidis biofilm cells. Folia Microbiol. 2021;66:983–996. doi: 10.1007/s12223-021-00898-6. PubMed DOI

Lokočová K., Maťátková O., Vaňková E., Kolouchová I., Čejková A., Masák J. Synergistic Inhibitory Effect of Chitosan and Amphotericin B on Planktonic and Biofilm Populations of C. albicans, C. parapsilosis and C. krusei. Microbiology. 2021;90:370–382. doi: 10.1134/S0026261721030061. DOI

Mgbeahuruike E.E., Stålnacke M., Vuorela H., Holm Y. Antimicrobial and synergistic effects of commercial piperine and piperlongumine in combination with conventional antimicrobials. Antibiotics. 2019;8:55. doi: 10.3390/antibiotics8020055. PubMed DOI PMC

Yang S.-K., Yusoff K., Mai C.-W., Lim W.-M., Yap W.-S., Lim S.-H.E., Lai K.-S. Additivity vs. synergism: Investigation of the additive interaction of cinnamon bark oil and meropenem in combinatory therapy. Molecules. 2017;22:1733. doi: 10.3390/molecules22111733. PubMed DOI PMC

Hu Z.-Q., Zhao W.-H., Yoda Y., Asano N., Hara Y., Shimamura T. Additive, indifferent and antagonistic effects in combinations of epigallocatechin gallate with 12 non-β-lactam antibiotics against methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 2002;50:1051–1054. doi: 10.1093/jac/dkf250. PubMed DOI

Grimes R.N. Carboranes. 3rd ed. Academic Press; Cambridge, MA, USA: Elsevier; Amsterdam, The Netherlands: 2016.

Lesnikowski Z.J. Boron units as pharmacophores-new applications and opportunities of boron cluster chemistry. Collect. Czechoslov. Chem. Commun. 2007;72:1646–1658. doi: 10.1135/cccc20071646. DOI

Plešek J., Baše K., Mareš F., Hanousek F., Štíbr B., Heřmánek S. Potential uses of metallocarborane sandwich anions for analysis, characterization and isolation of various cations and organic bases. Collect. Czechoslov. Chem. Commun. 1984;49:2776–2789. doi: 10.1135/cccc19842776. DOI

Matějíček P., Cígler P., Procházka K., Král V. Molecular assembly of metallacarboranes in water: Light scattering and microscopy study. Langmuir. 2006;22:575–581. doi: 10.1021/la052201s. PubMed DOI

Tarrés M., Canetta E., Paul E., Forbes J., Azzouni K., Vinas C., Teixidor F., Harwood A.J. Biological interaction of living cells with COSAN-based synthetic vesicles. Sci. Rep. 2015;5:7804. doi: 10.1038/srep07804. PubMed DOI PMC

Tarrés M., Canetta E., Vinas C., Teixidor F., Harwood A.J. Imaging in living cells using ν B–H Raman spectroscopy: Monitoring COSAN uptake. Chem. Comm. 2014;50:3370–3372. doi: 10.1039/C3CC49658A. PubMed DOI

Verdiá-Báguena C., Alcaraz A., Aguilella V.M., Cioran A.M., Tachikawa S., Nakamura H., Teixidor F., Viñas C. Amphiphilic COSAN and I2-COSAN crossing synthetic lipid membranes: Planar bilayers and liposomes. Chem. Comm. 2014;50:6700–6703. doi: 10.1039/c4cc01283f. PubMed DOI

Goszczyński T.M., Fink K., Boratyński J. Icosahedral boron clusters as modifying entities for biomolecules. Expert Opin. Biol. Ther. 2018;18:205–213. doi: 10.1080/14712598.2018.1473369. PubMed DOI

Goszczyński T.M., Fink K., Kowalski K., Leśnikowski Z.J., Boratyński J. Interactions of boron clusters and their derivatives with serum albumin. Sci. Rep. 2017;7:9800. doi: 10.1038/s41598-017-10314-0. PubMed DOI PMC

Valliant J.F., Guenther K.J., King A.S., Morel P., Schaffer P., Sogbein O.O., Stephenson K.A. The medicinal chemistry of carboranes. Coord. Chem. Rev. 2002;232:173–230. doi: 10.1016/S0010-8545(02)00087-5. DOI

Volovetsky A.B., Sukhov V.S., Balalaeva I.V., Dudenkova V.V., Shilyagina N.Y., Feofanov A.V., Efremenko A.V., Grin M.A., Mironov A.F., Sivaev I.B., et al. Pharmacokinetics of chlorin e6-cobalt bis (dicarbollide) conjugate in Balb/c mice with engrafted carcinoma. Int. J. Mol. Sci. 2017;18:2556. doi: 10.3390/ijms18122556. PubMed DOI PMC

Issa F., Kassiou M., Rendina L.M. Boron in drug discovery: Carboranes as unique pharmacophores in biologically active compounds. Chem. Rev. 2011;111:5701–5722. doi: 10.1021/cr2000866. PubMed DOI

Cígler P., Kožíšek M., Řezáčová P., Brynda J., Otwinowski Z., Pokorná J., Plešek J., Grüner B., Dolečková-Marešová L., Máša M., et al. From nonpeptide toward noncarbon protease inhibitors: Metallacarboranes as specific and potent inhibitors of HIV protease. PNAS. 2005;102:15394–15399. doi: 10.1073/pnas.0507577102. PubMed DOI PMC

Grüner B., Kugler M., El Anwar S., Holub J., Nekvinda J., Bavol D., Růžičková Z., Pospíšilová K., Fábry M., Král V., et al. Cobalt bis (dicarbollide) alkylsulfonamides: Potent and highly selective inhibitors of tumor specific carbonic anhydrase IX. ChemPlusChem. 2021;86:352–363. doi: 10.1002/cplu.202000574. PubMed DOI

Kvasničková E., Masák J., Čejka J., Maťátková O., Šícha V. Preparation, characterization, and the selective antimicrobial activity of N-alkylammonium 8-diethyleneglycol cobalt bis-dicarbollide derivatives. J. Organomet. Chem. 2017;827:23–31. doi: 10.1016/j.jorganchem.2016.10.037. DOI

Benkocká M., Kolářová K., Matoušek J., Semerádtová A., Šícha V., Kolská Z. Nanocomposite of polystyrene foil grafted with metallaboranes for antimicrobial activity. Appl. Surf. Sci. 2018;441:120–129. doi: 10.1016/j.apsusc.2018.01.235. DOI

Popova T., Zaulet A., Teixidor F., Alexandrova R., Vinas C. Investigations on antimicrobial activity of cobaltabisdicarbollides. J. Organomet. Chem. 2013;747:229–234. doi: 10.1016/j.jorganchem.2013.07.006. DOI

Sun Y., Zhang J., Zhang Y., Liu J., van der Veen S., Duttwyler S. The closo-Dodecaborate Dianion Fused with Oxazoles Provides 3D Diboraheterocycles with Selective Antimicrobial Activity. Chem. Eur. J. 2018;24:10364–10371. doi: 10.1002/chem.201801602. PubMed DOI

Vaňková E., Lokočová K., Maťátková O., Křížová I., Masák J., Grüner B., Kaule P., Čermák J., Šícha V. Cobalt bis-dicarbollide and its ammonium derivatives are effective antimicrobial and antibiofilm agents. J. Organomet. Chem. 2019;899:120891. doi: 10.1016/j.jorganchem.2019.120891. DOI

Nakagawa T., Watanabe H., Yoshizaki T. Japan Patent [1,2-Dicarbaclovododecarboran(12)-1-yl] alkyl quaternary ammonium salts, 5031938 B4 19701015. Jpn. Kokai Tokkyo Koho. 1970;31:940.

Totani T., Aono K., Yamamoto K., Tawara K. Synthesis and in vitro antimicrobial property of o-carborane derivatives. J. Med. Chem. 1981;24:1492–1499. doi: 10.1021/jm00144a024. PubMed DOI

Adamska A., Rumijowska-Galewicz A., Ruszczynska A., Studzińska M., Jabłońska A., Paradowska E., Bulska E., Munier-Lehmann H., Dziadek J., Leśnikowski Z.J., et al. Anti-mycobacterial activity of thymine derivatives bearing boron clusters. Eur. J. Med. Chem. 2016;121:71–81. doi: 10.1016/j.ejmech.2016.05.030. PubMed DOI

Oros G., Ujvary I., Nachman R. Antimicrobial activity of o-carboranylalanine. Amino Acids. 1999;17:357–368. doi: 10.1007/BF01361661. PubMed DOI

Omarova E.O., Nazarov P.A., Firsov A.M., Strakhovskaya M.G., Arkhipova A.Y., Moisenovich M.M., Agapov I.I., Ol’shevskaya V.A., Zaitsev A.V., Kalinin V.N., et al. Carboranyl-chlorin e6 as a potent antimicrobial photosensitizer. PLoS ONE. 2015;10:e0141990. doi: 10.1371/journal.pone.0141990. PubMed DOI PMC

Różycka D., Leśnikowski Z.J., Olejniczak A.B. Synthesis of boron cluster analogs of penicillin and their antibacterial activity. J. Organomet. Chem. 2019;881:19–24. doi: 10.1016/j.jorganchem.2018.11.037. DOI

Li S., Wang Z., Wei Y., Wu C., Gao S., Jiang H., Zhao X., Yan H., Wang X. Antimicrobial activity of a ferrocene-substituted carborane derivative targeting multidrug-resistant infection. Biomaterials. 2013;34:902–911. doi: 10.1016/j.biomaterials.2012.10.069. PubMed DOI

Li S., Wu C., Tang X., Gao S., Zhao X., Yan H., Wang X. New strategy for reversing biofilm-associated antibiotic resistance through ferrocene-substituted carborane ruthenium (II)-arene complex. Sci. China Chem. 2013;56:595–603. doi: 10.1007/s11426-012-4812-6. DOI

Li S., Wu C., Zhao X., Jiang H., Yan H., Wang X. Synergistic antibacterial activity of new isomeric carborane derivatives through combination with nanoscaled titania. J. Biomed. Nanotechnol. 2013;9:393–402. doi: 10.1166/jbn.2013.1550. PubMed DOI

Zheng Y., Liu W., Chen Y., Jiang H., Yan H., Kosenko I., Chekulaeva L., Sivaev I., Bregadze V., Wang X. A highly potent antibacterial agent targeting methicillin-resistant Staphylococcus aureus based on cobalt bis (1, 2-dicarbollide) alkoxy derivative. Organometallics. 2017;36:3484–3490. doi: 10.1021/acs.organomet.7b00426. DOI

Swietnicki W., Goldeman W., Psurski M., Nasulewicz-Goldeman A., Boguszewska-Czubara A., Drab M., Sycz J., Goszczyński T.M. Metallacarborane derivatives effective against Pseudomonas aeruginosa and Yersinia enterocolitica. Int. J. Mol. Sci. 2021;22:6762. doi: 10.3390/ijms22136762. PubMed DOI PMC

Romero I., Martinez-Medina M., Camprubí-Font C., Bennour I., Moreno D., Martínez L., Teixidor F., Fox M.A., Viñas C. Metallacarborane Assemblies as Effective Antimicrobial Agents, Including a Highly Potent Anti-MRSA Agent. Organometallics. 2020;39:4253–4264. doi: 10.1021/acs.organomet.0c00315. DOI

Semioshkin A., Ilinova A., Lobanova I., Bregadze V., Paradowska E., Studzińska M., Jabłońska A., Lesnikowski Z.J. Synthesis of the first conjugates of 5-ethynyl-2′-deoxyuridine with closo-dodecaborate and cobalt-bis-dicarbollide boron clusters. Tetrahedron. 2013;69:8034–8041. doi: 10.1016/j.tet.2013.06.100. DOI

Fuentes I., García-Mendiola T., Sato S., Pita M., Nakamura H., Lorenzo E., Teixidor F., Marques F., Viñas C. Metallacarboranes on the road to anticancer therapies: Cellular uptake, DNA interaction, and biological evaluation of cobaltabisdicarbollide [COSAN]−. Chem. Eur. J. 2018;24:17239–17254. doi: 10.1002/chem.201803178. PubMed DOI

Rokitskaya T.I., Kosenko I.D., Sivaev I.B., Antonenko Y.N., Bregadze V.I. Fast flip–flop of halogenated cobalt bis (dicarbollide) anion in a lipid bilayer membrane. Phys. Chem. Chem. Phys. 2017;19:25122–25128. doi: 10.1039/C7CP04207H. PubMed DOI

Assaf K.I., Begaj B., Frank A., Nilam M., Mougharbel A.S., Kortz U., Nekvinda J., Grüner B., Gabel D., Nau W.M. High-affinity binding of metallacarborane cobalt bis (dicarbollide) anions to cyclodextrins and application to membrane translocation. J. Org. Chem. 2019;84:11790–11798. doi: 10.1021/acs.joc.9b01688. PubMed DOI

Vaňková E., Paldrychová M., Kašparová P., Lokočová K., Kodeš Z., Maťátková O., Kolouchová I., Masák J. Natural antioxidant pterostilbene as an effective antibiofilm agent, particularly for gram-positive cocci. World J. Microbiol. Biotechnol. 2020;36:101. doi: 10.1007/s11274-020-02876-5. PubMed DOI

Ayala-Núñez N.V., Villegas H.H.L., Turrent L.d.C.I., Padilla C.R. Silver nanoparticles toxicity and bactericidal effect against methicillin-resistant Staphylococcus aureus: Nanoscale does matter. Nanobiotechnology. 2009;5:2–9. doi: 10.1007/s12030-009-9029-1. DOI

Samadi N., Abadian N., Ahmadkhaniha R., Amini F., Dalili D., Rastkari N., Safaripour E., Mohseni F.A. Structural characterization and surface activities of biogenic rhamnolipid surfactants from Pseudomonas aeruginosa isolate MN1 and synergistic effects against methicillin-resistant Staphylococcus aureus. Folia Microbiol. 2012;57:501–508. doi: 10.1007/s12223-012-0164-z. PubMed DOI

Maťátková O., Kolouchová I., Kvasničková E., Ježdík R., Masák J., Čejková A. Synergistic action of amphotericin B and rhamnolipid in combination on Candida parapsilosis and Trichosporon cutaneum. Chem. Pap. 2017;71:1471–1480. doi: 10.1007/s11696-017-0141-8. DOI

Guo N., Wu X., Yu L., Liu J., Meng R., Jin J., Lu H., Wang X., Yan S., Deng X. In vitro and in vivo interactions between fluconazole and allicin against clinical isolates of fluconazole-resistant Candida albicans determined by alternative methods. FEMS Microbiol. Immunol. 2010;58:193–201. doi: 10.1111/j.1574-695X.2009.00620.x. PubMed DOI

Hynek J., Koncošová M., Zelenka J., Křížová I., Ruml T., Kubát P., Demel J., Lang K. Phosphinatophenylporphyrins tailored for high photodynamic efficacy. Org. Biomol. Chem. 2018;16:7274–7281. doi: 10.1039/C8OB01984C. PubMed DOI

Kočendová J., Vaňková E., Volejníková A., Nešuta O., Buděšínský M., Socha O., Hájek M., Hadravová R., Čeřovský V. Antifungal activity of analogues of antimicrobial peptides isolated from bee venoms against vulvovaginal Candida spp. FEMS Yeast Res. 2019;19:foz013. doi: 10.1093/femsyr/foz013. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...